Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks

Jiawei Zhang!?* Jinshan Pan®' Jimmy Ren? Yibing Song*

Linchao Bao*

Rynson W.H. Lau! Ming-Hsuan Yang®
!Department of Computer Science, City University of Hong Kong

2SenseTime Research

3School of Computer Science and Engineering, Nanjing University of Science and Technology

4Tencent AI Lab

Abstract

Due to the spatially variant blur caused by camera shake
and object motions under different scene depths, deblurring
images captured from dynamic scenes is challenging. Al-
though recent works based on deep neural networks have
shown great progress on this problem, their models are usu-
ally large and computationally expensive. In this paper, we
propose a novel spatially variant neural network to address
the problem. The proposed network is composed of three
deep convolutional neural networks (CNNs) and a recurrent
neural network (RNN). RNN is used as a deconvolution op-
erator performed on feature maps extracted from the input
image by one of the CNNs. Another CNN is used to learn the
weights for the RNN at every location. As a result, the RNN
is spatially variant and could implicitly model the deblur-
ring process with spatially variant kernels. The third CNN
is used to reconstruct the final deblurred feature maps into
restored image. The whole network is end-to-end trainable.
Our analysis shows that the proposed network has a large
receptive field even with a small model size. Quantitative
and qualitative evaluations on public datasets demonstrate
that the proposed method performs favorably against state-
of-the-art algorithms in terms of accuracy, speed, and model
size.

1. Introduction

Motion blur, which is caused by camera shake and object
motions, is one of the most common problems when taking
pictures. The community has made active research efforts on
this classical problem in the last decade. However, restoring
a clean image from blurry one is difficult since it is a highly
ill-posed problem. Most existing algorithms assume the blur
to be caused by camera motions, such as translation and
rotation. However, this assumption does not always hold for
dynamic scenes, which contain object motions and abrupt
depth variations (e.g., Figure 1).

Existing dynamic scene deblurring algorithms [9, 10, 23]
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(a) Blurry image (b) Nah et al. [21]

(c) Ours (d) Clean image

Figure 1. A challenging dynamic scene blurry example where the
blur is caused by both camera shake and object motion. As the
blur is spatially variant, conventional CNN-based methods (which
usually adopt convolution and non-linear activation operations, e.g.,
Nah et al. [21] to approximate this problem) do not handle this
problem well. Our method is based on a spatially variant RNNs,
which is able to model the spatially variant property, capture a
larger receptive field, and thus generate a much clearer image.

usually need segmentation methods to help the deblurring
process. However, these methods heavily depend on an ac-
curate segmentation. In addition, the deblurring process is
time-consuming as highly non-convex optimization problem-
s should be solved.

Recently, deep convolutional neural networks (CNNs)
have been applied to dynamic scene deblurring [33, 7, 21,
22]. Unlike conventional algorithms that involve a complex
blur kernel estimation process, these CNN-based methods
either predict pixel-wise blur kernels or directly restore clear
images from blurred inputs. However, existing CNN-based
methods have two major problems. The first one is that
weights of the CNN are spatially invariant. It is hard to use
a CNN with a small model size to approximate the dynamic
scene deblurring problem, which has the spatially variant
property (see Figure 1). The second one is that large image
regions should be used to increase the receptive field even
though the blur is small. This inevitably leads to a network
with a large model size and a high computation cost. Thus,
there is a need to develop an effective network with a small
model size and large receptive field to restore clear images
from blurred dynamic scenes.

In this paper, we propose a spatially variant recurrent
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neural network (RNN) for dynamic scene deblurring, where
the pixel-wise weights of the RNN are learned by a deep C-
NN. In the CNN, the auto-encoder framework is proposed to
reduce the model size of the proposed network and facilitate
pixel-wise weight estimation. Our analysis shows that the
RNN model can be regarded as a deconvolution operation
and is able to model the spatially variant blur. The proposed
network can be trained in an end-to-end manner.

