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Abstract

The tracking-by-detection framework consists of two

stages, i.e., drawing samples around the target object in the

first stage and classifying each sample as the target object

or as background in the second stage. The performance of

existing trackers using deep classification networks is lim-

ited by two aspects. First, the positive samples in each

frame are highly spatially overlapped, and they fail to cap-

ture rich appearance variations. Second, there exists ex-

treme class imbalance between positive and negative sam-

ples. This paper presents the VITAL algorithm to address

these two problems via adversarial learning. To augment

positive samples, we use a generative network to randomly

generate masks, which are applied to adaptively dropout

input features to capture a variety of appearance changes.

With the use of adversarial learning, our network identi-

fies the mask that maintains the most robust features of the

target objects over a long temporal span. In addition, to

handle the issue of class imbalance, we propose a high-

order cost sensitive loss to decrease the effect of easy nega-

tive samples to facilitate training the classification network.

Extensive experiments on benchmark datasets demonstrate

that the proposed tracker performs favorably against state-

of-the-art approaches.

1. Introduction

There has been an increasing need for tracking target

objects in bounding boxes to understand video contents.

Current state-of-the-art trackers are typically based on a

two-stage tracking-by-detection framework. The first stage

draws a sparse set of samples around the target object and

the second stage classifies each sample as either the tar-

get object or as the background using a deep neural net-

work. Despite the favorable performance on recent tracking
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Figure 1: Tracking results with the comparison to state-

of-the-art tracking-by-detection trackers including DLS-

SVM [39], CNN-SVM [24], and MDNet [38]. Our VITAL

tracker learns to diversify positive samples via adversarial

learning and to balance training samples via cost sensitive

loss. It performs favorably against existing trackers.

benchmarks [59, 60, 31], the performance of the two-stage

methods is limited by two aspects. First, the positive sam-

ples are spatially overlapped, and they cannot capture a va-

riety of appearance changes over time. Second, the extreme

foreground-background class imbalance negatively affects

training the classification networks. It is of great importance

to investigate how to eliminate these barriers to advance the

tracking-by-detection framework in the deep learning era.

Prior trackers have made limited efforts on increasing

the diversity of training data in learning deep classifiers.

Since classifiers tend to learn a discriminative boundary be-

tween positive and negative samples, they emphasize on the



most discriminative ones. However, as the target appear-

ance varies frame-by-frame in the whole video sequence,

the most discriminative samples in the current frame may

not persist over a long temporal span. Typical examples of

appearance changes caused by partial occlusion or out-of-

plane rotation easily result in model overfitting, as current

training samples may differ much from the previous ones.

To alleviate this problem, existing trackers incrementally

update the classifier through online sample collections. The

noisy updates occur and bring tracker drift problem. Hence,

a natural question is how we can augment positive samples

in the feature space to capture target appearance variations

in the temporal domain.

In this work, we take advantage of the recent progress

in adversarial learning to augment training data to facili-

tate classifier training. For a deep classification network,

such as the VGG-M model [47], we add a generative net-

work between the last convolutional layer and the first fully

connected layer. The generative network augments pos-

itive samples by generating weight masks randomly ap-

plied to the features, where each mask represents a specific

type of appearance variation. Through adversarial learn-

ing, our network can identify the mask that maintains the

most robust features of target appearance in the temporal

domain. We show that the learned mask tends to decrease

the weights of discriminative features, which tends to over-

fit in a single frame. Meanwhile, these features are hardly

robust to appearance changes over the temporal span. In

other words, adversarial learning helps our tracker exploit

the most robust features over a long temporal span in clas-

sifier training, rather than overfitting to discriminative fea-

tures in a single frame. Moreover, to mitigate the issue of

class imbalance, we propose a high-order cost sensitive loss

to decrease the effect of easy negative samples. Taking ad-

vantages of adversarial learning and high-order cost sen-

sitive loss, our tracking method achieves favorable results

against state-of-the-art trackers.

We summarize the main contributions of this work as

follows:

• We propose to use a generative adversarial network

(GAN) to augment positive samples in the feature

space to capture a variety of appearance changes over

a temporal span.

