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Abstract

We present a new method for extracting and clas-
sifying motion patterns to recognize hand gestures.
First, motion segmentation of the image sequence is
generated based on a multiscale transform and at-
tributed graph matching of regions across frames. This
produces region correspondences and theiwr affine trans-
formations. Second, color information of motion re-
gions 1s used to determine skin regions. Third, hu-
man head and palm regions are identified based on
the shape and size of skin areas in motion. Finally,
affine transformations defining a region’s motion be-
tween successive frames are concatenated to construct
the region’s motion trajectory. Gestural motion trajec-
tories are then classified by a time-delay neural net-
work trained with backpropagation learning algorithm.
Our experimental results show that hand gestures can
be recognized well using motion patterns.

1 Introduction

This paper is concerned with the problem of de-
tecting two-dimensional motion across image frames
and classifying motion patterns associated with cer-
tain hand actions. Classification is aimed at the recog-
nition of the action represented by the motion pattern.
Such a capability is quite central to human vision, and
useful in many application domains. For concreteness.
both extraction of motion patterns and their interpre-
tations are carried out for the domain of hand gesture
recognition in this work. However, the results can be
easily extended to other scenarios. Most of the past
work on gesture recognition focuses on static hand ges-
tures, with much less attention given to the dynamic
characteristics of gestures. Our work is aimed at rec-
ognizing gestures of American Sign Language (ASL)
using spatio-temporal analysis of gestural motion tra-
jectories.

We perform motion segmentation to group pixels
of similar motion into regions and find region corre-
spondences across frames. Although there are many
motion regions in each frame, the movements of palm
regions contain significant information about the ges-
ture meaning, and therefore palm motion is extracted.
Further, ASL experts have pointed out that gesture in-

terpretation requires not only the motion pattern but
also relative locations of the hand with respect to other
landmark parts of the body such as the head or shoul-
ders [2]. Therefore, human head region is extracted
for use as reference in gesture recognition. To distin-
guish among the different moving regions, we use color
and geometric characteristics. Both head and palm re-
gions have skin color and have similar elliptic shapes,
but differ in size. Motion regions with skin color are
first identified, and a connected component analysis 1s
then performed to merge neighboring regions until the
shape of the merged region is approximately elliptic.
The head and palm regions are discriminated based
on difference in size. The palm regions are extracted
from each frame and the affine transformations be-
tween corresponding regions in successive frames are
computed and concatenated to obtain gestural motion
trajectories.

Recognition of the motion patterns is performed us-
ing a time-delay neural network (TDNN) with an error
backpropagation learning algorithm. Several studies
have shown that such networks are capable of classi-
fying spatio-temporal signals [11]. TDNNs are appro-
priate for recognizing motion patterns because the in-
put data are organized as a temporal sequence, where
the data sampled during a time window are input to
the network simultaneously. To get a time sequence of
output data, this window is moved stepwise in time.
Our experiments verify that gestural motion patterns
can be classified by TDNN.

2 Related Work

Gesture recognition consists of two major compo-
nents: pattern extraction and classification. Many
of the gesture recognition applications use specialized
colored gloves or markers [4]. Electromagnetic sensors
and stereo vision have also been experimented with
to locate the signer in video [12]. Pfinder [3] adopts
a maximum a posteriori probability approach to de-
tection and tracking of the human body using simple
2D models and uses it for recognizing ASL signs [8].
Other than color cues, motion is applied for signer lo-
calization in [5]. However, these approaches require
the signer to wear specialized gloves and the back-



ground color is restricted, so these systems do not
provide excellent means of human-computer interac-
tion. To overcome the limitations of the individual
cues, fusion of cues is explored for face localization in
video, but not fully exploited for hand localization [6].
We describe a method that combines motion, color
and geometric analysis for hand localization and mo-
tion trajectory computation. This combination helps
to achieve robustness and accuracy in the extraction of
motion trajectories, which in turn helps in recognizing
complex hand gestures.

