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Abstract

In this paper, we propose a Multi-Scale Boosted Dehaz-
ing Network with Dense Feature Fusion based on the U-Net
architecture. The proposed method is designed based on
two principles, boosting and error feedback, and we show
that they are suitable for the dehazing problem. By incor-
porating the Strengthen-Operate-Subtract boosting strategy
in the decoder of the proposed model, we develop a simple
yet effective boosted decoder to progressively restore the
haze-free image. To address the issue of preserving spatial
information in the U-Net architecture, we design a dense
feature fusion module using the back-projection feedback
scheme. We show that the dense feature fusion module can
simultaneously remedy the missing spatial information from
high-resolution features and exploit the non-adjacent fea-
tures. Extensive evaluations demonstrate that the proposed
model performs favorably against the state-of-the-art ap-
proaches on the benchmark datasets as well as real-world
hazy images.

1. Introduction
Hazy images are usually degraded by the turbid medium

in the atmosphere during the imaging formation process.

The goal of image dehazing is to restore a clean scene from

a hazy image. This problem has received significant atten-

tion as images need to be first enhanced before applying

high-level vision tasks (e.g., scene understanding [53] and

detection [32]). Existing methods [5, 49, 60, 31, 58] usually

model a hazy image I by:

I(x) = T (x)J(x) + (1− T (x))A, (1)

where J denotes a haze-free scene radiance, A describes the

global atmospheric light indicating the intensity of ambient

light, T is the transmission map, and x represents the pixel

position.

To restore the haze-free scene radiance J from a hazy

image I , data-driven deep learning approaches have been

demonstrated to be effective. Early approaches first use

deep Convolutional Neural Networks (CNNs) to estimate

transmission maps [5, 49, 60, 31, 59, 46] and then apply

conventional methods (e,g., [23]) to estimate atmospheric

light. However, the estimation of the transmission map or

the atmospheric light from a single hazy input is not a trivial

task, due to the airlight-albedo ambiguity [36] and the dif-

ficulty of obtaining ground truth data of transmission maps.

In addition, inaccurate estimation of the transmission map

or the atmospheric light would significantly interfere with

the clear image restoration. To address this problem, several

algorithms directly [35, 50, 61, 43, 9, 14, 41, 40] or itera-

tively [42, 10] estimate clean images based on deep CNNs.

Nevertheless, these methods mainly adopt generic network

architectures (e.g., DenseNet [61], U-Net [43], Dilated Net-

work [9], Grid Network [40]), which are not well optimized

for the image dehazing problem.

Different from many high-level vision tasks, inverse prob-

lems such as the image dehazing problem are highly ill-

posed, where small measurement errors usually lead to dra-

matic changes. To solve these ill-posed problems, certain

priors [15, 16, 23, 4] or careful algorithm designs are needed

to make the problem well-posed. For a dehazing deep net-

work, simply stacking more layers or using wider layers is

inefficient for significant performance gain. Thus, it is of

great interest and importance to tailor design network models

for the dehazing problem.

In this work, we propose a dehazing network following

two well-established principles for image restoration prob-

lems, i.e., boosting and error feedback mechanisms. The

boosting strategy [44, 6, 51] is originally developed for im-

age denoising by progressively refining the intermediate re-

sult from the previous iteration, and the error feedback mech-

anism, especially the back-projection technique [27, 12, 22],

is designed for super-resolution to progressively recover de-

tails that are missed in the degradation process. We first

show that the boosting strategy would facilitate the image

dehazing task as well. Considering these two principles,

we propose a Multi-Scale Boosted Dehazing Network (MS-



BDN) with the Dense Feature Fusion (DFF) based on the

U-Net [52, 43] architecture. We interpret the decoder of

the network as an image restoration module and thus in-

corporate the Strengthen-Operate-Subtract (SOS) boosting

strategy [51] in the decoder to progressively restore the haze-

free image. Due to the downsampling operations in the

encoder of the U-Net, the spatial information compression

may not be effectively retrieved from the decoder of the U-

Net. To address this issue, we propose a DFF module based

on the back-projection technique to effectively fuse features

from different levels. We show that this module can simul-

taneously preserve spatial information from high-resolution

features and exploit non-adjacent features for image dehaz-

ing. Extensive evaluations demonstrate that the proposed

algorithm performs favorably against state-of-the-art dehaz-

ing methods.

The contributions of this work are summarized as follows:

• We propose a Multi-Scale Boosted Dehazing Network

to incorporate the boosting strategy and the back-

projection technique neatly for image dehazing.

