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Overview
In this document, we first present the derivation details of the equation (12) in the main paper in Section 1. We then

discuss why we use deep convolutional neural networks (CNNs) instead of the conventional models with hand-crafted priors
to estimate the spatially variant linear representation coefficients in Section 2. In Section 3, we analyze the effectiveness of
the proposed algorithm and compare it against methods based on end-to-end trainable networks. We further demonstrate the
convergence property of the proposed algorithm in Section 4. Finally, we provide more experimental results of the proposed
algorithm against the state-of-the-art deblurring methods in Section 5.

1. Derivations of (12) in the Manuscript
If we take ϕ(α) and φ(β) as µα2 and ηβ2, the objective function (6) in the manuscript is

E(α, β) = ‖αG+ β − I‖2 + µα2 + ηβ2, (1)

where µ and η are positive weight parameters.
The gradients of E(α, β) with respect to α and β are

∂E(α, β)
∂α

= 2G(αG+ β − I) + 2µα, (2a)

∂E(α, β)
∂β

= 2(αG+ β − I) + 2ηβ. (2b)

By setting ∂E(α,β)
∂α = 0, ∂E(α,β)∂β = 0, we can obtain

α =
GI −Gβ
G2 + µ

, β =
I − αG
1 + η

. (3)

Based on (3), we can minimize (1) by solving

α =
ηGI

ηG2 + µ+ µη
, β =

I − αG
1 + η

. (4)

2. Why Using Deep CNNs Instead of Hand-crafted Priors for the Coefficient Estimation?
As discussed in Section 4.2 of the manuscript, it is not trivial to determine ϕ(α) and φ(β) as it is quite difficult to describe

the statistical properties of α and β. In Section 6 of the manuscript, we have shown that using the model (6) based on
commonly used priors (i.e., µα2 in [4]) does not always generate good results. However, one may wonder if the performance
is mainly due to the effect of µα2 and ηβ2 as these constraints are less effective to image noise. To answer this question, we
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(a) Guidance image (b) GT (c) Noisy input (d) Result by (1) (e) Result by (5) (f) Ours

(g) α(G, I) by (1) (h) β(G, I) by (1) (i) α(G, I) by (5) (j) β(G, I) by (5) (k) Our α(G, I) (l) Our β(G, I)

Figure 1. Comparisons of the depth denoising results with different hand-crafted priors. Modeling the properties of the coefficients by hand-
crafted priors is not a trivial task as it is quite difficult to describe the statistical properties of the linear representation coefficients. Thus,
the models based on the commonly used hand-crafted priors do not generate clear images. In contrast, we develop a deep CNN which
is constrained by the SVLRM to estimate the coefficients. With the estimated linear representation coefficients, the proposed method
generates better denoised results (Best viewed on high-resolution display with zoom-in).

further use the sparsity of the image gradient (e.g., ‖∇α‖1) as the constraint in the model (6) because this constraint is more
robust to image noise and is able to preserve the main structures of the images. Thus, the objective function becomes

E(α, β) = ‖αG+ β − I‖2 + µ‖∇α‖1 + η‖∇β‖1. (5)

We use the gradient descent method (7) of the manuscript to solve (5). At each iteration, we need to solve

αt = αt−1 − λ
(
∂E(α, βt−1)

∂α

)
α=αt−1

, (6a)

βt = βt−1 − λ
(
∂E(αt−1, β)

∂β

)
β=βt−1

, (6b)

where ∂E(α,β)
∂α and ∂E(α,β)

∂β are the partial derivatives w.r.t. α and β. We empirically set λ = 0.01, t = 200, and µ = η = 0.2
for fair comparisons.

Figure 1 shows the comparisons of the results with different hand-crafted priors. Although using the sparsity of the image
gradient as the constraint of the linear representation coefficients generates better results than those with the commonly
used prior µα2 [4], the generated results still contain significant noise. Instead of using hand-crafted priors, we develop a
deep CNN to estimate the linear representation coefficients. The use of deep CNNs to estimate the linear representation
coefficients is motivated by the gradient descent method (7) of the manuscript as stated in Section 4.2. The proposed deep
CNN is constrained by the SVLRM, which is able to estimate the linear representation coefficients (Figure 1(k) and (l)).
Thus, the proposed algorithm is able to remove noise and generate better denoised results as shown in Figure 1(f).