The contributions of this paper are summarized as fol-
lows:

e We propose a novel end-to-end trainable spatially vari-
ant RNN for dynamic scene deblurring. The pixel-wise
weights of the RNNs are learned by a deep CNN, which
is able to facilitate the spatially variant blur removal.

e We show that the deblurring process can be formulated
by an infinite impulse response (IIR) model. We further
analyze the relationship between the proposed spatially
variant RNN and the deblurring process, and show that
the spatially variant RNN has a large receptive field and
is able to model the deblurring process.

e We evaluate the proposed model on the benchmark
datasets quantitatively and qualitatively and show that
the proposed method performs favorably against state-
of-the-art algorithms in terms of accuracy, speed as well
as model size.

2. Related Work

Dynamic scene deblurring is a highly ill-posed problem.
Conventional methods [9, 10, 23] usually add constrains
on the estimated image and blur kernel, and then optimize
complex objective functions. In [9], a segmentation-based
algorithm is proposed to jointly estimate motion segments,
the blur kernel, and the latent image. However, these meth-
ods cannot handle forward motions and depth variations.
Kim et al. [10] propose a segmentation-free dynamic scene
deblurring algorithm. This method assumes that the blur
kernels can be modeled by a local linear optical flow field.
This assumption does not always hold as real-world motions
are complex. Pan et al. [23] propose an algorithm based on
soft-segmentation. To handle large blur, this method intro-
duces a segmentation confidence map into the conventional
deblurring framework. However, it requires user inputs to
initialize segmentations.

Recently, deep learning has been widely used in many
low-level vision problems, such as denoising [1, 20, 45],
super-resolution[4, 35, 13, 14, 15, 43, 31], dehazing [27],
derain/dedirt [6, 5], edge-preserving filtering [39, 18], and
image deblurring (non-blind [28, 38, 44] and blind [29, 2,
42]).

Several methods [33, 7] use deep learning to estimate
the non-uniform blur kernel and then utilize a non-blind
deblurring algorithm [46] to obtain sharp images in dynamic
scene deblurring. Sun et al. [33] propose a deep CNN model
to estimate the motion blur of every patch. The Markov

random field (MRF) is then used to obtain a dense motion
field. However, as the network is trained at the patch-level, it
cannot fully utilize the high-level information from a larger
region. Gong et al. [7] propose a deeper CNN to estimate
the motion flow without post-processing. However, this
method is only designed for linear blur kernels, which limits
the application domains. In addition, the networks used in
[33] and [7] are not trained in an end-to-end manner. The
image restoration process requires a conventional non-blind
deblurring step, e.g., [46], which is time-consuming.

Some deblurring algorithms based on end-to-end train-
able neural networks have also been proposed [21, 22, 8, 34].
To use a large receptive field in the network for image restora-
tion, most of these algorithms develop a multi-scale strategy
or very deep models. Noroozi et al. [22] adopt skip connec-
tions. The network only needs to generate the residual image
to reduce the difficulty of reconstruction. Nah et al. [21]
propose a very deep residual network with 40 convolution
layers in every scale, and a total of 120 convolution layer-
s. The adversarial loss is used in their network to obtain
sharp realistic results. In addition, since the blur varies from
image to image and from pixel to pixel, it is inefficient to
use the same network parameters to handle all cases. Some
methods are designed for text or license plate deblurring
[8, 34], and cannot be easily extended to handle dynamic
scene deblurring.

We note that the aforementioned end-to-end networks
need to have a very deep network structure [21] or a large
number of channels [22]. Since blur is spatially variant in
dynamic scenes, only using CNNs might be inefficient. In
addition, it is difficult to use a single CNN model to deal
with different blurs. For example, Xu et al. [38] propose a
neural network for non-blind deblurring, but need to train
different networks for different kernels.

Spatially variant neural networks [26, 19] have been de-
veloped for low-level vision tasks. For example, a shepard
interpolation layer is proposed in [26] for inpainting and
super-resolution. They use a predefined mask to indicate
whether a pixel is used for interpolation to achieve spatially
variant operation. A spatially variant RNN is proposed in
[19], where spatially-variant weights of the RNN is learned
by a deep CNN. By utilizing spatially variant RNN, the net-
work in [19] does not need to use a large number of channels
or large kernels since image information can be propagated
for a long distance by the RNN. As the blur in dynamic
scene deblurring is spatially variant, we need to involve
both a large region and a spatially variant structure. To this
end, we propose a novel spatially variant RNN based on an
end-to-end trainable network.