• We propose to use higher-order cost sensitive loss to

mine hard negative samples to handle class imbalance.

• We extensively validate our method on benchmark

datasets with large-scale sequences. We show that

our VITAL tracker performs favorably against state-

of-the-art trackers.

2. Related Work

Visual tracking has long been an active research topic

with extensive surveys [48] over the last decade. In this

section, we mainly discuss the representative visual trackers

and the related issues on generative adversarial learning and

class imbalance.

Visual Tracking. Visual tracking has a wide range of ap-

plications including action recognition [7], target analy-

sis [52, 51, 49] and augmented reality [8, 44]. State-of-the-

art trackers are mainly based on the one-stage regression

framework or the two-stage classification framework. As

one of the most representative types of the one-stage regres-

sion framework, the correlation filter based trackers regress

all the circular-shifted version of the input features into soft

labels generated by a Gaussian function. By computing the

correlation as an element-wise product in the Fourier do-

main, these trackers have received a lot of attention recently.

Starting from the MOSSE tracker [5], many efforts have

been made to improve the correlation filter for robust track-

ing. Extensions include, but are not limited to, kernelized

correlation filters [23], scale estimation [10], re-detection

[37], spatial regularization [12, 14, 9], ADMM optimiza-

tion [29], sparse representation [32, 42, 33], CNN feature

integrations [36, 43, 64, 28] and end-to-end CNN predic-

tions [57, 55, 50].

In contrast, the two-stage classification framework poses

the tracking task as a binary classification problem. The

two-stage trackers emphasize on a discriminative bound-

ary between the samples of the target object and back-

ground. Numerous learning schemes are proposed includ-

ing P-N learning [27], multiple instance learning [2], struc-

tured SVMs [20, 39], CNN-SVMs [24], domain adapta-

tion [38], and ensemble learning [19]. Unlike the existing

two-stage tracking-by-detection trackers, our method, for

the first time, takes advantage of the recent progress in gen-

erative adversarial learning to augment training samples in

the feature space. The augmented samples capture a variety

of appearance changes and thus strengthen the robustness of

the classifier. In addition, we exploit hard negative samples

to handle class imbalance limitation.

Generative Adversarial Learning. It is introduced in [17]

to generate realistic-looking images from random noise via

the CNN. The generative adversarial network (GAN) con-

sists of two subnetworks. One serves as a generator and

the other as a discriminator. The generator aims at synthe-

sizing images to fool the discriminator, while the discrim-

inator tries to discriminates between real images and im-

ages synthesized by the generator. The generator and the

discriminator are trained simultaneously by competing with

each other. An advantage of adversarial learning is that the

generator is trained to produce similar image statistics to

those of the training samples so that the discriminator can-

not differentiate. This manner is hardly achieved by existing

empirical objective functions with supervised learning. The

progress in generative adversarial learning has attracted a
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Figure 2: Overview of our network architecture. Our method takes each sampled patch as an input and predicts a possi-

bility score of the patch being the target object. We add one branch of fully connected layers after the last convolutional

layer to randomly generate masks, which are applied to the input features to capture a variety of appearance changes. Ad-

versarial learning identifies the mask that maintains the most robust features over a long temporal span while removing the

discriminative features from individual frames. It facilitates the classifier training process.

series of works on network training [1, 40, 18] and computer

vision applications, such as image generation [62], image

stylization [26], object detection [58], and semantic seg-

mentation [53]. Unlike existing GANs that augment data in

the image space, we apply adversarial learning to augment

training samples in the feature space to capture appearance

variations in temporal domain. In sum, our method exploits

robust features over the long temporal span, instead of the

discriminative features in individual frames.

Class Imbalance. This problem often exists in learning ap-

plications, where the amount of training data in one class

(usually the positive class) is far less than that of another

class (usually the negative class). A large portion of sam-

ples from the majority class are easy samples, which dom-

inantly produce a large loss, and make the learning pro-

cess unaware of the valuable samples from the minority

class. Hard negative mining [15, 46] and reweighing train-

ing data [45, 35] are useful to alleviate the class imbalance

problem to some extent. In visual tracking, class imbalance

deteriorates the performance of the classifier, as the number

of positive samples are extremely limited but the number

of negative samples across the whole background is large.

