
Chapter 8
Toward Robust Online Visual Tracking

Ming-Hsuan Yang and Jeffrey Ho

Abstract We pursue a research direction that will empower machines with simul-
taneous tracking and recognition capabilities similar to human cognition. Toward
that, we develop algorithms that leverage prior knowledge/model obtained offline
with information available online via novel learning algorithms. While humans can
effortlessly locate moving objects in different environments, visual tracking remains
one of the most important and challenging problems in computer vision. Robust cog-
nitive visual tracking algorithms facilitate answering important questions regarding
how objects move and interact in complex environments. They have broad applica-
tions including surveillance, navigation, human computer interfaces, object recog-
nition, motion analysis and video indexing, to name a few.

Keywords Visual tracking · Object tracking · Online learning · Incremental
learning

1 Introduction

While we have witnessed significant progress in visual tracking over the last decade
[3, 7–9, 11, 12, 23, 28, 30, 59, 63], developing visual tracking systems that match hu-
man cognitive abilities is still a very challenging research problem. Existing visual
tracking systems tend to perform well over short durations, and more importantly

M.-H. Yang (�)
Electrical Engineering and Computer Science, University of California, Merced, CA 95344, USA
e-mail: mhyang@ucmerced.edu

J. Ho
Computer and Information Science and Engineering, University of Florida, Gainesville,
FL 32607, USA
e-mail: jho@cise.ufl.edu

B. Bhanu et al. (eds.), Distributed Video Sensor Networks,
DOI 10.1007/978-0-85729-127-1_8, © Springer-Verlag London Limited 2011

119

mailto:mhyang@ucmerced.edu
mailto:jho@cise.ufl.edu
http://dx.doi.org/10.1007/978-0-85729-127-1_8


120 M.-H. Yang and J. Ho

only when the target objects stay visible in camera view (i.e., not in and out of the
scene). One main reason is that most existing algorithms employ a static represen-
tation of the target object and operate on the premise of constancy in appearance. In
other words, most algorithms assume that the appearance of a target object does not
change rapidly. For such algorithms to perform robustly, it is imperative to collect a
large set of training images to account for all possible appearance variations caused
by change of viewing angles and illumination. These models do not exploit rich and
important information (e.g., most recent appearance and illumination condition) that
becomes available online during tracking. More importantly, it is of great interest
to develop algorithms that leverage prior knowledge and online learning to enhance
the recognition and tracking capabilities. Another reason is that most existing algo-
rithms are not able to detect and recover from drifts accumulated during tracking.
Once the target position is initialized, most tracking algorithms operate as a series of
predictions, and consequently accumulated drifts are inevitable unless they are able
to reinitialize their positions periodically. Finally, tracking articulated objects poses
additional difficulties due to high dimensionality of the state variables and partial
occlusion.

The above-mentioned problems entail the need for learning robust appearance
models adaptively which in turn facilitate the tracking processes as well as algo-
rithms to detect and correct deviations from the true target locations. Specifically, a
robust appearance model should constantly learn a compact notion of the “thing”
being tracked rather than treating the target as a set of independent pixels, i.e.,
“stuff” [2]. For visual tracking, an appearance model needs to be learned efficiently
and effectively to reflect the most recent appearance change of any target objects.
We note that it is a daunting, if not impossible, task to collect a large set of data
encompassing all appearance variation of a target object caused by change of pose,
illumination, shape, and occlusion. Meanwhile, it is equally important to exploit
prior knowledge or model, when available, within the online learning framework.
Clearly, there is a need to develop robust algorithms that can learn to update ap-
pearance models online for any objects, and use these models to address drifting
problems. We emphasize that the problems of detection, tracking, recognition and
appearance models can be simultaneously addressed with online and prior learning.
Here we present our works in addressing these problems.