• We show that the boosting strategy can help image

dehazing algorithms under a certain axiom and show

that the network design with the boosting strategy is

simple but effective in practice.

• We demonstrate that the Dense Feature Fusion module

based on the back-projection technique can effectively

fuse and extract features from different scales for im-

age dehazing, and help improve the performance of

dehazing networks.

2. Related Work
Image dehazing. Since image dehazing is an ill-posed

problem, existing methods often use strong priors or as-

sumptions as additional constraints to restore the trans-

mission map, global atmospheric light, and scene radi-

ance [15, 56, 16, 23, 4]. In [15], Fattal uses the surface

shading information to estimate transmission maps. By as-

suming that haze-free images should have higher contrast

than hazy images, a method that enhances the visibility of

hazy images by maximizing the local contrast is developed

[56]. In [23], He et al. propose a dark channel prior on

the pixel intensities of clean outdoor images and develop

a dehazing method using the prior. As pixels in a given

RGB space cluster are often non-local, Berman et al. [4]

develop an effective non-local path prior for image dehaz-

ing. Since these priors and assumptions are introduced for

specific scenes or atmospheric conditions, these dehazing

methods are less effective on the scenes when the priors do

not hold. For example, the dark channel prior [23] does not

perform well for images without zero-intensity pixels.

To address these problems, numerous data-driven meth-

ods based on deep learning have been developed [5, 49,

60, 31, 58, 34, 42, 59, 18] to first estimate transmission

maps and then restore images. These algorithms are effec-

tive when the transmission maps and atmospheric lights are

accurately estimated. However, due to the airlight-albedo

ambiguity [36], they usually lead to results with significant

color distortions when the estimated atmospheric lights or

transmission maps are not accurate enough. On the other

hand, end-to-end [35, 50, 61, 43, 9, 41, 40, 47, 13] dehaz-

ing networks have been proposed to directly restore clean

radiance scenes without estimating transmission maps and

atmospheric lights. Nevertheless, these methods are mainly

based on some generic network architectures without sig-

nificant modification, which are inefficient for the image

dehazing problem.

Boosting algorithms for image restoration. Numerous

boosting methods have been developed for image denois-

ing [6, 44, 51] to progressively refine the result by feeding

the enhanced previous estimation as the input. Recently,

the boosting strategies are incorporated with deep CNNs for

object classification [21, 45] and image denoising [7, 8]. In

this work, we show that the boosting strategy can also be

applied to image dehazing and incorporate it into network

design for this dehazing task.

Multi-scale feature fusion. Feature fusion has been widely

used in the network design for performance gain by exploit-

ing features from different layers. Numerous image restora-

tion methods fuse features by using dense connection [61],

feature concatenation [64] or weighted element-wise sum-

mation [9, 62]. Most existing feature fusion modules reuse

features of the same scale from previous layers. In [25, 37],

the features at different scales are projected and concate-

nated by using the strided convolutional layer. Although

these methods can merge multiple features from different

levels, the concatenation scheme is not effective for extract-

ing useful information. To share information among adja-

cent levels, the grid architectures [65, 17] are proposed by

interconnecting the features from adjacent levels with con-

volutional and deconvolutional layers. Recently, Liu et al.

propose an effective end-to-end trainable grid network [40]

for image dehazing. However, these methods do not explic-

itly exploit features from non-adjacent levels and cannot be

easily applied to other architectures. In [22], a deep feed-

back mechanism for projection errors [27, 12] is developed

to merge features from two levels. Different from [22], we

develop a DFF module which fuses features from multiple

scales effectively.

3. Proposed Method
3.1. Multi-Scale Boosted Dehazing Network

The proposed network is based on the U-Net [52] archi-

tecture, and we design a multi-scale boosted decoder inspired

by the SOS boosting method [51]. As shown in Figure 1,

the network includes three components, an encoder mod-

ule GEnc, a boosted decoder module GDec, and a feature
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Figure 1. Architecture of the proposed MSBDN with DFF modules. Skip connections are employed to introduce the corresponding

feature maps from the encoder module to the boosted decoder module.

restoration module GRes.

Boosting in image dehazing. The boosting algorithm has

been shown to be effective for image denoising [6, 44, 51].

The SOS boosting algorithm [51] operates the refinement

process on the strengthened image, based on the previously

estimated image. The algorithm has been shown to improve

the Signal-to-Noise Ratio (SNR) under the axiom that the

denoising method obtains better results in terms of SNR on

the images of the same scene but less noise.