Unlike the aforementioned solutions for the class imbalance

problem, we propose cost sensitive loss to decrease the ef-

fect from easy negative samples when training the classifier.

This not only improves the tracking accuracy, but also ac-

celerates the training convergence.

3. Proposed Algorithm

We build VITAL upon the CNN tracking-by-detection

framework, which consists of feature extraction and classi-

fication. We interpret the classifier as the discriminator and

propose a generator for adversarial learning [17]. Unlike

existing GAN-based methods, which expect to obtain gen-

erator mapping samples from one distribution to another af-

ter the training process, we expect to obtain a discriminator

which is robust to target object variations. Fig. 2 shows the

pipeline of our method, and the details are discussed below.

3.1. Adversarial Learning

In the traditional adversarial learning [17], the genera-

tor G takes a noise vector z from a distribution Pnoise(z)
as an input and outputs an image G(z). The discrimina-

tor D takes either G(z) or a real image x with a distribution

Pdata(x) as an input and outputs the classification probabil-

ity. The generator G is learned to maximize the probability

of D making a mistake. Using the standard cross entropy

loss, the objective loss function for training G and D is de-

fined as:

L = min
G

max
D

Ex∽Pdata(x)[logD(x)]

+ Ez∽Pnoise(z)[log(1−D(G(z)))],
(1)

where the G and D networks are trained simultaneously.

The training encourages G to fit Pdata(x) so that D will not

be able to discriminate x from G(z). Note that in Eq. 1,

there are no ground truth annotations for z and the learning

process is unsupervised. After the training process, G is

removed and only D is kept for inference.

Although GANs have been investigated in many com-

puter vision tasks, a direct applying of Eq. 1 in the tracking-

by-detection framework is not feasible. First, the input data

to the framework are usually candidate object proposals

rather than random noise. Second, we need to train the clas-

sifier via supervised learning using labeled samples rather



than unlabeled ones. Third, we expect to use the classifier

(i.e., D) for inference rather than G. These three factors

limit the usage of GANs on visual tracking where both the

input and learning strategy differ significantly.

We propose VITAL to narrow the gap between GANs

and the tracking-by-detection framework. We add G be-

tween feature extraction and the classifier as shown in Fig.

2. G will predict a weight mask which operates on the ex-

tracted features. This mask is set randomly at the beginning

and gradually identifies the discriminative features through

adversarial learning. We define the input feature as C, the

mask generated by the G network as G(C), the actual mask

identifying the discriminative features as M . We define the

objective function as:

LVITAL = min
G

max
D

E(C,M)∽P(C,M)
[logD(M · C)]

+EC∽P(C)
[log(1−D(G(C) · C))]

+λE(C,M)∽P(C,M)
||G(C)−M ||2,

(2)

where the dot is the dropout operation on the feature C. The

mask contains only one channel and has the same resolution

as C. We express the predicted mask as M̂ and the value of

the element (i, j) as M̂ij . Meanwhile, we define the value

of the element (i, j, k) on feature C as Cijk. The dropout

operation is defined as follows:

Co
ijk = CijkM̂ij , (3)

where Co
ijk is the feature C after the dropout operation and

passed onto the classifier.

In Eq. 2, we integrate the adversarial learning into the

tracking-by-detection framework. We keep the input (i.e.,

the candidate object proposals) unchanged. When train-

ing D (i.e, classifier), we extract features and enrich their

representations in the feature space. Instead of empirically

proposing data augmentation strategies, we let G to iden-

tify the discriminative features, which are crucial for train-

ing D. Initially, G produces several random masks, which

are akin to the random noise in Eq. 1. Each mask represents

a specific type of appearance variation, and we expect these

masks to cover the whole object variations. Through the

adversarial learning process, G will gradually identify the

mask that degrades the classifier most. This indicates that

the mask has identified the discriminative features. On the

other hand, D will gradually be trained without overfitting

to the discriminative features from individual frames while

relying on more robust features over a long temporal span.