2 Appearance Modeling for Visual Tracking

Visual tracking essentially deals with non-stationary data, both the target object and
the background, that change over time. Most existing algorithms are able to track
objects, either previously seen or not, in short durations and in well controlled envi-
ronments. However, due to drastic change in the object’s appearance or large light-
ing variation in its surroundings, these algorithms usually do not perform well after
some period of time or have significant drifts. Although such problems can be ame-
liorated with recourse to richer representations and effective prediction schemes,
most algorithms typically operate on the premise that the model of the target object
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does not change drastically over time. These algorithms usually adopt a model of
the target object first and then use it for tracking, without adapting the model to
account for appearance change of the object due to variation of imaging conditions
(e.g., viewing angles and illumination). Furthermore, it is usually assumed that all
images are acquired with a stationary camera.

2.1 Learning Nonlinear Appearance Manifold

It is well known that images of an object taken under different lighting and pose can
be well modeled with nonlinear manifold via a set of linear subspaces [6, 40, 43].
However, prior work has focused on learning such models in a batch mode offline
fashion. Here we describe algorithms that use nonlinear appearance models learned
offline and show how they facilitate tracking and recognition tasks.

We propose to learn nonlinear manifold with online update and clustering, as
well as their underlying constraints. The nonlinear manifold is modeled with a set of
submanifolds constructed in an online manner, where each submanifold is approx-
imated with a PCA (Principal Component Analysis) subspace. It entails the need
to efficiently process the incoming images into clusters from which submanifolds
are constructed and updated. Each submanifold model is expected to capture cer-
tain appearance variation of the target object due to illumination and pose change.
In addition, a nonlinear manifold provides a way to retain “long-term memory” of
the target rather than to rely on one single subspace which has only “short-term
memory.”

Learning Nonlinear Manifold Online

The complex nonlinear appearance manifold of a target object k, Mk , is partitioned
by a collection of submanifolds, Ck1,Ck2, . . . , where each models the appearances
of the target object under illumination and pose change. The submanifold is ap-
proximated by a low-dimensional linear subspace computed by PCA using images
observed sequentially (see Fig. 1).

The tight coupling between the tracking and recognition components is achieved
via the shared appearance models M1, . . . ,MN . Another difficulty is related to the
definition of the �2-distance d(I,Mk) between an image I and a manifold Mk in the
image space. By definition, d(I,Mk) = d(I, x∗) with x∗ is a point on Mk having
minimal �2-distance to I (see Fig. 1). Even if an analytic description of Mk were
available, finding x∗ is generally not an easy problem. In our case Mk is, at best,
modeled by a modest number of images sampled from it; therefore, Mk is avail-
able to us only through a very coarse and sparse representation with many “gaps”
in which we have inadequate or incompletely information. The main focus of our
work is to provide an effective definition for d(I,Mk) that works for a coarse repre-
sentation of Mk .



122 M.-H. Yang and J. Ho

Since the appearance manifold Mk is nonlinear, it is reasonable to decompose
Mk into a collection of m simpler disjoint submanifolds, Mk = Ck1 ∪ · · · ∪ Ckm,
with Cki denoting a submanifold in a decomposition of person k’s appearance
manifold. Each Cki is assumed to be amenable to linear approximations by a
low-dimensional linear subspace computed through Principal Component Analysis
(i.e., a PCA plane). We define the conditional probability p(Cki |I ) as the proba-
bility that Cki contains a point x with minimal distance to I . With pMk

(x|I ) =∑m
i=1 p(Cki |I )pCki (x|I ), we have,

d(I,Mk) =
∫

Mk

d(x, I )pMk
(x|I ) dx =

m∑

i=1

p
(
Cki |I)

∫

Cki

d(x, I )pCki (x|I ) dx

=
m∑

i=1

p
(
Cki |I)

d
(
I,Cki

)
. (1)

The equation above shows that the expected distance d(I,Mk) can be treated as the
expected distance between I and each Cki . In addition, this equation transforms the
integral to a finite summation which is feasible to compute numerically. The details
of this formation can be found in [25, 31].