3. Proposed Method

In this section, we show that the deconvolution/deblurring
step is equivalent to an infinite impulse response (IIR) mod-
el [25], which can be approximated by RNNs. We then
present the structure of the spatially variant RNN for dy-
namic scene deblurring, where the pixel-wise weights of the
spatially variant RNN are learned by a deep CNN.



3.1. Motivation

Given a 1D signal = and a blur kernel &, the blur process
can be formulated as:

yln) = klmlz[n —m], ey

where y is the blurred signal, m represents the position of
the signal, and M is the size of the blur kernel. Based on (1),
the clear signal = can be obtained by
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which is an M -th order infinite impulse response (IIR) mod-
el. By expanding the second term of (2), we find that the
deconvolution process requires an infinite signal information
as follows:
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In fact, if we assume that the boundary of the image is
zero, (3) is equivalent to applying an inverse filter to y. As
shown in Figure 2, the non-zero region of the inverse filter is
much larger than the blur kernel, which means that a large
receptive field should be considered in the deconvolution.

Thus, if we use a CNN to approximate (3) (which means
that the CNN actually learns the weights of y in (3)), where
the basic operations of CNN are convolution and non-linear
activation, a large receptive field should be considered to
cover the positions that are used in (3). As such, conven-
tional CNN-based methods [21, 22] usually need to have a
large network structure to achieve this goal. However, this in-
evitably leads to large model size, which is computationally
expensive.

From (2), we find that only a few coefficients, which
is k[m],m = 0,1,..., M, are needed in the IIR deblurring
model. This means that a few parameters are needed to de-
blur an image as long as we can find an appropriate operation
to cover a large enough receptive field. Thus, if we develop
a network based on (2), the model size will be much smaller.

We note that the spatially variant RNN [19] satisfies the
above requirements. However, directly using the RNN con-
nection strategy [19] cannot achieve our goals, as it does not
fuse the information from different filtering directions be-
tween consecutive RNNs and each output pixel of the RNN
will only consider information from the column and row that
itis in.

To consider 2D information with a large receptive field
in our network, we insert a convolution layer between con-
secutive RNNs. Figure 3 shows a toy example of fusing
the information of the spatial RNN from different directions
by a CNN. It shows that by adding a CNN after the RNN,
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Figure 3.(a)A toy example of fusi(:;g the information of(ct)he spatial
RNN from different directions by the CNN. (a) shows the four
receptive fields of the spatial RNN from four different directions,
and each RNN only considers 1D information. Without adding the
CNN between RNNss, the upper left part of the first RNN in (a) will
connect to the top left corner part of the second RNN according
to the corresponding directions. Thus, the receptive fields after
two consecutive RNNs are still the same as Figure 3(a), which
cannot be considered as 2D information. (b) is the receptive field
by adding a 1 x 1 CNN after the RNN to fuse the information from
the RNN. (c) is the receptive field by adding another RNN and the
output now can consider 2D information of a large receptive field.
The non-black region is the receptive field of the center pixel.

information from different directions can be fused and the
final receptive field can cover a large 2D region after another
RNN. In this way, the spatial RNN can be used to cover a
large 2D region with a small number of parameters. The oth-
er advantage of the spatially variant RNN is that its weights
can be learned from another network. It is similar to the
traditional deblurring method, which estimates a blur kernel
first and uses this kernel to recover the clean image. As a
result, the network does not need to remove different blurs
with the same weights, which will enlarge the model size. In
addition, different weights can be learned for different loca-
tions, which is suitable for spatially variant blur in dynamic
scenes.

3.2. Network Structure

We propose a novel spatially variant RNN to solve the
dynamic scene deblurring problem. We first use a feature
extraction network to extract features from the blurry im-
ages. The spatially variant RNN is then used for deblurring
in the feature space according to the RNN weights, which
are learned from a weight generation network. We add a con-
volution layer after every RNN to fuse the information from
different directions. Finally, we use an image reconstruction
network to reconstruct the clean image.