In each iteration of the adversarial learning, we first train D

and then G. The detailed training procedure is presented in

the following:

Training D. In one iteration of the training process, we

pass the input feature through G and obtain the predicted
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Figure 3: Entropy distribution of two frames on the David

sequence [59]. We use VITAL with and without GAN in-

tegration for comparison. We analyze the entropy based on

the predicted probabilities from the classifier. The higher

the entropy, the more uncertain the classifier prediction is.

mask M̂ . We then conduct the dropout operation on this

feature and sent the modified feature into D. We keep the

labels unchanged and train D through supervised learning.

Note that during this training process, there are multiple in-

put features, G will predict different masks according to dif-

ferent input features. It enables D to focus on the temporal

robust features without discriminative feature interference

from single frames.

Training G. After training D once, given an input feature,

we create multiple output features based on several ran-

dom masks. This feature diversifying process is performed

through the dropout operation illustrated in Eq. 3. These

features are passed onto D, and we pick up the one with the

highest loss. The corresponding mask of the selected fea-

ture is said to be effective in decreasing the impact of the

discriminative features. We set this mask as M in Eq. 2 and

update G accordingly.

Visualization. Adversarial learning enables the classifier to

focus on the temporal robust features instead of the discrim-

inative ones in individual frames. Fig. 3 shows an example

of how adversarial learning affects the classifier in practice.

Fig. 3(a) shows the input frame with the ground truth anno-

tation located at the face region. We use our VITAL tracker

to represent the tracking-by-detection framework for illus-

tration. We compute the entropy distribution based on the



predicted probabilities from the classifier. The entropy mea-

sures the uncertainty of the prediction and is computed for

binary classification as:

H = −
(

p · log p+ (1− p) · log(1− p)
)

, (4)

where p is the predicted probability of the target object and

1 − p is the background. When p = 0.5, the value of the

entropy H is highest, which means that the classifier is un-

certain to predict the label. When p = 0 or p = 1, the value

of the entropy H is lowest, which means that the classifier

is certain about the prediction.

We compute the entropy distribution of Fig. 3(a) using

VITAL without adversarial learning as shown in Fig. 3(b)

and with adversarial learning as shown in Fig. 3(c). We

note that these two distributions are similar despite some

tiny variances. However, when the target undergoes partial

occlusion and out-of-plane rotation as shown in Fig. 3(d),

the entropy of VITAL without adversarial learning increases

rapidly as shown in Fig. 3(e), which indicates that the clas-

sifier becomes uncertain around the target region. This is

because the classifier is trained to focus on the discrimina-

tive features of the samples in the previous frames. As the

target appearance varies in the following frames, these dis-

criminative features vanish and decrease the classification

accuracy. In comparison, the entropy distribution shown in

Fig. 3(f) does not vary as significant as that in Fig. 3(e). It

is because the classifier trained via diversified samples will

not focus on the most discriminative features in individual

frames. Instead, it tends to focus on more robust features

over a long period of time. In sum, with the adversarial

learning, VITAL becomes temporally robust while preserv-

ing the classification accuracy on individual frames.

3.2. Cost Sensitive Loss

We first revisit the cross entropy (CE) loss for binary

classification. Formally, we define y ∈ {0, 1} as the class

labels and p ∈ [0, 1] as the estimated probability for a class

with label y = 1. Meanwhile, we define the probability for

a class with label y = 0 as 1− p. The CE loss is formulated

as:

L(p, y) = −
(

y · log(p) + (1− y) · log(1− p)
)

. (5)

One notable problem of the CE loss is that easy negative

samples, i.e., when p ≪ 0.5 and y = 0, produce the loss

with non-trivial magnitude. When summed over a large

number of easy negative examples, these small loss values

overwhelm the valuable rare positive class. In visual track-

ing, class imbalance lies between the limited positive sam-

ples and a substantial amount of negative samples across

the whole background. Easy negative samples take over the

majority of the CE loss and dominate the gradient.

