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Abstract

We address the problem of weakly supervised object lo-
calization where only image-level annotations are available
for training. Many existing approaches tackle this prob-
lem through object proposal mining. However, a substan-
tial amount of noise in object proposals causes ambiguities
for learning discriminative object models. Such approaches
are sensitive to model initialization and often converge to an
undesirable local minimum. In this paper, we address this
problem by progressive domain adaptation with two main
steps: classification adaptation and detection adaptation.
In classification adaptation, we transfer a pre-trained net-
work to our multi-label classification task for recognizing
the presence of a certain object in an image. In detec-
tion adaptation, we first use a mask-out strategy to collect
class-specific object proposals and apply multiple instance
learning to mine confident candidates. We then use these se-
lected object proposals to fine-tune all the layers, resulting
in a fully adapted detection network. We extensively evalu-
ate the localization performance on the PASCAL VOC and
ILSVRC datasets and demonstrate significant performance
improvement over the state-of-the-art methods.

1. Introduction
Object localization is an important task for image un-

derstanding. It aims to identify all instances of partic-
ular object categories (e.g., person, cat, and car) in im-
ages. The fundamental challenge in object localization
lies in constructing object appearance models for handling
large intra-class variations and complex background clut-
ters. The state-of-the-art approaches typically train object
detectors from a large set of training images [11, 14] in a
fully supervised manner. However, this strongly supervised
learning paradigm relies on instance-level annotations, e.g.,
tight bounding boxes, which are time-consuming and labor-
intensive. In this paper, we focus on the weakly supervised
object localization problem where only binary image-level
labels indicating the presence or absence of an object cate-
gory are available for training. Figure 1 illustrates the prob-
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Figure 1. Weakly supervised object localization problem setting.
Given a collection of training images with image-level annota-
tions, our goal is to train object detectors for localizing objects
in unseen images.

lem setting. This particular setting is important for large-
scale practical applications because image-level annotations
are often readily available from the Internet, e.g., through
text tags [15], GPS tags [8], and image search queries [23].

Most existing methods [36, 4, 3, 2, 33, 35, 37, 34] for-
mulate the weakly supervised localization (WSL) task as a
multiple instance learning (MIL) problem. Recent efforts
include leveraging convolutional neural networks (CNN) to
extract discriminative appearance features [41, 36, 37, 2, 3]
and transferring knowledge from strongly supervised de-
tectors to other categories without bounding box annota-
tions [27, 16, 17, 31]. While existing methods have shown
promising results, these methods have three main draw-
backs. First, it’s hard to select correct object proposals
because the collection of candidate proposals contains too
much noise. Typically, only a few out of several thousands
of proposals are actual object instances. Second, many ap-
proaches use a pre-trained CNN as a feature extractor and
do not adapt the weights from whole-image classification
to object detection. Third, existing methods often require
either auxiliary strongly annotated data or pre-trained de-
tectors for domain adaptation.



Figure 2. Comparison of our approach with existing object local-
ization methods. Strongly supervised methods use instance-level
annotations to train object detectors. Most of the weakly super-
vised methods use one-step proposal mining to select object in-
stances from a large and noisy candidate pool directly. We propose
a two-step progressive domain adaptation approach. We first filter
out the noisy object proposal collection and then mine confident
candidates for learning discriminative object detectors.

In this paper, we propose a two-step domain adapta-
tion for weakly supervised object localization: classifica-
tion adaptation and detection adaptation. Figure 2 illus-
trates the major difference between the proposed algorithm
and existing work. Our key observation is that it’s hard to
train object detectors directly under weak supervisory sig-
nals due to the substantial amount of noise in the object
proposal collections. Essentially, the main difficulty arises
from the large gap between source domain and target do-
main, as shown in the top-right and bottom-left corner of
Figure 2. The goal of our work is to bridge the gap by pro-
gressive domain adaptation. In the classification adaptation
step, we train a classification network using the given weak
image-level labels. We train the classification network to
recognize the presence of a certain object category in an
image. In the detection adaptation step, we use the clas-
sification network to collect class-specific object proposals
and apply multiple instance learning to mine confident can-
didates. We then use the previously selected object candi-
dates to fine-tune all the layers, resulting in a fully adapted
detection network.