For visual tracking and recognition in video sequences, we can exploit tempo-
ral coherence between consecutive image frames. As shown in the right panel of
Fig. 1, the �2-distance may occasionally be misleading during tracking/recognition.
But if we consider previous frames in an image sequence rather than just one, then
the set of closest points x∗ will trace a curve on a submanifold Cki . In our frame-
work, this is embodied by the term p(Cki |I ) in (1). We apply Bayesian inference to
incorporate temporal information to provide a better estimate of p(Cki |I ) and thus
d(I,Mk); this will then yield better tracking/recognition performance. We show that

Fig. 1 (Left) Appearance manifold: A complex and nonlinear manifold Mk can be approximated
as the union of several simpler submanifolds; here, each submanifold Cki is represented by a PCA
plane. (Right) Difficulty of frame-based tracking/recognition: The two solid curves denote two
different appearance manifolds, MA and MB . It is difficult to reach a decision on the identity from
frame It−3 to frame It because these frames have smaller �2-distance to appearance manifolds
MA than MB . However, by looking at the sequence of images It−6 . . . It+3, it is apparent that the
sequence has most likely originated from appearance manifold MB [25, 31]
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it is a recursive formulation that depends on the generative model, p(I |Cki), and the
transition probability, p(Cki

t |Ckj

t−1) [25, 31]. The connectivity between the subman-
ifolds is modeled as transition probabilities, between pairs of submanifolds, and
these are learned directly online via frequency estimation or simple counting. The
integrated task of tracking and recognition is formulated as a maximum a posteriori
estimation problem. Within our framework, the tracking and recognition modules
are complementary to each other, and the capability and performance of one are en-
hanced by the other. Our approach contrasts sharply with more rigid conventional
approaches in which these two modules work independently and in sequence.

Recent work on incremental clustering data streams [10, 29] has shown its
promise for its applicability to numerous types of data, including web documents,
routing packages, financial transactions, and telephone records. We may draw on
such ideas and extend to learning image data online for learning a set of PCA sub-
spaces. Specially, it is worthwhile exploiting the characteristics pertaining to 2D
image data in developing new algorithms to handle image sequences. In the vision
context, it is important to exploit the fact that the similarity measure can be better
modeled with distance from an image to a subspace. For image sequences, one may
compute the distance from an incoming image I to the submanifold, Cki (see Fig. 1)
rather than the �2-distance to other images. On the other hand, randomization and
sampling schemes have shown much promise in fast approximation of clustering
data streams. We will exploit both characteristics in developing online approximate
algorithms that are able to assign each image I to one or a couple of submanifold
Cki for weighted update.

Online Update of Submanifold

For each submanifold modeled by a PCA subspace, we have developed an effi-
cient online subspace update algorithm [35] for appearance model based on the
R-SVD algorithm [21] and the sequential Karhunen–Loeve method [32]. The pro-
posed method not only updates the orthonormal basis but also the subspace means,
which is of great importance for certain applications. For example, it can be ap-
plied to adaptively update the between-class and within-class covariance matrices
used in Fisher linear discriminant analysis [37]. Experimental results show that our
subspace update algorithm is 20% more efficient than the most related work [24].

We develop robust tracking algorithms using online appearance model with sub-
space update [35, 47, 48]. In contrast to the eigentracking algorithm [7], our al-
gorithm does not require a training phase but instead learns the eigenbases online
during the object tracking process. Thus our appearance model can adapt to account
for change in pose, view angle, and illumination which is not captured by the set
of training images. Our appearance model provides a richer description than simple
curves or splines as used in [28], and has a compact notion of the “thing” being
tracked [2]. The learned representation can also be utilized for other tasks such as
object recognition. Furthermore, our algorithm is able to simultaneously track and
learn a compact representation of the target object even when the camera is moving.
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Fig. 2 A person undergoing large pose, expression, appearance, and lighting change, as well as
partial occlusions. The red window shows the maximum a posteriori estimate of the particle filter,
and the green windows show the other particles with large weights. The images in the second row
show the current sample mean, tracked region, reconstructed image, and the reconstruction error
respectively. The third row shows the top 10 principal eigenvectors [35, 48]. The MATLAB code
and data sets can be found at http://faculty.ucmerced.edu/mhyang

Our experiments [35, 48] show that robust tracking results can be obtained us-
ing this representation without employing more complicated wavelet features as in
[30], although this elaboration is still possible and may lead to even better results.
Figure 2 shows some experimental results using our algorithm. Note also that the
view-based eigenbasis representation has demonstrated its ability to model the ap-
pearance of objects in different poses [40], and under different lighting conditions
[6]. Consequently, the learned eigenbasis facilitates tracking objects undergoing il-
lumination and pose change.