To classify extracted pattern as a gesture, sev-
eral approaches have been proposed in recent years.
Schlenzig, Hunter and Jain [7] use Hidden Markov
Model (HMM) and a rotation-invariant image repre-
sentation to recognize visual gestures such as “hello”
and “good-bye.” HMMs are also utilized by Starner
and Pentland [8] to recognize ASL signs, with or with-
out special colored gloves. Darrell and Pentland [3] ap-
ply dynamic time warping to model correlation for rec-
ognizing hand gestures from video. Recently, Wilson
and Bobick [12] extend the standard HMM method
of gesture recognition to include a global paramet-
ric variation in the output probabilities of the states
in order to recognize and interpret parametric ges-
tures. TDNNs [11] have been applied successfully in
speech recognition, spelling recognition and forecast-
ing of time series. It has been shown that TDNN
achieves lower error rates in phoneme classification
than a simple HMM-based recognizer [11]. In this
work, we utilize TDNN to recognize gesture motion
patterns.

3 Motion Segmentation

In order to capture the dynamic characteristics of
hand gestures, we segment an image frame into re-
gions with similar motion. The algorithm processes
an image sequence two successive frames at a time.
For a pair of frames, (I, I;41), the algorithm identi-
fies regions in each frame comprising the multiscale
intraframe structure. Regions at all scales are then
matched across frames. Affine transforms re computed
for each matched region pair. The affine transform
parameters for region at all scales are then used to
derive a single motion field which is then segmented
to identify the differently moving regions between the
two frames. The following sections describe the major
steps in the motion segmentation algorithm.
3.1 Multiscale Image Segmentation

Multiscale segmentation is performed using a trans-
form descried in [1] which extracts a hierarchy of re-
gions in each image. The general form of the trans-
form, which maps an image to a family of attraction

force fields, is defined by
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)z + (w — y)j. The parameter o, denotes a homo-
geneity scale which reflects the homogeneity of a re-
gion to which a pixel belongs and o is spatial scale
that controls the neighborhood from which the force
on the pixel is computed. The homogeneity of two
pixels is given by the Euclidean distance between the
associated m-dimensional vectors of pixel values (e.g.,
m = 3 for a color image):

Al = |I(z.y) — I(v,w)|

The spatial scale parameter, os. controls the spatial
distance function, ds(-), and the homogeneity scale pa-
rameter, 0,4, controls the homogeneity distance func-
tion, dy4(-). One possible form for these functions satis-
fying criteria discussed in [10] are unnormalized Gaus-
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The force field encodes the region structure in a man-
ner which allows easy extraction. Region boundaries
correspond to diverging force vectors in F and region
skeletons correspond to converging force vectors in F.
An increase in o, causes less homogeneous structures
to be encoded and an increase in o causes large struc-
tures to be encoded.

The leftmost image in Figure 1 shows a frame from
a video sequence. The following three images show the
segmented frame with all pixels in regions at three dif-
ferent scales (o, = 6, 20, 40) replaced by their respec-
tive average gray values. The extracted region bound-
aries align well with the perceived boundaries at dif-
ferent scales. To obtain the segmentations, all param-
eters of the transform are selected automatically, elim-
inating the need to make a prior: assumptions about
either the geometric or homogeneity characteristics of
the structure.

Figure 1: Results of multiscale segmentation



3.2 Region Matching

The matching of motion regions across frames is for-
mulated as a graph matching problem at four different
scales where scale refers to the level of detail captured
by the image segmentation process. Three partitions
of each image are created by slicing through the mul-
tiscale pyramid at three preselected values of o,. Re-
gion partitions from adjacent frames are matched from
coarse to fine, with coarser scale matches guiding the
finer scale matching. Each partition is represented as
a region adjacency graph, within which each region
is represented as a node and region adjacencies are
represented as edges. Region matching at each scale
consists of finding the set of graph transformation op-
erations (edge deletion, edge and node matching, and
node merging) of least cost that create an isomorphism
between the current graph pair. The cost of match-
ing a pair of regions takes into account their similarity
with regard to area, average intensity, expected posi-
tion as estimated from each region’s motion in previ-
ous frames, and the spatial relationship of each region
with its neighboring regions.

Once the image partitions at the three different ho-
mogeneity scales have been matched, matchings are
then obtained for the regions in the first frame of the
frame pair that were identified by the motion segmen-
tation module using the previous frame pair. The
match in the second frame for each of these motion
regions is given as the union of the set of finest scale
regions that comprise the motion region. This gives a
fourth matched pair of image partitions, and is con-
sidered to be the coarsest scale set of matches that is
utilized in affine estimation. The details of the algo-
rithm can be found in [9].