For image dehazing, the SOS boosting strategy can be

formulated similarly as

Ĵn+1 = g(I + Ĵn)− Ĵn, (2)

where Ĵn denotes the estimated image at the n-th iteration,

g(·) is the dehazing approach, and I + Ĵn represents the

strengthened image using the hazy input I . We show that the

boosting method can facilitate image dehazing performance

in terms of Portion of Haze (PoH) under a similar axiom as

that for denoising. Here the portion of haze of the image

J in (1) is defined as PoH(J) = (1 − T )A/J , and it is

proportional to 1− T for hazy images of the same scene.

Axiom 1. The dehazing method g obtains better results in
terms of PoH on the images of the same scene but less haze.
That is, if J1 and J2 are the images of the same scene, and
PoH(J1) < PoH(J2), then PoH(g(J1)) < PoH(g(J2)).

Proposition 1. Under Axiom 1, the SOS boosting strategy
in (2) improves the dehazing performance, as

PoH(Ĵn+1) < PoH(Ĵn). (3)

The experimental verification of Axiom 1 and proof of

Proposition 1 are given in the supplementary material.

According to Proposition 1, we develop a deep boosted

network based on the SOS boosting strategy, to effectively

solve image dehazing by a data-driven approach.

Deep boosted dehazing network. In a U-Net network for

dehazing, we interpret the decoder as the haze-free image

restoration module. To progressively refine the feature jL

from the feature restoration module GRes, we incorporate

the SOS boosting strategy in the decoder of the proposed

network and the structure of the SOS boosted module is

illustrated in Figure 2(e). In the SOS boosted module at level

n, we upsample the feature jn+1 from the previous level,

strengthen it with the latent feature in from the encoder, and

generate the boosted feature jn through the refinement unit,

as

jn = Gn
θn(i

n + (jn+1) ↑2)− (jn+1) ↑2, (4)

where ↑2 denotes the upsampling operator with a scaling

factor of 2, (in + (jn+1) ↑2) represents the strengthened

feature, and Gn
θn

denotes the trainable refinement unit at the

(n)-th level parameterized by θn.

In this work, we implement each refinement unit with

a residual group as also used in the encoder. Clearly, (4)

is derivable and refines the feature (jn+1) ↑2 in a signal

strengthening manner. At the end of the decoder, a convolu-

tional layer is used for reconstructing the estimated hazy-free

image Ĵ from the final features.

Alternatives to SOS boosted module. For completeness,

we also list four alternatives to the proposed SOS boosted

module for dehazing. The diffusion [44] and twicing [6]

schemes are can be applied to designing the boosted mod-

ules as shown in Figure 2(a) and Figure 2(b). They can be

formulated respectively as

jn = Gn
θn((j

n+1) ↑2), (5)

and

jn = Gn
θn(i

n − (jn+1) ↑2) + (jn+1) ↑2 . (6)

We adopt the SOS boosting strategy in the proposed method,

as the refinement units in (5) and (6) do not fully exploit the

feature in, which contains more structural and spatial infor-

mation compared with the upsampled feature (jn+1) ↑2.

Another related module is the pyramid module (shown

in Figure 2(c)) from the Feature Pyramid Network (FPN)

that has been widely used for panoptic segmentation [29],

super-resolution [30], and pose estimation [11]. It can be
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Figure 2. Architectures of different boosted modules. The green trapezoidal block denotes the deconvolutional layer with a stride of 2 in

the decoder module.

formulated as

jn = (jn+1) ↑2 +Gn
θn(i

n). (7)

Here, the refinement unit is blind to the upsampled feature

(jn+1) ↑2 from the previous level.

Finally, we also evaluate the decoder module of the orig-

inal U-Net (shown in Figure 2(d)), which concatenates the

upsampled boosted feature (jn+1) ↑2 and the latent feature

in in the module. It can be formulated as

jn = Gn
θn(i

n, (jn+1) ↑2). (8)

Since the subtraction and addition operations in (4) and (6)

can be absorbed by the learnable refinement unit Gn
θn

, the

decoder module of U-Net can imitate the boosting strategy

with a proper training. However, this imitation is not guar-

anteed with an implicit and unconstrained fusing process of

(jn+1) ↑2 and in.

We evaluate the proposed SOS boosting strategy with

these alternatives in Section 4.3, and show that the network

with the SOS boosting strategy obtains the best results.