2.2 Leveraging Prior Knowledge with Online Learning

Cognitive psychologists have suggested computational models to explain human vi-
sual cognition in terms of long-term and short-term memories [26]. Numerous stud-
ies suggest that interplay between long-term and short-term memories explains how
humans track and recognize objects. For vision problems such as object recognition,
we have access to prior knowledge of the objects. One natural way is to exploit the
prior knowledge obtained offline with the information obtained online, thereby si-
multaneously enhancing the abilities to recognize and track objects robustly. In such
situations, the prior knowledge can be encoded as long-term visual memory via con-
struction of nonlinear manifold offline while the proposed online update algorithm
serves as short-term memory to account for the most recent appearance change.

Our algorithms [25, 31] facilitate the integration of long-term and short-term
memories via the use of submanifold construction and update. The long-term mem-
ory provides rich prior information about the object appearance that helps in assign-
ing one or more subspaces to account for appearance change when a new image
arrives. In our study with one single submanifold, the newly arrived images are
always added to the retained covariance matrix. It is of great interest to develop
algorithms with soft assignments for multiple submanifolds to account for the ap-
pearance of a newly arrived image. In addition, algorithms may not take an irre-
vocable action when a data point arrives, and may modify the current model after

http://faculty.ucmerced.edu/mhyang
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a group of image data arrives. Another direction to pursue is to periodically check
the reconstruction errors after a group of points have been added. If the recognition
error increases over time, it suggests the data points previously added should be
discarded or downweighted. As each submanifold is modeled by a PCA subspace
modeled with a covariance matrix, adding or deleting particular data points can be
carried out efficiently with matrix update and downdate [21].

3 Learning Detectors Online for Visual Tracking

It has been shown that in many scenarios an adaptive appearance model, which
evolves during the tracking process as the appearance of the object changes, is the
key to good performance [30, 48]. Another choice in the design of appearance mod-
els is whether to model only the object [5, 48], or both the object and the background
[3, 11, 22, 37]. Many of the latter approaches have shown that training a model to
separate the object from the background via a discriminative classifier can often
achieve superior results. In this case, the tracking problem becomes a detection one
as the target is located by scanning through the image region as shown in the left
panel of Fig. 3. In particular, the recent advances in face detection [61] have in-
spired some successful real-time tracking algorithms [22]. However, almost all the
detectors are constructed offline for a specific object class (e.g., faces, cars, and
pedestrians) which demand significant efforts in collecting data as well as training
time [13, 38, 50, 51, 56, 61].

Another challenge that is often not discussed in the literature is how to choose
positive and negative examples when updating the appearance model. Most com-
monly this is done by taking the current tracker location as one positive example, and

Fig. 3 (Left) Tracking by detection with a greedy motion model: Generally, the appearance model
is a discriminative classifier that can be trained in an online manner. A greedy motion model is used
to search for the most probable location of the object in a frame within some search window. An
alternative is to use particle filter. (Right) Updating a discriminative appearance model: (A) Using
a single positive image patch to update a traditional discriminative classifier. The positive image
patch chosen does not capture the object perfectly. (B) Using several positive image patches to
update a traditional discriminative classifier. This can confuse the classifier causing poor perfor-
mance. (C) Using one positive bag consisting of several image patches to update a MIL classifier
[4]. The C++ code and data sets can be found at http://faculty.ucmerced.edu/mhyang

http://faculty.ucmerced.edu/mhyang


126 M.-H. Yang and J. Ho

sampling the neighborhood around the tracker location for negatives. If the tracker
location is not precise, however, the appearance model ends up getting updated with
a suboptimal positive example. Over time this can degrade the model, and can cause
drift. On the other hand, if multiple positive examples are used (taken from a small
neighborhood around the current tracker location), the model can become confused
and its discriminative power can suffer as illustrated in the right panel of Fig. 3.