Existing solutions to class imbalance include hard nega-

tive mining [15, 46] and training data reweighing [45]. The

simplest method to make a classifier cost sensitive involves

a modification of the class importance. For example, when

the ratio of positive and negative classes is 1:100, the im-

portance factor of the negative class is set to be 0.01. Note

that simply using a fixed factor to balance the importance

of positive/negative examples does not identify the easiness

or hardness of each example. We align our motivation to

the recently proposed focal loss [35] and add a modulating

factor to the CE loss in terms of the network output proba-

bility p. Formally, we build our cost sensitive loss upon the

entropy loss as:

L(p, y) = −
(

y ·(1−p)·log(p)+(1−y)·p·log(1−p)
)

. (6)

With the cost sensitive loss, we reformulate the objective

function in Eq. 2 as:

LVITAL =min
G

max
D

E(C,M)∽P(C,M)
[K1 · logD(M · C)]

+ EC∽P(C)
[K2 · log(1−D(G(C) · C))]

+ λE(C,M)∽P(C,M)
||G(C)−M ||2,

(7)

where K1 = 1 − D(M · C) and K2 = D(G(C) · C) are

modulating factors that balance the training sample loss.

4. Tracking via VITAL

We illustrate how we perform VITAL for visual tracking.

Note that we only involve G when training the classifier and

remove it in the test stage. The details are as follows:

Model initialization. We initialize our model through a

two-stage training. In the first step we offline pretrain the

model using positive and negative samples from the train-

ing data, which is from [38]. In the second step we draw

the samples from the first frame of the input sequence to

finetune our model online. During offline pretraining, we

randomly initialize D and perform the training in a few it-

erations, then we involve G for adversarial learning. See

Sec. 3.1 for the details of the adversarial learning process

where only positive samples are adopted. We mine the hard

negative samples through the cost sensitive loss for training

D together with the diversified positive samples.

Online detection. The online detection scheme is the same

as existing tracking-by-detection approaches as we remove

G in this step. Given an input frame, we first generate multi-

ple candidate proposals and extract their CNN features. We

feed the CNN features of the candidate proposals into the

classifier to get the probability scores.

Model update. We incrementally update our tracker frame-

by-frame. Around the estimated position, we generate mul-

tiple samples and assign them with binary labels according

to their intersection-over-union scores with the estimated

bounding box. We use these training samples jointly train

G and D during online update as illustrated in Sec. 3.1.
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Figure 4: Precision and success plots on the OTB-2013

dataset using the one-pass evaluation. The numbers in the

legend indicate the average distance precision scores at 20

pixels and the area-under-the-curve success scores.

5. Experiments

In this section, we introduce the implementation de-

tails of VITAL and analyze the effects of adversarial learn-

ing and cost sensitive loss. Then we compare our VI-

TAL tracker with state-of-the-art trackers on the bench-

mark datasets OTB-2013 [59], OTB-2015 [60] and VOT-

2016 [30] for performance evaluation.

Experimental Setup. Our backbone feature extractor is

based on the first three convolutional layers from the VGG-

M model [47]. When training G, we prepare 9 random

masks. The resolution of each mask is the same as that of

the input features. We split this mask into 9 parts equally.

We assign each part with label 1 in turn and the remain-

ing parts with label 0. These masks are different from each

other and cover all the parts in total. When training D, we

apply 9 masks to the input features independently to gen-

erate 9 diversified versions of each input feature. We then

feed these diversified features into D and select the one with

the highest loss. The corresponding mask is denoted by M

as illustrated in Eq. 2 to train D. During the adversarial

learning, we iteratively apply the SGD solver to both G and

D. We use 100 iterations to initialize both networks. The

learning rate for training G and D are 10−3 and 10−4, re-

spectively. We update both networks every 10 frames using

10 iterations. Our VITAL tracker runs on a PC with an i7

3.6GHz CPU and a Tesla K40c GPU with the MatConvNet

toolbox [56] and the average speed is 1.5 FPS.

Evaluation Metrics. We follow the standard evaluation ap-

proaches. In the OTB-2013 and OTB-2015 datasets we use

the one-pass evaluation (OPE) with precision and success

plots metrics. The precision metric measures the frame lo-

cations rate within a certain threshold distance from ground

truth locations. The threshold distance is set as 20 pixels.