3. Why Using the SVLRM Instead of the End-to-end Trainable Networks?
We note that several methods develop deep CNNs for joint image upsampling, e.g., [8, 5]. The target images are directly

estimated by a deep CNN in a regression way. As the deep CNNs used in joint filtering are less effective for the details
restoration [6], this accordingly leads to results containing halo effect or over-smoothed boundaries (see Figure 2(c)). In
contrast, we develop a deep CNN to estimate the linear representation coefficients instead of the target images. The linear
coefficients can determine whether the structures of the guidance image should be transferred to the target image or not as
stated in Section 3 of the manuscript. Therefore, under the guidance of the linear representation coefficients, the SVLRM is
able to generate the results with sharp edges (see Figure 2(d)).

In Section 6 of the manuscript, we have analyzed the effectiveness of the proposed algorithm against the methods based
on end-to-end trainable networks. The results in Figure 2 further demonstrate the effectiveness of the proposed algorithm.



(a) Guidance images (b) Bicubic (c) End-to-end trainable network [8] (d) Ours

Figure 2. Comparisons of the depth upsampling results (×8) with end-to-end trainable networks. The boundaries of the parts enclosed in
the red boxes in (c) are not preserved well. The proposed method generates the depth images with sharper boundaries (Best viewed on
high-resolution display with zoom-in).
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Figure 3. Quantitative evaluation of the convergence property on the depth image upsampling test dataset used in the manuscript. The
deep CNN used for the spatially linear representation coefficient estimation converges well.

4. Convergence Property
To quantitatively evaluate the convergence properties of the proposed algorithm, we evaluate our method on the depth

image upsampling test dataset used in the manuscript. Figure 3 shows that the proposed network converges well.



5. More Experimental Results
In this section, we provide more visual comparisons with state-of-the-art methods.

(a) Guidance images (b) GT (c) Bicubic (d) JBU [7]

(e) GF [4] (f) SDF [3] (g) DJF [8] (h) Ours

Figure 4. On the depth image upsampling application (×8). The proposed method generates the depth images with sharper boundaries and
preserves the main structures well (Best viewed on high-resolution display with zoom-in).



(a1) Guidance (b1) GT (c1) Noisy input (d1) GF [4]

(e1) MUJF [11] (f1) MUGIF [2] (g1) DJF [8] (h1) Ours

(a2) Guidance (b2) GT (c2) Noisy input (d2) GF [4]

(e2) MUJF [11] (f2) MUGIF [2] (g2) DJF [8] (h2) Ours

(a3) Guidance (b3) GT (c3) Noisy input (d3) GF [4]

(e3) MUJF [11] (f3) MUGIF [2] (g3) DJF [8] (h3) Ours
Figure 5. On the depth image restoration application. The parts enclosed in the red boxes in (f) are over-smoothed. The proposed method
generates the depth images with sharper boundaries (Best viewed on high-resolution display with zoom-in).



(a) Input image (b) L0smooting [13] (c) DJF [8]

(d) RTV [14] (e) RGF [16] (f) Ours
Figure 6. On the scale-aware filtering application. The proposed algorithm is able to remove small-scale structures while preserving the
main sharp edges (Best viewed on high-resolution display with zoom-in).



(a) Noisy input (b) EPLL [18] (c) CSF [10]

(d) MLP [1] (e) IRCNN [15] (f) Ours
Figure 7. On the image denoising application. The proposed method generates a clearer image, where the structural details are preserved
well (Best viewed on high-resolution display with zoom-in).

(a) Blurred image (b) Guidance image (c) Xu and Jia [12]

(d) Pan et al. [9] (e) Zhuo et al. [17] (f) Ours
Figure 8. On the image deblurring application. The proposed algorithm is able to generate much clearer images with finer structures and
textures. (Best viewed on high-resolution display with zoom-in).



(a) Blurred image (b) Guidance image (c) Ours
Figure 9. More image deblurring results. The proposed algorithm is able to generate much clearer images with finer structures and textures.
(Best viewed on high-resolution display with zoom-in).
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