Similar problems are encountered in object detection because it is difficult for
a human labeler to be consistent with respect to how the positive examples are
cropped. In other words, the exact object locations are unknown. In fact, Viola et al.
[62] argue that object detection has inherent ambiguities that make it more difficult
to train a classifier using traditional methods. For this reason they suggest the use
of a Multiple Instance Learning (MIL) [15] approach for training object detectors
offline. The basic idea of this learning paradigm is that during training, examples are
presented in sets (often called “bags”), and labels are provided for the bags rather
than individual instances. If a bag is labeled positive it is assumed to contain at least
one positive instance, otherwise the bag is negative. For example, in the context of
object detection, a positive bag could contain a few possible bounding boxes around
each labeled object (e.g., a human labeler clicks on the center of the object, and the
algorithm crops several rectangles around that point). Therefore, the ambiguity is
passed on to the learning algorithm, which now has to figure out which instance in
each positive bag is the most “correct.” Although one could argue that this learning
problem is more difficult in the sense that less information is provided to the learner,
it is actually easier in the sense that there is less risk of correct information being
lost.

3.1 Multiple Instance Learning

We present an online learning algorithm that builds detectors specific to the target
object online for robust visual tracking [4]. The basic flow of the tracking system
is illustrated in the left panel of Fig. 3, and it contains three components: image
representation, appearance model and motion model. Local feature-based or part-
based representations have been demonstrated to perform well when the objects are
partially occluded [38, 61]. Our image representation consists of a set of Haar-like
features that are computed efficiently for each image patch [16, 61]. The appearance
model is comprised of a discriminative classifier which is able to return p(y = 1|x)

(we will use p(y|x) as shorthand), where x is an image patch (or the representation
of an image patch in feature space) and y is a binary variable indicating the pres-
ence of the object of interest in that image patch. At every time step t , our tracker
maintains the object location l∗t . Let l(x) denote the location of image patch x. For
each new frame we crop out a set of image patches Xs = {x|s > ‖l(x) − l∗t−1‖} that
are within some search radius s of the current tracker location, and compute p(y|x)

for all x ∈ Xs . We update the tracker location with maximum likelihood (ML). In
other words, we do not maintain a distribution of the target’s location at every frame
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and use a motion model where the location of the tracker at time t is equally likely
to appear within a radius s of the tracker location at time (t − 1), although it could
be extended with something more sophisticated, such as a particle filter, as is done
in [48].

Once the tracker location is updated, we proceed to update the appearance model.
We crop out a set of patches Xr = {x|r > ‖l(x) − l∗t ‖}, where r < s is the positive
radius, and label this bag positive (recall that in MIL we train the algorithm with
labeled bags). On the other hand, if a standard learning algorithm were used, there
would be two options: set r = 1 and use this as a single positive instance, or set
r > 1 and label all these instances positive. For negatives we crop out patches from
an annular region Xr,β = {x|β > ‖l(x)− l∗t ‖ > r}, where r is same as before, and β

is a scalar. Since this generates a potentially large set, we then take a random subset
of these image patches and label them negative. We place each negative example into
its own negative bag. Note that we could place all negative examples into a single
negative bag. However, our intuition is that there is no ambiguity about negative
examples, so placing them into separate bags makes more sense. Figure 3 (right
panel) contains an illustration comparing appearance model updating using MIL
and a standard learning algorithm.

Traditional discriminative learning algorithms for training a binary classifier that
estimates p(y|x) require a training data set of the form {(x1, y1), . . . , (xn, yn)}
where xi is an instance (in our case a feature vector computed for an image patch),
and yi ∈ {0,1} is a binary label. In the Multiple Instance Learning framework the
training data has the form {(X1, y1), . . . , (Xn, yn)} where a bag Xi = {xi1, . . . , xim}
and yi is a bag label. The bag labels are defined as:

yi = max
j

(yij ), (2)

where yij are the instance labels, which are assumed to exist but are not known dur-
ing training. Numerous algorithms have been proposed for solving the MIL problem
[15, 62]. The algorithm that is most closely related to our work is the MILBoost al-
gorithm [62], which uses the gradient boosting framework [19] to train a boosting
classifier that maximizes the log likelihood of bags:

log L =
∑

i

(
logp(yi |Xi)