3.2. Dense Feature Fusion Module
The U-Net architecture is inherently limited in several

aspects, e.g., missing spatial information during the down-

sampling processes in the encoder and lacking sufficient

connections between the features from non-adjacent levels.

To remedy the missing spatial information from upper-level

features and fully exploit the features from non-adjacent

levels, a straightforward approach is to first resample all the

features to the same scale, and then fuse them by a bottle-

neck layer (concatenation layer and convolutional layer) as

DenseNet [26] dose. However, simply using concatenation

is less effective for feature fusion since the features from

different levels are of different scales and dimensions.

The back-projection technique in super-resolution [27] is

an efficient method designed for generating high-resolution

contents by minimizing the reconstruction errors between

the estimated high-resolution result Ĥ and multiple observed

low-resolution inputs. In [12], an iteratively back-projection

algorithm is developed for the case with one single low-

resolution input with

Ĥt+1 = Ĥt + h(f(Ĥt)− Lob), (9)

where Ĥt is the estimated high-resolution output at t-th
iteration, Lob is the observed low-resolution image acquired

by using the downsampling operator f , and h denotes the

back-projection operator.

Motivated by the back-projection algorithm in (9), we

propose a DFF module for effectively remedying the miss-

ing information and exploiting features from non-adjacent

levels. The proposed DFF is designed to further enhance

the boosted features at the current level with an error feed-

back mechanism, and it is used in both the encoder and the

decoder. As shown in Figure 1, two DFF modules are in-

troduced at each level, one before the residual group in the

encoder and another after the SOS boosted module in the

decoder. The enhanced DFF output in the encoder/decoder

is directly connected to all the following DFF modules in

the encoder/decoder for feature fusion.

We describe how to use the DFF in the decoder in the

following, and the DFF in the encoder can be derived ac-

cordingly. The DFF for the n-th level of the decoder (Dn
de

as shown in Figure 3), is defined by

j̃n = Dn
de(j

n, {j̃L, j̃L−1, · · · , j̃n+1}), (10)

where jn is the boosted feature at the n-th level of the de-

coder, j̃n is the enhanced feature through feature fusion, L is

the number of the network levels, and {j̃L, j̃L−1, · · · , j̃n+1}
are the preceding enhanced features from all the (L − n)
preceding DFF modules in the decoder. Here, we adopt a pro-

gressive process to enhance the boosted feature jn by giving

one preceding enhanced feature j̃L−t, t ∈ {0, 1, · · · , L −
n− 1} at a time. The update procedure can be defined by:

• Compute the difference ent between the boosted feature

at the t-th iteration jnt (jn0 = jn) and the t-th preceding

enhanced feature j̃L−t by

ent = pnt (j
n
t )− j̃L−t, (11)

where pnt denotes the projection operator which down-

samples the boosted feature jnt to the same dimension

of j̃L−t.

• Update the boosted feature jnt with the back-projected

difference by

jnt+1 = qnt (e
n
t ) + jnt , (12)



.........
Deconvolutional layer (strided=2)

Convolutional layer (strided=2)

...

...

......

Preceding
Enhanced

Boosted Enhanced

Boosted
Module

Figure 3. Network architecture of the proposed DFF module at the n-th level of the decoder. The dense feature fusion in the decoder

module uses the back-projection technique to exploit the features from all the preceding levels. The blocks with the same color share with

the same parameters.

where qnt denotes the back-projection operator which

upsamples the difference ent at the t-th iteration to the

same dimension of jnt .

• The final enhanced feature j̃n can be obtained after all

the preceding enhanced features have been considered.

Different from the traditional back-projection techniques

[27, 12], the sampling operators pnt and qnt are unknown to

the network. Motivated by the recent deep back-projection

network for super-resolution [22], we adopt the strided

convolutional/deconvolutional layers to learn the downsam-

pling/upsampling operators in an end-to-end manner. To

avoid introducing too many parameters, we stack (L−n− t)
convolutional/deconvolutional layers with strides of 2 to im-

plement the downsampling/upsampling operators in pnt /qnt .

We note that the DFF for the n-th level of the encoder

(Dn
en) can be defined by

ĩn = Dn
en(i

n |̃i1, ĩ2, · · · , ĩn−1), (13)

where in is the latent feature at the n-th level of the encoder,

{̃i1, ĩ2, · · · , ĩn−1} are the preceding enhanced features from

all the (n− 1) preceding DFF modules in the encoder, and

Dn
en shares the same architecture as the module DL−n

de at the

(L− n)-th level of the decoder but switches the positions of

downsampling operations pnt and upsampling operations qnt .