The proposed algorithm addresses the drawbacks from
prior work in three aspects: (1) Our classification adaptation
step fine-tunes the network such that it can collect class-
specific object proposals with higher precision. This step
aims at removing background clutters and potential confu-
sion from similar objects cases, leading to a purified col-
lection of object candidates for multiple instance learning.

(2) Detection adaptation uses confident object candidates
to optimize the CNN representations for the target domain.
This step aims at turning image classifiers into object de-
tectors, providing more discriminative feature representa-
tions for localizing generic objects (instead of the presence
of them) in an image. (3) Our method learns object detec-
tors from weakly annotated data without any strong labels.

We make the following three contributions in this work:
1. We propose to use progressive domain adaptation for

weakly supervised object localization. We show that
this strategy is crucial for good performance.

2. Our classification adaptation helps filter the object pro-
posal collection, and our detection adaptation helps
learn discriminative feature representation for the de-
tection task.

3. We present detailed evaluations on the PASCAL VOC
and ILSVRC datasets. Experimental results demon-
strate that our progressive domain adaptation algo-
rithm performs favorably against the state-of-the-art
methods. Our detector achieves 39.5% mAP on VOC
2007, surpassing the second best performing algorithm
by 8 points.

2. Related Work

Weakly supervised learning. Existing methods often
treat WSL as an MIL problem [36, 4, 3, 2, 33, 35, 34, 37].
In an MIL framework, each image is considered as a bag of
potential object instances. Positive images are assumed to
contain at least one object instance of a certain object cate-
gory and negative images do not contain object instances
from this category. Using this weak supervisory signal,
WSL methods often alternate between (1) selecting the pos-
itive object instances from positive images and (2) learning
object detectors. However, this results in a non-convex op-
timization problem. Due to the non-convexity, these meth-
ods are sensitive to model initialization and prone to get-
ting trapped into local extrema. Although many efforts
have been made to overcome the problem via seeking bet-
ter initialization models [36, 37, 34, 35, 33] and optimiza-
tion strategies [4, 3, 2], the localization performance is still
limited. We observe that previous MIL-based methods at-
tempt to train object detectors directly from the large and
noisy collection of object candidates. In this work, we ap-
ply MIL [36] to mine confident candidates. However, unlike
existing methods, we apply MIL on a cleaner collection of
class-specific object proposals (instead of on a large, noisy,
category-independent proposals).

Convolutional neural networks for object localization.
Recently, convolutional neural networks have achieved
great success on various visual recognition tasks [21, 40, 42,
32, 29, 25, 14, 13]. The key ingredient for the success lies
in end-to-end training CNN in a fully supervised fashion. In



object detection problems, these methods [29, 25, 14, 13]
require instance-level supervision. Moving beyond strong
supervision, recent work focuses on applying off-the-shelf
CNN features [36, 37, 41, 1, 3, 2], learning from weak la-
bels [43, 24] or noisy labels [26, 38]. Our classification
adaptation step is related to the method by Oquab et al. [24]
in the formulation of multi-label classification. We use a
different a multi-label loss that allows us to incorporate neg-
ative images during training. Also, we focus on detect-
ing the locations and spatial supports of objects while the
method by Oquab et al. [24] only predicts approximate lo-
cations of objects. Our work resembles the work by Baz-
zani et al. [1]. We use a similar mask-out strategy to collect
class-specific object proposals. The main differences are
three-fold. (1) Our classification adaptation transfers the
source classification domain (1000 single-label classes for
ILSVRC 2012) to the target classification domain (20 multi-
label classes for PASCAL VOC). (2) We use a contrast-
based mask-out strategy for ranking proposals. (3) Instead
of training a classifier over pre-trained CNN features, we
fine-tune the parameters of all the CNN layers for training
object detectors.