)
. (3)

Notice that the likelihood is defined over bags and not instances, because instance
labels are unknown during training, and yet the goal is to train an instance classifier
that estimates p(y|x). We therefore need to express p(yi |Xi), the probability of a
bag being positive, in terms of its instances. In [62] the Noisy-OR (NOR) model is
adopted for doing this: p(yi |Xi) = 1 − ∏

j (1 − p(yi |xij )). This equation has the
desired property that if one of the instances in a bag has a high probability, the
bag probability will be high as well. However, the MILBoost algorithm is a batch
algorithm and cannot be trained in an online manner as we need in our tracking
application.

We propose an online MIL boosting algorithm to learn object specific detectors
for visual tracking. The goal of boosting is to combine many weak classifiers h(x)
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(usually decision stumps) into an additive strong classifier: H(x) = ∑K
k=1 αkht (x)

where αk are scalar weights. There have been many boosting algorithms proposed
to learn this model in batch mode [18, 19], but generally this is done in a greedy
manner where the weak classifiers are trained sequentially. After each weak classi-
fier is trained, the training examples are re-weighted such that examples that were
previously misclassified receive more weight. If each weak classifier is a decision
stump, then it chooses one feature that has the most discriminative power for the en-
tire training set. In this case boosting can be viewed as performing feature selection,
choosing a total of K features, which is generally much smaller than the size of the
entire feature set.

3.2 Learning Detectors with Online Multiple Instance Boosting

In [42], Oza develops an online variant of the discrete AdaBoost algorithm [18],
which minimizes the exponential loss function. As such, this online algorithm is
limited to classification problems. We take a statistical view of boosting similar to
in [19] where the algorithm minimizes a generic loss function J . In this view, the
weak classifiers are chosen sequentially to optimize the following criteria:

(hk, αk) = argmin
h∈H,α

J (Hk−1 + αh), (4)

where Hk−1 is the strong classifier made up of the first (k − 1) weak classifiers,
and H is the set of all possible weak classifiers. In batch boosting algorithms, the
loss function J is computed over the entire training data set.

In our case, for the current video frame we are given a training data set
{(X1, y1), (X2, y2), . . .}, where Xi = {xi1, xi2, . . .}. We would like to update our es-
timate of p(x|y) to minimize the negative log likelihood of these data (3). We model
the instance probability as p(y|x) = σ(H(x)) where σ(x) = 1

1+e−x is the sigmoid
function, and the bag probabilities p(y|X) using the NOR model described above.
To simplify the problem, we absorb the scalar weights αt into the weak classifiers,
by allowing them to return real values rather than binary. To perform online feature
selection, our algorithm maintains a pool of M > K candidate weak classifiers h.
We update all of these weak classifiers in parallel, similar to [22]. Note that although
examples are passed in bags, the weak classifiers in a MIL algorithm are instance
classifiers, and therefore require instance labels yij . Since these are unavailable, we
pass in the bag label yi for all instances xij to the weak training procedure. We
then choose K weak classifiers h from the candidate pool sequentially, using the
following criteria:

hk = argmin
h∈{h1,...,hM }

log L(Hk−1 + h). (5)

We use classifier hk that can be updated online, and each classifier is composed
of a Haar-like feature fk and modeled with univariate Gaussian distributions whose
parameters are updated online. The classifiers return the log likelihood ratio based
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on the estimated Gaussian distributions. When the weak classifier receives new data
{(x1, y1), . . . , (xn, yn)} we use the weighted running mean and variance for update.
To learn detectors online for real-time visual tracking, we represent each image
patch as a vector of Haar-like features [61] where they are randomly generated,
similar to [16]. The feature value is then a weighted sum of the pixels in all the rect-
angles, which can be computed efficiently using the integral image described in [61].
The proposed online visual tracking algorithm with Multiple Instance Learning is
dubbed as MILTrack algorithm.