Compared with other sampling and concatenation fu-

sion methods, the proposed module can better extract the

high-frequency information from the high-resolution fea-

tures from proceeding layers due to the feedback mechanism.

By progressively fusing these differences back to the down-

sampled latent features, the missing spatial information can

be remedied. On the other hand, this module can exploit

all the preceding high-level features and operate as an error-

correcting feedback mechanism to refine the boosted features

for obtaining better results.

3.3. Implementations
As shown in Figure 1, the proposed network contains

four strided convolutional layers and four strided deconvo-

lutional layers. The Leaky Rectified Linear Unit (LReLU)

with a negative slope of 0.2 is used after each convolutional

and deconvolutional layer. The residual group [38] consists

of three residual blocks, and 18 residual blocks are used in

GRes. The filter size is set as 11×11 pixels in the first convo-

lutional layer in the encoder module and 3×3 in all the other

convolutional and deconvolutional layers. We jointly train

the MSBDN and DFF module and use the Mean Squared

Error (MSE) as the loss function to constrain the network

output and ground truth. The entire training process con-

tains 100 epochs optimized by the ADAM solver [28] with

β1 = 0.9 and β2 = 0.999 with a batch size of 16. The initial

learning rate is set as 10−4 with a decay rate of 0.75 after

every 10 epochs. All the experiments are conducted on an

NVIDIA 2080Ti GPU. The source code and trained models

are availabe at https://github.com/BookerDeWitt/MSBDN-

DFF.

4. Experimental Results
4.1. Datasets

We evaluate the proposed algorithm on the following

datasets [33, 63, 1] against the state-of-the-art methods.

RESIDE dataset. The RESIDE dataset [33] contains both

synthesized and real-world hazy/clean image pairs of indoor

and outdoor scenes. To learn a general dehazing model for

both indoor and outdoor scenes, we select as the training set

9000 outdoor hazy/clean image pairs and 7000 indoor pairs

from the RESIDE training dataset [33] by removing redun-

dant images from the same scenes. To further augment the

training data, we resize images of each pair with three ran-

dom scales within the scale range of [0.5, 1.0]. We randomly

crop 256 × 256 patches from hazy images and randomly flip

them horizontally or vertically as the inputs. SOTS is the test

subset of the RESIDE dataset, which contains 500 indoor

hazy images and 500 outdoor hazy images. For comparison,

all the methods are trained on the selected RESIDE training

dataset and evaluated on the SOTS.

HazeRD dataset. The HazeRD dataset [63] contains 75 syn-

thesized hazy images with realistic haze conditions. Since

most evaluated methods on the HazeRD dataset [63] are

trained on the synthesized NYUv2 [55] dataset, we train the

proposed model on NYUv2 with the same setting as [49] for

fair comparisons.

NTIRE2018-Dehazing challenge dataset. The

NTIRE2018-Dehazing challenge [1] includes an in-

door dataset (referred to as I-HAZE [2]) and an outdoor

dataset (referred to as O-HAZE [3]). Both datasets provide

training sets and test sets. For each dataset, we train

the proposed model using its training set and evaluate it



Table 1. Quantitative evaluations on the benchmark dehazing datasets. Red texts and blue texts indicate the best and the second-best

performance respectively. ↑ and ↓ mean the better methods should achieve higher/lower score of this metric.
Methods DCP [23] NLD [4] AODNet [31] MSCNN [49] MsPPN [61] DcGAN [35] GFN [50] GCANet [9] PFFNet [43] GDN [40] DuRN [41] Ours

SOTS [33]
PSNR↑ 18.75 17.27 18.80 17.57 29.94 25.37 24.11 28.13 29.22 31.51 31.92 33.79
SSIM↑ 0.859 0.750 0.834 0.811 0.958 0.917 0.899 0.945 0.954 0.983 0.980 0.984

HazeRD [63]
CIEDE2000↓ 14.83 16.40 13.23 13.80 15.50 12.02 14.83 14.45 14.46 13.93 12.48 10.36

SSIM↑ 0.767 0.727 0.833 0.794 0.759 0.826 0.802 0.819 0.808 0.833 0.840 0.881

I-HAZE [2]
PSNR↑ 14.43 14.12 13.98 15.22 22.50 16.06 15.84 14.95 16.01 16.62 21.23 23.93
SSIM↑ 0.752 0.654 0.732 0.755 0.871 0.733 0.751 0.719 0.740 0.787 0.842 0.891

O-HAZE [3]
PSNR↑ 16.78 15.98 15.03 17.56 24.24 19.34 18.16 16.28 18.76 18.92 20.45 24.36
SSIM↑ 0.653 0.585 0.539 0.650 0.721 0.681 0.671 0.645 0.669 0.672 0.688 0.749

on the corresponding test set. We adopt the same data

augmentation strategy as that used for the RESIDE dataset.