Domain adaptation. Some recent approaches use do-
main adaptation to help learn object detectors or fea-
tures [27, 16, 17, 31]. Shi et al. [31] learn a mapping rela-
tionship between the bounding box overlap and the appear-
ance similarity, and then transfer it to the target domain.
Hoffman et al. [16] learn the difference between classifi-
cation and detection tasks and transfer this knowledge to
convert classifiers to detectors using weakly annotated data.
Also, MIL is incorporated for joint learning of representa-
tion and detector [17]. Rochan et al. [27] transfer existing
appearance models of the familiar objects to the unseen ob-
ject. Existing domain adaptation methods often use strongly
annotated source data to improve recognition performance
for weakly supervised object localization. Our work differs
from these approaches in that we focus on object localiza-
tion in a weakly supervised manner, i.e., we do not require
any instance-level annotation and do not borrow additional
strongly annotated data or outside detectors.

Progressive and self-paced learning. Our work is also
related to several approaches in other problem contexts. Ex-
amples include visual tracking [39], pose estimation [12],
image search [20], and object discovery [22]. Progressive
methods can decompose complex problems into simpler
ones. We find that progressive adaptation is particularly im-
portant for the weakly supervised object localization prob-
lem.

3. Classification Adaptation
In this section, we introduce the classification adaptation

step. This step aims to train the whole-image classifica-

Figure 3. Classification adaptation step. We use the AlexNet archi-
tecture [21] and replace the softmax loss layer with the proposed
multi-label loss layer. We set the number of nodes in the last fully-
connected layer to 2C (C is number of object categories). These
2C entries are divided into C pairs for representing the presence
and absence of each object category. See Section 3 for details.

tion network such that the adapted network is sensitive to
the object categories of interest. The original AlexNet [21]
is trained for multi-class classification with a softmax loss
layer by assuming that only one single object exists per im-
age. In our adapted network, we replace the last classifi-
cation layer with a multi-label loss layer. Unlike the prob-
lem in ImageNet classification, we address a more general
multi-label classification problem where each image may
contain multiple objects from more than one category.

Assuming that the object detection dataset has C
categories and a total of N training images, we de-
note the weakly labeled training image set as I =
{(I(1),y(1)), . . . , (I(N),y(N))}, where I is the image data
and y = [y1, . . . , yc, . . . , yC ]

> ∈ {0, 1}C , c ∈ {1, . . . , C}
is the C-dimensional label vector of I, in which each en-
try can be 1 or 0 indicating whether at least one specific
object instance exists in the image. In the weakly object
localization setting, one image may contain objects from
different categories, i.e., more than one entry in y can be 1.
In this case, conventional softmax loss cannot be used for
this multi-label classification problem. We thus introduce a
multi-label loss to handle this problem.

First, we transform the original training label to a new
label t ∈ {0, 1}2C , where

t2c−1 =

{
1, yc = 1

0, yc = 0
and t2c =

{
0, yc = 1

1, yc = 0
. (1)

In other words, each odd entry of t represents whether the
image contains the corresponding object. Similarly, each
even entry represents whether the image does not contain
the corresponding object.

We then introduce our new loss layer for multi-label clas-
sification. We denote the CNN as a function p(·) that maps
an input image I to a 2C dimensional output p(I) ∈ R2C .
The odd entry p2c−1(I) represents the probability that the
image contains at least one object instance of c-th category.



Figure 4. Detection adaptation step. We first use a mask-out strategy to collect class-specific object proposals and apply multiple instance
learning to mine confident candidates. We then use these selected object proposals to fine-tune all the layers (marked magenta), resulting
in a network that is fully adapted for detection. See Section 4 for details.

Similarly, the even entry p2c(I) indicates the probability
that the image does not contain objects of c-th category. We
compute the probabilities using a sigmoid for each object
class and thus we have p2c−1(I) + p2c(I) = 1.