We evaluate the proposed MILTrack algorithm on several challenging video se-
quences, some of which are publicly available. For comparison, we implemented
a tracker based on the Online-AdaBoost (OAB) algorithm described in [22]. We
plug this learning algorithm into our system, and used the same features and motion
model as for MILTrack. We demonstrate the merits of the proposed MILTrack algo-
rithm with experiments where all algorithm parameters were fixed (i.e., no tuning
for particular sequences). To further gauge performance we also compare our results
to the recently proposed algorithms using online discrete AdaBoost [22] and local
histograms [1]. For MILTrack we sample positives in each frame using a positive
radius r = 5, which generates a total of 45 image patches composing one positive
bag. For the OAB tracker we experiment with two variations. In the first variation
we set r = 1 generating only one positive example per frame; in the second varia-
tion we set r = 5 as we do in MILTrack (although in this case each of the 45 image
patches is labeled positive). The reason we experiment with these two versions was
to show that the superior performance of MILTrack is not simply due to the fact that
we extract multiple positive examples per frame. Some results are shown in Fig. 4
and Fig. 5. These sequences exhibit many occlusions, lighting and appearance varia-
tions, and fast motion which causes motion blur. For the “Occluded Face” sequence,

Fig. 4 Screen shots of tracking results with zoom-in images [4]. Videos and source code can be
found at http://faculty.ucmerced.edu/mhyang

http://faculty.ucmerced.edu/mhyang
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Fig. 5 Error plots for three test video clips. See [4] for details

FragTrack performs poorly because it cannot handle appearance changes well (e.g.,
when the subject puts a hat on, or turns his face).

In all cases our MILTrack algorithm outperforms both versions of the Online Ad-
aBoost Tracker, and in most cases it outperforms the FragTrack algorithm as well.
The reason for the superior performance is that the Online MILBoost algorithm is
able to handle ambiguously labeled training examples, which are provided by the
tracker itself. On the other hand, when the Online AdaBoost Tracker is updated with
multiple positive examples it performs quite poorly because the classifier is unable
to learn a good decision boundary between positives and negatives. We notice that
even when MILTrack loses the target due to severe occlusions, it is able to recover
quickly since the temporary distraction to the appearance model is not as significant.

The proposed online MILBoost algorithm can easily exploit the prior knowledge
of the target object. From a set of training images, we can extract a set of Haar-
like features that best model the target object before applying online MILBoost for
visual tracking. In addition, the motion model we used here is fairly simple, and
could be replaced with something more sophisticated, such as a particle filter as in
[48] for additional gain in performance. We also plan to investigate the use of other
part-based appearance models [1] with our algorithm and evaluate these alternative
representation methods. The proposed algorithms provides the basic mechanism to
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detect and recognize the objects when they come in and out of the camera view.
One straightforward way is to set thresholds on the detector confidence. However,
more sophisticated algorithms will be investigated to empower machines to mimic
human-level visual cognition.

3.3 Articulated Objects

Tracking articulated objects is of great importance for motion analysis with broad
impact. Once we are able to track single objects robustly with online algorithms, the
next question is how we can extend these ideas to articulated objects.

A major difficulty in applying Bayesian tracking methods for tracking 3D hu-
man body pose is the high dimensionality of the state vector—typically 20–60 di-
mensions depending on the parameterization [14, 52, 55, 60]. Although the state
vector is high dimensional, the pose parameters typically can be assumed to lie
on a low-dimensional manifold embedded in the high-dimensional space. We pro-
pose to approximate the low-dimensional manifold so that the dimensionality of the
state vector is reduced for efficient and effective Bayesian tracking [36]. To achieve
this goal, a statistical model known as the globally coordinated mixture of factor
analyzers (GCMFA) is learned from motion capture data. This model provides a
global parametrization of the low-dimensional manifold. Each factor analyzer in the
mixture is a “locally linear dimensionality reducer” that approximates a part of the
manifold. The global parametrization of the manifold is obtained via aligning these
locally linear pieces in a global coordinate system. The parameters of the GCMFA
model for our application are learned from motion capture sequences. Since the
GCMFA is effective in preserving important information during dimensionality re-
duction [49, 57], it can capture the key kinematic information with the use of motion
capture sequences as training data. The global coordination of the local linear factor
analyzers ensures that poses have a globally consistent parameterization in the latent
space. The global coordination also preserves the continuity of the manifold as sim-
ilar poses are mapped to the coordinates that are close to each other on the manifold.
The density of high-dimensional pose data is approximated by the piecewise linear
Gaussian factor analyzers in the low-dimensional space. By encouraging the inter-
nal coordinates of the factor analyzers to agree, a single, coherent low-dimensional
coordinate system can be obtained for dimensionality reduction. The mixing and co-
ordination of the linear factors provides nonlinear bidirectional mappings between
the low-dimensional (latent) space and the pose space. Because the nonlinear map-
ping functions are broken down into linear factors, the learning algorithm is efficient
and can handle large training data sets with grace.