4.2. Performance Evaluation
We evaluate the proposed algorithm against state-of-the-

art methods based on the hand-crafted priors (DCP [23]

and NLD [4]) and deep convolutional neural networks

(AOD [31], MSCNN [49], MsPPN[61], DcGAN [35],

GFN [50], GCANet [9], PFFNet [43], GDN [40], and

DuRN[41]). We use the metrics PSNR, SSIM [57], and

CIEDE2000 [63] to evaluate the quality of restored images.

We note that many existing dehazing methods [50, 9, 43, 41]

report their results only on the SOTS indoor images with the

models trained on various datasets [33, 55, 54]. Moreover,

the GDN method [40] reports the results on the SOTS in-

door and outdoor sets, with the models trained on the indoor

scenes and outdoor scenes separately. For fair comparisons,

we retrain these methods (GFN, PFFNet, GCANet, MsPPN,

and DuRN) using their provided training codes on the same

training dataset and evaluate them on the same test dataset,

as the proposed algorithm. Other methods are evaluated with

the provided pre-trained models.

The first row in Table 1 shows the quantitative results

on the SOTS dataset. As expected, the methods based on

hand-crafted features [23, 4] do not perform well. The

methods [31, 49, 35] that use deep CNNs in a two-stage

restoration (estimating the transmission maps and atmo-

spheric lights first and then hazy-free images), are less effec-

tive when the atmospheric lights are not correctly estimated.

Since the GFN [50] method applies the hand-crafted derived

images as inputs, it is less effective on the scenes when these

derived images cannot enhance the hazy images. On the

other hand, the methods [9, 43, 61, 41, 40] that directly esti-

mate clear images based on end-to-end trainable networks,

generate better results than the other indirect ones. The pro-

posed method outperforms these algorithms in both PSNR

and SSIM, since these networks are not well optimized for

the dehazing problem. In contrast, the proposed architecture

based on the boosting and back-projection technique is more

effective for the task.

The evaluation results on the HazeRD dataset also demon-

strate the effectiveness of the proposed algorithm for de-

hazing realistic images. The proposed algorithm achieves

better CIEDE2000 and SSIM results than other methods. On

the NTIRE18-Dehazing challenge [1], our method achieves

comparable results with the MsPPN [61], which is specially

designed for ultra high-resolution datasets including extra

pre-processing and post-processing steps.

Figure 5 shows two examples from the SOTS dataset. The

DCP algorithm generates the results with significant color

distortions. The dehazed images by other deep learning

frameworks still contain significant artifacts. In contrast, our

algorithm restores these images well.

We further evaluate our algorithm on real images. Fig-

ure 6 shows a real hazy image and the dehazed results from

state-of-the-art methods. The dehazed image by our method

is sharper and brighter. More qualitative results are provided

in the supplementary material.

Perceptual quality for high-level vision tasks. As the de-

hazing algorithms are usually used as the pre-processing

step for high-level applications, it is helpful to evaluate the

perceptual quality of the dehazed results. In this work, we

provide evaluation results on the perceptual quality for the

object detection task. To obtain the data for this evaluation,

we generate hazy images using the images from the KITTI

detection dataset [19]. We first estimate the depth map for

each image by a single-image depth estimation method Mon-

odepth2 [20], and then use the depth map to synthesize a haze

image following the protocols of the RESIDE dataset [33].

This dataset is referred to as the KITTI Haze dataset in this

work. We evaluate the proposed method with the follow-

ing approaches: DCP [23], GFN [50], PFFNet [43], and

DuRN [41]. For detection accuracy, we use the state-of-the-

art method YOLOv3 [48] to evaluate on the dehazed images

from different dehazing methods.

The detection results are shown in Table 2. The dehazed

images restored from the proposed method obtain the highest

detection accuracy, which shows that our method can restore

images with better perceptual quality. The qualitative results

in Figure 4 demonstrate that our method not only generates

better dehazed image but also helps the detection algorithm

to recognize cars and pedestrians.