Figure 4 shows the proposed network architecture. Ta-
ble 1 summarizes the network configurations and contains
four parts: feature extraction, RNN weight generation, RNN
deconvolution (including convolution layer after every RNN)
and image reconstruction. There are two convolution layers
in the feature extraction part. The feature maps are down-
sampled by half to reduce the memory cost of the network.
The four RNNs are then used to filter these features. Every
RNN has four directions. We use a convolution layer to
fuse the information from the RNN output. To compute the
pixel-wise weights of the RNN, we use a 14 layers CNN
(i.e., conv3-conv16 in Figure 4). We fine-tune the weights of
conv3-convl1 from the first nine layers of VGG16 [30] in
order to have a good initialization. The image reconstruction



(a) clean image (b) blur kernel

(c) blurry image

(e) deblurred image

Figure 2. The deconvolution process needs large image regions. (a) is a clean image. (c) is obtained by blurring (a) with the motion kernel
from [16] as shown in (b). (d) is a regularized inverse filter from Wiener filtering [37], which can remove the motion blur. (e) is the deblurred
image. The non-zero region of the inverse filter is much larger than the blur kernel.

(d) inverse filter

skip link

RNN deconvolution

feature
extraction
(convl-conv2)

image
reconstruction
(conv21-conv22)

weight
generation
(conv13-
conv16)

weight
generation
(conv3-conv12)

skip link

Figure 4. The proposed network structure. Two CNNs are used to extract features and generate pixel-wise weights for the spatially variant
RNN. For RNN deconvolution, four RNNs are applied to the feature maps to remove blur and every RNN considers four directions. A
convolution layer is added after every RNN to fuse the information. Four skip links are added between feature extraction and image
reconstruction as well as in weight generation. One CNN is used in image reconstruction to estimate the final deblurred image. The
non-linear function ReLU or Leaky ReLU is used in each CNN. See Table 1 for detailed CNN configurations.

Table 1. Configurations of the network. The feature maps are downsampled by convolution with stride 2 and upsampled by bilinear
interpolation. Four skip links are added and we concatenate on conv1 with resizel, conv2 with conv20, conv8 with resize2, as well as conv6

with resize3.

[ feature extraction |

RNN deconvlution

| image reconstruction |

layer convl conv2 rnnl | convl7 | rnnl | convl8 | rn3 | convl9 | rnn4 | conv20 | conv21 | resizel | conv22
size 11 7 3 3 3 9 5
channel 16 32 32 32 32 32 32 32 32 16 3
stride 1 12 1 1 1 1 12 1
concatenate conv2 convl
\ | RNN weights generation |
layer conv3 | conv4 | pooll | conv5 | convé | pool2 | conv7 | conv8 | conv9 | pool3 | convlO | convll | convl2 | resize2 | convl3 | conv14 | resize3 | convlS | conv16
size 3 3 3 3 3 3 3 3 3 3 3 3 3 3
channel 64 64 128 | 128 256 | 256 | 256 512 512 256 128 128 256 512
stride 1 1 12 1 1 32 1 1 1 12 1 1 1 12 1 1 12 1 1
concatenate conv8 convb

part can estimate the deblurred image from the RNN filtered
feature maps. To avoid gradient vanishing and to accelerate
training, four skip links are added by concatenating their
inputs. We use bilinear interpolation, instead of a deconvo-
lution layer, to upsample the feature maps and avoid grid
artifacts generated by the deconvolution layer. Rectified Lin-
ear Unit (ReLU) is added after every convolution layer of the
weight generation network, except for the last convolution
layer after which a hyperbolic tangent (tanh) layer is added
to constrain the RNN weights to be between 0 to 1, just as in
[19]. Leaky ReLU with negative slope 0.1 is also added after

every convolution layer in the feature extraction network,
RNN fusion and image reconstruction network, except for
the last convolution layer in the whole network.