The success plot metric is set to measure the overlap ra-

tio between the predicted bounding boxes and the ground

truth. In the VOT-2016 dataset [30], we measure the perfor-

mance in terms of Expected Average Overlap (EAO), Ac-

curacy Ranks (Ar) and Robustness Ranks (Rr).
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Figure 5: Precision and success plots on the OTB-2013

dataset using one-pass evaluation.
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Figure 7: Precision and success plots on the OTB-2015

dataset using one-pass evaluation.

Ablation Studies. In VITAL, we train the classifier using

the diversified positive samples with a cost sensitive loss.

To validate the effectiveness of each component, we first

implement a baseline algorithm by not enabling the adver-

sarial training and using the standard cross entropy loss. We

implement three alternative approaches based on the base-

line algorithm. First, we train the classifier by generating

random masks. Second, we train the classifier using adver-

sarial learning (i.e., GAN). Third, we train the classifier us-

ing adversarial learning with the cost sensitive loss. Fig. 4

shows the results on the OTB-2013 dataset. We observe that

using random masks deteriorates the classifier and results in

inferior performance. It is because the spatial discriminative

and temporal robust features are blocked randomly, which

degrades the classifier to focus on either. In contrast, the

mask predicted by adversarial learning effectively exploits

the most robust features by blocking partial discriminative

features in individual frames. The cost sensitive loss further

improves the performance. However, the improvement of

the cost sensitive loss is not as salient as that of the adver-

sarial learning.

OTB-2013 Dataset. We compare VITAL with 29 track-

ers from the OTB-2013 benchmark [59] and other 28 state-

of-the-art trackers including DSST [10], KCF [22], TGPR

[16], MEEM [63], RPT [34], LCT [37], MUSTer [25],

HCFT [36], FCNT [57], SRDCF [12], CNN-SVM [24],

DeepSRDCF [11], DAT [41], Staple [3], SRDCFdecon

[13], CCOT [14], GOTURN [21], SINT [54], SiamFC

[4], HDT [43], SCT [6], MDNet [38], DLS-SVM [39],

ADNet [61], ECO [9], MCPF [64], CFNet [55] and
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Success plots of OPE - illumination variation (25)
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Success plots of OPE - deformation (19)
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Success plots of OPE - in-plane rotation (31)
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Success plots of OPE - out-of-plane rotation (39)
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Success plots of OPE - scale variation (28)
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Success plots of OPE - low resolution (4)
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Figure 6: Overlap success plots over eight tracking challenges of illumination variation, deformation, in-plane rotation,

out-of-plane rotation, background clutter, occlusion, scale variation and low resolution.

CREST [50]. We evaluate all the trackers on 50 video se-

quences using the one-pass evaluation with distance preci-

sion and overlap success metrics.

Figure 5 shows the results from all compared trackers.

For presentation clarity, we only show the top 10 trackers.

The numbers listed in the legend indicate the AUC over-

lap success and 20 pixel distance precision scores. Over-

all, our VITAL tracker performs favorably against state-

of-art trackers in both distance precision and overlap suc-

cess. Figure 6 compares the performance under eight video

attributes using one-pass evaluation. Our VITAL tracker

handles large appearance variations well caused by defor-

mation, in-plane and out-of-plane rotations. Compared to

the representative tracking-by-detection tracker MDNet, we

attribute our performance improvement by the diversified

positive samples for training robust classifiers. The mask

generated via adversarial learning captures a variety of ob-

ject variations. It maskouts the discriminative features in

individual frames while maintains the most robust features

over a long temporal span. The advantage of exploiting the

temporally robust features is clearly proved when dealing

with occlusion. Through focusing on the persistently robust

features, our VITAL tracker performs better than MDNet

in a large margin. Meanwhile, our cost sensitive loss ef-

fectively decreases the loss from easy negative samples and

forces the classifier to focus on hard ones. This facilitates

discriminative classifiers to separate the target object from

background. Our VITAL achieves leading performance in

the presence of illumination variation and background clut-

ter. However, for the low resolution sequences, our tracker

does not perform as well as MDNet. This is because the tar-

get size of these sequences is small and the resolution of the

weight masks predicted by adversarial learning is far low.