4.3. Ablation Study and Analysis
In this section, we analyze how the proposed method

performs for image dehazing. All the baseline methods

mentioned below are trained using the same setting as the

proposed algorithm for fair comparisons.

Study of the network configuration. To investigate

the effect of the network configuration, we evaluate the

PFFNet [43], MSBDN, and MSBDN-DFF on the RESIDE

dataset [33] under different network configurations. The



(a) Hazy (b) DCP [23] (c) PFFNet [43] (d) DuRN [41] (e) Ours

Figure 4. Detection results using the dehazed images from the synthesized KITTI Haze dataset. Best viewed on a high-resolution

display.

(a) Ground-truth (b) Hazy input (c) DCP [23] (d) AOD [31] (e) GFN [50] (f) GCANet [9] (g) DuRN [41] (h) Ours

Figure 5. Visual results on the SOTS dataset. The results in (c)-(g) contain some color distortions and haze residual, while the dehazed

image in (h) by our method is much clearer. Best viewed on a high-resolution display.

(a) Hazy input (b) DCP [23] (c) GFN [50] (d) PFFNet [43] (e) DuRN [41] (f) Ours

Figure 6. Visual results on the real-world image. The proposed method generates a clearer dehazed image with less color distortions.

Best viewed on a high-resolution display.

(a) Hazy input (b) PFFNet [43] (c) MSBDN (d) MSBDN-DFF (e) Ground-truth

Figure 7. Visual results on the effect of the boosted decoder and dense feature fusion. Compared with the baseline models, the proposed

MSBDN-DFF model can generate a clearer image with more details. Best viewed on a high-resolution display.

Table 2. Detection results on the KITTI Haze dataset. We apply

dehazing methods trained on the RESIDE dataset [33] to restore

clean images and evaluate their perceptual quality for the object

detection task. The mAP is the abbreviation of mean average

precision. Red texts indicate the best detection precision.
YOLOv3 Hazy DCP [23] PFFNet [43] DuRN [41] Ours

KITTI
PSNR 10.35 13.53 11.86 16.95 17.97
mAP 0.084 0.239 0.143 0.360 0.374

Table 3. Effect of the number of feature levels and ResBlocks.
L denotes the number of feature levels and B denotes the number

of ResBlocks [24] in GRes. All the experiments are conducted on

the SOTS dataset [33]. Red texts indicate the best performance.
Configurations PFFNet [43] MSBDN MSBDN-DFF

L = 4, B = 8
PSNR 28.23 30.92 32.07
Param 2.6M 3.1M 4.5M

L = 5, B = 8
PSNR 28.60 32.00 32.93
Param 10.2M 12.6M 19.6M

L = 5, B = 18
PSNR 29.22 32.85 33.79
Param 22M 24M 31M

PFFNet [43] adopts an encoder-decoder architecture with-

out boosted modules and can be served as a baseline of our

methods. The MSBDN is the encoder-decoder architecture

with the SOS boosted modules, and the MSBDN-DFF is the

proposed method with both the SOS boosted modules and

DFF modules.

Since all the above-mentioned methods are built upon

the encoder-decoder architecture, we study the effect of two

network parameters: the number of feature levels L and the

number of ResBlocks B in the feature restoration module

GRes. The quantitative results are shown in Table 3. As

the proposed SOS boosted modules and DFF modules can

effectively extract features, larger numbers of levels (L) and

ResBlocks (B) would lead to higher performance on our

method. Moreover, introducing the SOS boosted modules

and DFF modules can bring significant performance gains

under different configurations, which demonstrates the ef-

fectiveness of the boosting and back-projection algorithms

for image dehazing. For all the other experiments, we use

L = 5 and B = 18 as the default network configurations.

Effectiveness of the SOS boosting strategy. The proposed

MSBDN is based on an encoder-decoder architecture and

the design of the boosted decoder is motivated by the SOS

boosting strategy. We evaluate the following alternatives



Table 4. Analysis on each component of the MSBDN-DFF. All the methods are evaluated on the SOTS dataset [33] using the same training

setting as the proposed algorithm. Red texts indicate the best performance of each part.