3.3. Network Training

The proposed model is trained on the training set for dy-
namic scene deblurring [21] as well as deep video deblurring
[32]. As the blur in [32] is very small for most of the images,
50% of the images add motion blur with maximum 20 pixels
blur and 50% of the images add foreground objects, which
is from Caltech 101 [17], with maximum 20 pixels blur. We



augment the training data by random cropping, resizing, ro-
tation and color permutation. The patch size is 128 and every
batch contains 20 patches. We implement the proposed al-
gorithm using Caffe [12]. The L, loss is used to train the
network. The spatially variant RNN is implemented by the
approach [19]. CNN weights are initialized by the Xavier
method, except for conv3-convl1 in the weight generation
network, which are fine-tuned from the first nine layers of
VGG16 [30]. Adam is used to optimize the network. The
learning rate, momentum, momentum?2 and weight decay are
0.0001, 0.9, 0.999 and 0.000001, respectively. According
to our experiments, the network converges after 200,000
iterations.

4. Experimental Results

We evaluate our method on the dynamic scene deblur-
ring dataset [21] and compare it with state-of-the-art image
deblurring algorithms, including conventional uniform de-
blurring [41, 24], non-uniform deblurring [36], and CNN
based dynamic scene deblurring [33, 7, 21] in terms of PSNR
and SSIM. We have retrained the network by Liu et al. [19]
using the same dataset of our network for fair comparison
though it is not designed for image deblurring. In addition,
we compare the visual results of the proposed algorithm with
those of the other algorithms on the real blurry dataset [3].
The trained models, source code, and datasets are publicly
available on the authors’ websites. Due to the page limit, we
only show a small portion of the results. More results are
included in the supplemental material.

4.1. Quantitative Evaluations

Table 2 shows the average PSNR and SSIM values of
the restored images on the test datasets [21]. The proposed
method performs favorably against with state-of-the-art al-
gorithms in terms of PSNR and SSIM. The generated results
have much higher PSNR and SSIM values.

Figure 5 shows several examples from the test set. Due to
the moving objects (e.g., cars) and camera shake, the blurry
images contain significant blur effect. The conventional non-
uniform deblurring methods [36, 41, 33, 24] are not able
to generate clear results as these methods focus on the blur
caused by camera shake. The CNN-based methods [21, 33,
7] are designed for dynamic scene deblurring. However,
these methods are not able to remove large blur due to the
limited receptive field in their networks. We note that Liu
et al. [19] develop a hybrid network including a CNN and
RNN for image processing. However, this method is less
effective for image deblurring as shown in Figure 5(f). In
contrast, the proposed algorithm recovers the clear images
with finer details and clearer structures.

4.2. Qualitative Evaluations

We further qualitatively evaluate the proposed method on
the real blurry images from [3]. Figure 6 shows several real
images and the results generated by the proposed method
and state-of-the-art methods. The conventional deblurring
methods [36, 41, 24] fail to generate clear images. We note

that Sun et al. [33] develop a CNN-based method for mo-
tion blur kernel estimation. However, the final recovered
images contain some artifacts due to imperfect estimated
blur kernels. Compared to the CNN-based methods [21],
the proposed method generates much clearer images with
clearer structures and characters. More experimental results
are included in the supplemental material.

4.3. Run-Time and Model Size

We evaluate our method and state-of-the-art methods on
the same PC with an Intel(R) Xeon(R) CPU and a Nvidia
Tesla K80 GPU. As shown in Table 3, the conventional non-
uniform deburring methods have high computational cost
as these methods usually need to solve highly non-convex
optimization problems. Although Sun et al. [33] and Gong
et al. [7] develop CNN algorithms to estimate motion blur,
both of them need a conventional non-blind deblurring algo-
rithm to generate the final clean image, which increases the
computational cost. The method in [21] uses a multi-scale
CNN to increase the receptive field to estimate clear images
and spends much less computational time compared with
the conventional algorithms. However, a multi-scale scheme
inevitably increases the computational load and it is still not
efficient compared to the proposed method. Furthermore,
the model size of [21] is much larger than the proposed
method as shown in Table 3. As the proposed method in-
cludes a novel spatially variant RNN with fewer parameters
according to the analysis in Section 3.1, the model size of
the proposed method (37.1MB) is much smaller than that of
[21] (303.6MB) (Table 3). In addition, the running time of
proposed method is 10.0x faster than [21].