3.3 Affine Transformation Estimation

For each pair of matched regions, the best affine
transformation between them is estimated iteratively.
Let R! be the ith region in frame ¢ and its matched
region be RE‘H. Also let the coordinates of the pixels
within R} be (z};.y;), with j = 1...|R{| where |R{|
is the cardinality of R¢, and the pixel nearest the cen-
troid of R! be (2!, yt). Each (:ij, yf»j) is mapped by an
affine transformation to the point (:i‘ﬁj, :(/th) according
to
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where the subscript k& denotes the iteration number,
and R[] denotes a vector operator that rounds each
vector component to the nearest integer. The affine
transformation comprises a 2x2 deformation matrix,

Ayx. and a translation vector, fk. By defining the
indicator function,

Az, y) = {
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The affine transformation parameters that minimize
M} are estimated iteratively using a local descent cri-
terion [9].
3.4 Motion Field Integration

The computed affine parameters give a motion field
at each of the four scales. These motion fields are
then combined into a single motion field by taking the
coarsest motion field and then performing the follow-
ing computation recursively at four scales. At each
matched region, the image prediction error generated
by the current motion field and the motion field at the
next finer scale are compared. At any region where the
prediction error using the finer scale motion improves
by a significant amount, the current motion is replaced
by the finer scale motion. The result i1s a set of “best
matched” regions at the coarsest acceptable scales.
3.5 Motion Field Segmentation

The resulting motion field Mt¢t+1 is segmented into
areas of similar motion. We use a heuristic that con-
siders each pair of best matched regions, R! and R;,
which share a common border, and merges them if
the following relation is satisfied for all (2, yf,) and
(;L‘;l, y;z) that are spatially adjacent to one another:
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where m,, is a constant less than 1 that determines
the degree of motion similarity necessary for the re-
gions to merge.

The segmented motion regions are each represented
in M S;¢41 by a different value. Because each of the
best matched regions have matches, the matches in
frame ¢ + 1 of the regions in M S; ;41 are known and
comprise the coarsest scale regions that are used in
the affine estimation module for the next frame pair.

It should be noted that the motion segmentation
does not necessarily correspond to the moving objects
in the scene because the motion segmentation is done
over a single motion field. Nonrigid objects, such as
humans, are segmented into multiple, piecewise rigid
regions. In addition, fast objects moving at rates less
than one pixel per frame cannot be identified. Han-
dling both these situations requires examining the mo-
tion field over multiple frames.



Figure 2 shows frames from an image sequence and
Figure 3 shows the results of motion segmentation.
Different motion regions are displayed with different
gray levels. Notice that there are several motion re-
gions within the head and palm regions because these
piecewise rigid regions have similar motion.

4 Color and Geometric Analysis

Motion segmentation generates regions that have
similar motion. However, only some of these mo-
tion regions carry important information for gesture
recognition. To recognize the hand gestures consid-
ered here, it is sufficient to extract the motion regions
of head and palm regions. We use color segmenta-
tion to find motion regions that have skin-like color
because of their unique chromaticity. Meanwhile, we
use CIE LUV color space in order to minimize the
dependence on luminance. A look-up table is created
based on statistical analysis of the (u,v) values of skin
color pixels in training images. A region is classified
to have human skin color if most of its pixels fall into
the trained LUV skin color cluster. Coupled with mo-
tion segmentation, motion regions of skin color can be
efficiently extracted from video.

Since the shape of human head and palm can be ap-
proximated by ellipses, and the human hand is a thin,
rectangular region, motion regions that have skin color
are merged until the shape of the merged region is ap-
proximately elliptic or rectangular. The parameters of
a rectangular shape can be obtained from the bound-
ing box of each region easily. The orientation of an
ellipse are calculated by the least moment of inertia.
The extents of the major and minor axes of the ellipse
are approximated by the extents of the region along
the axis directions and the degree of fit of the ellipse is
determined by the number of pixels that fall into that
shape specified by the computed parameters. That el-
liptic region which is larger than the rest is viewed as
human head and the palm regions are the elliptic re-
gions that are smaller than the head region while the
hand is a rectangular area with its size in between.
Figure 4 shows the results of color segmentation and
geometric analysis on the motion regions.