Baselines
Effectiveness of SOS boosting strategy Effectiveness of the dense feature fusion

PFFNet Diffusion Twicing Pyramid U-Net MSBDN MSBDN-S MSBDN-M MSBDN+ PFFNet-DFF MSBDN-DFF

boosting algorithm � � � � � � � � �
FPN-like �

strengthened feature � � � � �
dense feature fusion � � � �

simultaneously BP �
progressively BP � �

Parameters 22M 24M 24M 24M 24M 24M 26M 31M 31M 29M 31M
PSNR 29.22 27.45 32.49 31.53 32.31 32.85 33.02 33.24 33.16 32.95 33.79

to demonstrate the effectiveness of the SOS boosting strat-

egy. Starting from the baseline PFFNet model [43], we first

remove the skip connections and add a diffusion module

(shown in Figure 2(a)) to each level of the decoder to im-

plement the Diffusion Decoder. Next, we re-introduce the

skip connections and change the diffusion modules with the

twicing modules in Figure 2(b) and the pyramid modules

in Figure 2(c) to construct the Twicing Decoder and Pyra-

mid Decoder. Finally, we also evaluate the original U-Net

Decoder in Figure 2(d) for a thorough study.

The evaluation results are shown in Table 4. The network

with the simple Diffusion Decoder performs the worst as

expected. In general, the networks with the boosting mod-

ules achieve significant performance improvements over the

PFFNet without using boosting strategies. Furthermore, the

MSBDN with the proposed boosted decoder outperforms

other boosting strategies by a margin of 0.36 dB at least.

We note that the MSBDN model improves the performance

without introducing any extra layers, which demonstrates

that the SOS boosting strategy better fits the problem and

can benefit image dehazing algorithms.

Figure 7 shows an example of the visual results. The

MSBDN model with the SOS boosted decoder performs

better in haze removal. Visualizations of the learned features

are provided in the supplementary material.

Effectiveness of the dense feature fusion. The DFF mod-

ule is designed to remedy the spatial information from high-

resolution features and exploit the non-adjacent features. To

demonstrate the effectiveness of the proposed DFF module,

we evaluate several alternative solutions to the DFF.

Starting from the MSBDN, we first fuse all the preced-

ing features using the sampling operator and the bottleneck

layer, as stated in the first paragraph of Section 3.2. This

straightforward fusion strategy is referred to as the MSBDN-

S. The results in Table 4 show that the average PSNR value

of the dehazed images by the MSBDN-S is 0.17 dB higher

than that of the MSBDN, which demonstrate the benefits of

exploiting the non-adjacent preceding features. To extract

useful information from preceding features, we construct

the MSBDN-M model by incorporating the back-projection

technique [27], as an alternative to the proposed DFF, into

the MSBDN. In the MSBDN-M model, the reconstruction

errors of all the preceding features are mapped back to the

estimated feature simultaneously. On the contrary, the pro-

posed DFF module adopts a progressive process to fuse

one preceding feature at a time. Since extra layers are in-

troduced by the DFF module, we construct an enhanced

MSBDN (referred to as the MSBDN+) by adding two resid-

ual blocks into each residual group for fair comparisons. The

MSBDN+ model has similar parameters as the MSBDN-M

and MSBDN-DFF schemes. The results show that the back-

projection algorithm [27] in the MSBDN-M model is less

effective with a small improvement margin over the MS-

BDN+ scheme. It is noted that the MSBDN-DFF model

outperforms the MSBDN-M scheme by a margin of 0.55

dB without introducing any extra layers, which shows the

effectiveness of the proposed DFF modules. In addition, we

apply the proposed DFF module to the PFFNet (referred

to as the PFFNet-DFF). As shown in Table 4, the PFFNet-

DFF achieves 3.73 dB performance improvement over the

PFFNet, which demonstrates that the proposed DFF module

can be easily deployed into other multi-scale architectures

to improve the performance.

As shown in Figure 7(d), by remedying the spatial infor-

mation and exploiting the preceding features, the MSBDN-

DFF successfully removes the remaining haze in Figure 7(c)

and recovers more details.

5. Conclusions
We propose an effective Multi-Scale Boosted Dehazing

Network with Dense Feature Fusion for image dehazing.

The MSBDN is constructed on an encoder-decoder architec-

ture, where the boosted decoder is designed based on the

SOS boosting strategy. The DFF module is designed on the

back-projection scheme, which can preserve the spatial in-

formation and exploit the features from non-adjacent levels.

The ablation studies demonstrate that the proposed modules

are effective for the dehazing problem. Extensive evaluations

show that the proposed model performs favorably against

state-of-the-art methods on the image dehazing datasets.
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