Once the GCMFA model is learned, we demonstrate its use in a multiple hypoth-
esis tracker with a dimensionality reduced state space for 3D human tracking. The
performance of this tracker is currently being evaluated on the HumanEva bench-
mark data sets [54]. In experiments with real videos, the proposed system reliably
tracks body motion during self-occlusions and in the presence of motion blur. Fig-
ure 6 shows some tracking results using the proposed algorithm, annealed particle
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Fig. 6 Sample tracking results from the test video sequence of S2 (Left) and S3 (Right) per-
forming boxing using the annealed particle filter [14] (APF), the GPLVM-based method [58, 60]
(GPLVMPF), and the proposed method [33]

[14] (APF) and Gaussian Process Latent Variable Model (GPLVM) [58, 60]. The
proposed algorithm is able to accurately track large movements of the human limbs
in adjacent time steps by propagating each cluster’s information over time in the
multiple hypothesis tracker. Some quantitative evaluation [33] using the HumanEva
benchmark data sets shows that our method produces more accurate 3D pose esti-
mates than those obtained via two previously-proposed Bayesian tracking methods
[14, 60].

Although the GCMFA framework has all the desirable properties of a dimension-
ality reduction algorithm for tracking, a main disadvantage is that one has to choose
the optimal structure of the GCMFA model empirically or manually. We address
this issue by proposing a variational Bayesian solution [34] for automatic selection
of the optimal model structure in a way similar to [20]. In addition, we plan to learn
part-based object detector online using the adaptive appearance models presented in
Sect. 2.1 as well as the algorithm described in Sect. 3.2, and exploit the constraints
enforced among them with dimensionality reduction techniques such as GCMFA.

Several methods have shown the potential of exploiting constraints among sub-
spaces and parts in vision applications [53]. With the current algorithm, the dimen-
sionality reducers are used mainly to map between the input and low-dimensional
spaces. One way to extend the current algorithm is to further exploit the temporal
and spatial constraints of the clusters in the low-dimensional space. The appearance
model in our current algorithm can be improved with online update using the algo-
rithms discussed in Sects. 2.1 and 3 to better account for change in illumination and
shape. It is of great interest to extend the online algorithms discussed in Sect. 3.2
to learn detectors for parts of an articulated object. Different from the recent work
that learn body parts offline [17, 27, 38, 39, 45, 46, 53], we aim to exploit the po-
tential of learning detectors online with their constraints aside from relying on prior
knowledge. As it involves learning multiple detectors simultaneously as well as their
kinematic constraints, we expect to explore top-down and bottom-up approaches for
efficient visual tracking.
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One single model or algorithm is not expected to succeed in all tracking scenar-
ios, and we will explore other representations such as integral histograms [44] for
tracking articulated objects at a distance. Our recent results show that articulated
objects at a distance can be well tracked by integrating online appearance models,
object segmentation and spatial constraints of the articulating parts [41]. We plan to
pursue this line of research to account for larger shape deformation and self occlu-
sions.

4 Conclusions

The ultimate goal of our research focuses on developing efficient and effective al-
gorithms that mimic human cognitive abilities for tracking as well as recognizing
objects. Toward that, we have developed several algorithms that leverage online
and offline information for robust tracking and recognition. As one single model
or method is not expected to succeed in all tracking scenarios, we plan to exploit
generative and discriminative algorithms for tracking objects in different scenarios.
We also aim to further explore the interplay between online and offline learning for
robust appearance models.
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