5 Motion Trajectory

Although motion segmentation generates the affine
transformations that capture motion details by match-
ing finest regions, it is sufficient to use the coarser mo-
tion trajectories of identified palm regions for gesture
recognition.

Affine transformation of palm region in each frame
pair is computed based on equations in Section 3.3.
These affine transformations are then concatenated to
construct the motion trajectory of the palm region.

Figure 7 shows the motion trajectories of the palm
region from the image sequence “any.”

6 Motion Pattern Classification

Since gesture recognition is a pattern recognition
problem of spatio-temporal signals and TDNNs have
been demonstrated to have been very successful at
such tasks, we employ TDNN to classify gestural mo-
tion patterns of palm regions. TDNN is a dynamic
classification approach in that the network sees only a
small window of the motion pattern and this window
slides over the input data while the network makes a
series of local decisions. These local decisions have to
be integrated into a global decision at a later time. In a
seminal paper, Waibel et al. [11] demonstrated excel-
lent results for phoneme classification using a TDNN
and showed that it achieved lower error rates than
those achieved by a simple HMM recognizer.

The design of TDNN is attractive because its com-
pact structure economizes on weights and makes it
possible for the network to develop general feature de-
tectors. Also, its hierarchy of delays optimizes these
feature detectors by increasing their scope at each
layer. Most importantly, its temporal integration at
the output layer makes the network shift invariant
(i.e. insensitive to the exact positioning of the ges-
ture). Figure 6 shows our TDNN architecture for the
experiments, where positive values are shown as black
squares and negative values as gray squares. The in-
puts to our TDNN are vectors of (z,y, v, a) for each of
the 50 frames from gesture image sequence, where z,
y are positions with respect to the head. and v, a are
magnitudes of velocity and acceleration respectively;
the outputs are the gesture classes; and the learning
mechanism is an error backpropagation learning al-
gorithm. Our experimental results show that motion
patterns can be classified by TDNN accurately and
efficiently.
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Figure 6: Architecture of TDNN



Figure 3: Motion segmentation of the sequence in Figure 2 (time increases left to right and top to bottom)
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Figure 4: Extracted human head and palm regions in the sequence of Figure 2

Figure 5: Tmage sequence of ASL sign “anything” (time increases left to right and top to bottom)



7 Experimental Results

We use a video database of ASL signs for experi-
ments. Each video consists of an ASL sign which lasts
about 3 to 5 seconds at 30 frames per second. Figures
2 and 5 show several key frames from a video of ASL
sign “any” and “anything.” Figure 3 shows the results
of motion segmentation on an image sequence “any.”
Note that the head and palm of the signer consist of
several motion regions because motion segmentation is
done over a single motion field as discussed previously.

Motion regions with skin color are identified be-
cause of their chromatic characteristics. These regions
are then merged into palm and head regions based ge-
ometric analysis as shown in Figure 4. Affine param-
eters of matched palm regions are computed, thereby
yielding motion trajectories shown in Figure 7. Note
that the motion trajectory of palm region matches the
movement in the real scene well.
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Figure 7: Motion patterns of gesture “any”

For experiments with the classification scheme, we
extract motion patterns for these gesture signs (num-
bered from 1 to 3): “any,” “anything” and “accom-
pany.” Figures 7 and 8 show the motion patterns of
gesture sign 1 and 2. For each sign, we use 80% of
the extracted motion patterns of video sequences for
training and the rest for testing. Table 1 shows the

classification results of the gestures.

Table 1: Experimental results of classification tests

Gesture 1 | Gesture 2 | Gesture 3
Recognition rate | 100% 96.7% 98.1%
# test patterns 34 30 52

8 Conclusion

We have proposed a method to recognize hand ges-
tures based on motion patterns derived from image se-
quences. A new system has been developed to extract
motion patterns based on motion segmentation, color
segmentation, and geometric analysis. These motion
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Figure 8: Motion patterns of gesture “anything”

patterns encode the dynamic characteristics of hand
gestures and are classified by a time-delay neural net-
work. Our experiments show promising results. Work
is ongoing to recognize ASL signs from a database
of more than 200 signs and index these patterns for
content-based querying.
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