5. Analysis and Discussions

In this section, we discuss the effect of the proposed
method and clarify the relationship between the proposed
method with other deep learning-based methods.

5.1. Effectiveness of the Spatially Variant RNN

To demonstrate the effectiveness of the spatially variant
RNN, we remove the RNNs from the network and keep the
weights of the rest network. As can be seen in Figure 7(b),
the deblurred result without using RNNs still contains a sig-
nificant blur residual. By adding the spatially variant RNNs,
a clean image can be recovered as shown in Figure 7(c).
This shows that it is the RNNs, rather than other parts, that
remove the blur in the proposed network.

Part of the RNN weights of Figure 7(a) are shown in
Figure 8(b) to (e). In order to roughly show the motion of
blur, we use FlowNet 2.0 [11] to estimate the optical flow as
shown in Figure 8(a). According to the optical flow results,
part of the foreground people move differently relative to the
rest of the image. At the same time, these foreground people
regions also have different RNN weights, which demon-
strates that the weight generation network can detect dif-
ferent blur and the RNN weights act as the estimated blur
kernel to recover the clean image.



Table 2. Quantitative evaluation on the dynamic scene deblurring dataset [21], in terms of PSNR and SSIM.

| method | Whyte [36] | Xu [41] | Sun[33] | Pan[24] [ Liu[19] | Nah [21] | Gong [7] | proposed |

PSNR 24.5312 | 20.2976 | 25.3098 | 23.5049 | 25.7464 | 28.4898 | 26.0576 | 29.1872

SSIM 0.8458 0.7407 0.8511 0.8336 | 0.8654 0.9165 0.8632 0.9306

(b) Whyte [36]
.5698/0.8243

B

(a) blurry image
psnr/ssim 27

(c) Xu [41]

20.3156/0.4661

(d) Sun [33]
28.1955/0.8318

(f) Liu [19] (g) Nah [21] (h) Gong [7] (i the proposed method (j) clean image

29.0072/0.8571
= ;

28.8475/0.8451

30.5196/0.8902 +oo/l

B
g . S

(a) blurry image (b) Whyte [36] (c) Xu [41] (d) Sun [33] (e) Pan [24]

psnr/ssim

21.6708/0.6027 ) 18.5335/0.48384

21.4903/0.5866 21.8053/0.6217

(f) Liu [19] (g) Nah [21] (h) Gong [7] (i) the proposed method (j) clean image
21.8819/0.6126 25.5825/0.7751 21.5965/0.5881 26.0270/0.8140 ~+o00/1
Figure 5. Quantitative evaluations on the dynamic scene deblurring dataset [21]. The proposed method generates much clearer images with
higher PSNR and SSIM values.

Table 3. Running time and network model size for an image with the size of 720x 1280 pixels. All existing methods use their publicly

available scripts. A “-” indicates that the result is not available.

| | Whyte [36] [ Xu [41] [ Sun [33] | Pan [24] [ Nah [21] [ Gong [7] | proposed |

time(sec) 700 3800 1500

2500 15 1500 1.4

size(MB) - 54.1

303.6 412 371

5.2. Relation with Deep Learning-based Methods
According to [40, 38], a large region should be considered
for deblurring in CNN-based methods even though the blur
kernel is small. To solve dynamic scene deblurring, Nah
et al. [21, 22] use a multi-scale scheme and deep network
structure to cover a large receptive field. In addition, the

sizes of their networks are too large as the network should
handle different blurs with the same weights.