Table 1: Comparison with the state-of-the-art trackers on

the VOT 2016 dataset. The results are presented in terms

of expected average overlap (EAO), accuracy rank (Ar) and

robustness rank (Rr).

ECO CCOT Staple MDNet VITAL

EAO 0.374 0.331 0.295 0.257 0.323

Ar 1.55 1.63 1.65 1.63 1.63

Rr 1.57 1.70 2.67 2.4 2.17

For the scale variance sequence, the fixed size of weight

mask cannot precisely maskout the discriminative features

as the object size increases. Our future work will consider

adaptively changing the size of the weight mask.

OTB-2015 Dataset. We compare our VITAL tracker on the

OTB-2015 benchmark [60] with the state-of-the-art track-

ers. Figure 7 shows that our VITAL tracker overall performs

well. The ECO tracker achieves the best result in over-

lap success, while our VITAL ranks first in distance pre-

cision. Since the OTB-2015 dataset contains more videos

with large scale changes and low resolution, our VITAL

tracker does not perform as well as ECO in overlap success.

VOT-2016 Dataset. We compare our VITAL tracker with

state-of-the-art trackers on the VOT-2016 benchmark, in-

cluding Staple [3], MDNet [38], CCOT [14] and ECO [9].

VOT-2016 report [30] shows that the strict state-of-the-art

bound is 0.251 under EAO metric. Trackers whose EAO

value exceeds this bound is defined as state-of-the-art. Ta-

ble 1 shows that ECO performs best under the EAO metric.

The performance of VITAL is comparable to that of CCOT

and better than Staple and MDNet. According to the defini-

tion of the VOT report, all these trackers are state-of-the-art.
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Figure 8: Qualitative evaluation of our VITAL tracker, CNN-SVM [24], CCOT [14], MDNet [38], ECO [9] on 12 challenging

sequences (from left to right and top to down: Basketball, Human4, Box, Trans, Matrix, Ironman, Bird1, Football, Diving,

Skiing, Freeman4 and Girl2, respectively). Our VITAL tracker performs favorably against state-of-the-art.

Qualitative Evaluation. Fig. 8 qualitatively compare the

results of the top performing trackers: CNN-SVM [24],

CCOT [14], MDNet [38], ECO [9] and VITAL on 12 chal-

lenging sequences. In a majority of these sequences, CNN-

SVM fails to locate the target objects or estimates scale in-

correctly because of the limited performance of the SVM

classifier. MDNet improves CNN-SVM through an end-

to-end CNN network formulation. It performs well on de-

formation (Trans), low resolution (Skiing) and fast motion

(Diving). However, the classifier of MDNet is trained to fo-

cus on the discriminative features from individual frames,

which may lead to overfitting in the presence of noisy up-

date. It does not perform well in handling out-of-plane ro-

tation (Ironman) and occlusion (Human4). The correlation

filter based trackers (i.e., CCOT and ECO) extract CNN

features and learn correlation filters independently. They

do not take full advantage of the end-to-end deep architec-

ture. In contrast, our VITAL tracker emphasizes on the most

temporally robust features. The adversarial learning scheme

makes the classifier aware a variety of appearance changes.

The cost sensitive loss mines hard negative samples to fur-

ther facilitate classifier learning. Our tracker VITAL per-

forms favorably against state-of-the-art trackers.

6. Conclusion

In this paper we integrate adversarial learning into the

tracking-by-detection framework to reduce overfitting on

single frames. We adaptively dropout the discriminative

features in single frame which draws the classifier atten-

tion. It enables the classifier to focus on the temporal robust

features which are originally diminished during the training

process. The adaptive dropout is achieved via adversarial

learning to predict discriminative features according to dif-

ferent inputs. It enriches the target appearances in the fea-

ture space and augment the positive samples. Meanwhile,

we use the cost sensitive loss to reduce the effect from

easy negative samples. Extensive experiments on bench-

marks demonstrate that our VITAL tracker performs favor-

ably against state-of-the-art trackers.
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