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Summary

The contents of this supplementary material include de-
tails of our architecture. Sample visualization results (sound
plays, interactive sound localization, video localization re-
sults) can be found in the supplementary video. Dataset is
available for download.

1. Architecture details

Optimization We optimize our network by using the
stochastic gradient descent and back propagation. We use
the Adam optimizer [3] with fixed learning rate 0.0001. We
train with a batch size of 30 for 6 epochs and the training
time takes almost a day using an implementation in Tensor-
Flow [1].

Architecture We adapt our architecture from the VGG16
model [4] for the visual CNN and the SoundNet [2] for the
sound CNN. For the visual CNN, we resize a frame to 320 x
320 as input.

For the architecture design, we use the following nota-
tions: c3s1-k denotes a 3x 3 convolution (for sound, 3x 1)
and ReL.U layer with k filters and stride 1, and poo13s2
denotes 3 X 3 max-pooling (for sound, 3 x 1) with stride 2.

The sound CNN consists of: c64s2-16, pool8sl,
c32s2-32, pool8sl, cl6s2-64, <¢8s2-128,
c4s2-256, pooldsl, c4s2-512, c4s2-1024, and
c8s2-1000

The visual CNN consist of: c3s1-64, c3s1-64,

pool2s2, c3s1-128, c3s1-128, pool2s2,
c3s1-256, c3s1-256, <¢3s1-256, pool2s2,
c3s1-512, ¢3s1-512, «¢3s1-512, ©pool2s2,

c3s1-512,¢c3s1-512, and c3s1-512

2. Additional Qualitative Analysis

We present additional qualitative results in this supple-
mentary material and video. We recommend to refer to the
supplementary video for video results.

Figure 1. Ambient sound results. We show some examples of
frames with ambient sounds. (a) sampled input frame. (b) loca-
tion response against object indicating sound in Softmax only at-
tention mechanism. (c) location response against ambient sound in
Softmax only attention mechanism. (d) location response against
object indicating sound in ReLU+Softmax attention mechanism.
(e) location response against ambient sound in ReLU+Softmax at-
tention mechanism. The proposed network gives noticeably dis-
tinguished confidences between object-like and ambient sounds

Ambient Sound Analysis We analyze the our proposed
method with non-object/ambient sounds as well, e.g., envi-
ronmental sounds, wind sounds, background activities, and
narration. We feed the frames with one of these ambient
sounds into our network to see how it reacts. Figure 1 shows
that the proposed method gives noticeably low confidence
scores to ambient sound, and high reaction to the object in-
dicating sound. From the Figure 1 (c) and (e) we can ob-
serve the ReLU+softmax mechanism performs better with
ambient sounds. This is due to the effect of ReLU operation
clipping the negative values in attention map to zero in the
training phase.

Our attention map is an outcome of inner products be-
tween normalized vectors. Therefore the values are ranged
between —1 and 1. The negative values in the attention map
indicate low or negative correlations while the positive val-
ues are likely to be sound source location. Without ReLu,
softmax maps low or negative correlation responses to pos-
itive values. However, for ReLLU applied case, all the neg-
ative values are converted to 0 making the attention range
between 0 and 1. As a result, ReLU+softmax mechanism is



better at suppressing uncorrelated sound responses.

We visualize the results of attention response before soft-

max to show values in absolute (i.e., non-relative) scale.
The responses of ambient sound is relatively weak than ob-
ject sounds. To make a clear visual comparison, we use gray
scale heatmaps in Figure 1.
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