We note that Liu et al. [19] propose a hybrid neural net-
work for image filtering and inpainting. They simply connect
the 1D RNNs, which are from four directions. As a result,
the network only fuses the information from a single column



(e) Pan [24] (f) Nah [21]

(b) Whyte [36] (c) Xu [41] (d) Sun [33]

(a) blurry image

(e) Pan [24] (f) Nah [21] (g) Gong [7] (h) the proposed method
Figure 6. Qualitative evaluations on the real blurry dataset [32]. The proposed method generates much clearer images with clearer structures
and characters.

o / f s [
(a) blurry image (b) without RNNs (c) with RNNs (d) clean image (e) before RNNs (f) after RNNs
Figure 7. The effectiveness of the proposed RNNs. (e) and (f) are some selected feature maps before and after the RNNs. The RNNs are able
to help remove the blur.



()
Figure 8. Visualizations of the learned RNN weights. (a) is the optical flow from the adjacent frames of Figure 7(a) according to FlowNet
2.0 [11]. () is the selected RNN weights of the spatially variant RNN from [19]. (b)-(e) are selected RNN weights of the spatially variant
RNN from the proposed method. According to (a), some of the foreground objects (e.g., people) have different motions compared to other
parts. The generated RNN weights are able to distinguish the different moving objects in (b) - (e). This demonstrates that the proposed
weight generation network can detect different blurs. However, the method by [19] only extracts the edges, which do not reflect the motion

of the objects.

(b) without RNNs
25.8015/0.8019

(a) blurry image
PSNR/SSIM

(c) weights generation
28.0155/0.8746

(e) clean
+o0/1

(d) proposed
29.8986/0.8995

Figure 9. Visual results for the ablation study on the dynamic scene dataset [21]. The proposed method generates clearer images with higher
PSNR and SSIM values relative to the networks with only CNNs. Refer to the text for details.

Table 4. An ablation study on the dynamic scene dataset [21] in
terms of PSNR and SSIM. The proposed network is compared with
the network without skip links, the network without CNN between
RNNs, the network without RNNs as well as only using the weight
generation network structure to deblur. Refer to the text for details.

[ network | w/o skip [ w/o convs | w/o RNNs | weights generation | proposed |

PSNR | 25.7687 | 27.8365 | 26.0413 27.6835 29.1872
SSIM | 0.9002 | 0.9087 0.8689 0.9120 0.9306

and row that contains the output pixels, instead of consider-
ing the information from the whole image. This leads to a
limited receptive field. Thus, [19] cannot be directly applied
to image deblurring as the problem is quite different from
the filtering problem and needs a large receptive field. As
shown in Figure 8(f), the method by [19] does not estimate
reliable RNN weights compared to the proposed algorithm.
The final deblurred results by [19] are still blurry as shown
in Figure 5(f).

In contrast, we propose a 3 x 3 convolution layer be-
tween each consecutive RNN to let the proposed network
consider the 2D information of the image. Thus, a much
larger receptive field can be involved (Figure 2(c)). In addi-
tion, we propose an auto-encoder scheme to further reduce
the model size and save memory cost of the proposed net-
work. The proposed method generates reliable feature maps
(Figure 8(b)-(e)) and much clearer images (Figure 5(i)).

5.3. Ablation Study

The proposed network contains four parts: feature extrac-
tion network, weight generation network, RNNs (including
convolution layers between RNNs) and image reconstruction

network. Here, we compare the proposed network with the
network without RNNs (but keeping the convolution layers
between the RNNs), and with only the weight generation
network (using it to deblur directly). We also compare the
proposed network with the network without skip links as
well as the network without the convolution layers between
RNNs. We train these four networks using the same training
strategy as in Section 3.3. As shown in Table 4 and Fig-
ure 9, the proposed network cannot work well if any part is
removed.

6. Conclusions

In this paper, we propose a novel end-to-end spatially
variant recurrent neural networks (RNNs) for dynamic scene
deblurring, where the weights of the RNNs are learned by
a deep CNN. We analyze the relationship between the pro-
posed spatially variant RNN and the deconvolution process,
and show that the spatially variant RNN is able to model the
deblurring process. With the proposed RNNs, the trained
model is significantly smaller and faster in comparison with
existing CNN-based deblurring methods. Both quantita-
tive and qualitative evaluations on the benchmark datasets
demonstrate the effectiveness of the proposed method in
terms of accuracy, speed, and model size.
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