We can define negative logarithmic classification loss
Lc(I) of one image for category c as,

Lc(I) = −(t2c−1 log p2c−1(I) + t2c log p2c(I)). (2)

We obtain the final loss function L by summing up all the
training samples and losses for all the categories,

L =

N∑
i=1

C∑
c=1

Lc(I
(i)) = −

N∑
i=1

t(i) logp(I(i)). (3)

Here log(·) is the element-wise logarithmic function. The
sum over different categories is done by dot product.

In the classification adaptation network, we substitute
the conventional softmax loss layer with our new multi-
label loss layer and adjust the number of nodes in the last
fully-connected layer to 2C. We use mini-batch Stochastic
Gradient Descent (SGD) for training the CNN. We initialize
all the layers except the last layer using the pre-trained pa-
rameters on ILSVRC 2012 [6]. We randomly initialize the
weights of the modified classification layer. We describe the
implementation details in Section 5.1.

4. Detection Adaptation
4.1. Class-specific proposal mining

The goal of detection adaptation step is to transfer image
classifiers to object detectors. To train object detectors, we
first collect confident object proposals. We use a mask-out

strategy to collect class-specific object proposals and ap-
ply multiple instance learning to mine confident candidates.
The mining procedure offers two key benefits:
• Compared with generic object proposals, class-specific

proposals remove substantial noise and potential con-
fusion from similar objects. This helps MIL avoid con-
verging to an undesirable local minimum and reduce
computational complexity.
• More precise object proposals can be mined using

MIL. These confident object proposals allow us to fur-
ther fine-tune the network for object detection.

The adapted classification network recognizes whether
an image contains a certain object. We use a mask-out strat-
egy to collect object proposals for each class based on the
adapted classification network. The idea of masking out
the input of CNN has been previously explored in [44, 1].
Intuitively, if the mask-out image by a region causes a sig-
nificant drop in classification score for the c-th class, the
region can be considered discriminative for the c-th class.
Inspired by [44, 1], we investigate the contrastive relation-
ship between a selected region and its mask-out image.

Without loss of generality, we take mining object propos-
als for the c-th category as an example. First, for the image I
labeled with yc = 1, we apply Edge Boxes [46] to generate
the initial collection of object proposals. The set of initial
proposals is marked as B̂c. For an initial bounding box re-
gion b̂, we denote its corresponding image as Iin(b̂) and
its mask-out image as Iout(b̂). We generate the mask-out
image by replacing the pixel values within b̂ with the fixed
mean pixel values pre-computed on ILSVRC 2012. We feed
the region image Iin(b̂) and mask-out image Iout(b̂) to the
adapted classification network. We can then compute the



contrastive score for bounding box region b̂ of image I as,

sc(I, b̂) = p2c−1(Iin(b̂))− p2c−1(Iout(b̂)). (4)

Here, if the value of sc(I, b̂) is large, it indicates that the re-
gion b̂ is likely an object of the c-th category. Note that our
mask-out strategy differs from [1], which compute the score
difference between the whole image and mask-out image.

With classification adaptation, a bounding box region
can achieve higher confidence than the whole image for
classification. In Figure 5, we show top 10 class-specific
proposals using our mask-out strategy. According to (4),
top M (M=50 in our experiments) object proposals of im-
age I are selected for the c-th category. That is, selected
proposals are category-specific. We mark the top-ranked
proposals as Bc.

Since we set a loose criteria in the previous mask-out
step, the top-ranked proposals are still coarse and may con-
tain many false positives. We apply MIL to mine confident
candidates for training object detector. In MIL, the label of
object candidate is set as a latent variable. During the train-
ing, the label is iteratively updated. For candidates set Bc,
we set up latent variable zkc ∈ {0, 1}M , k, c ∈ 1, . . . , C,
in which each entry represents whether the corresponding
proposal is an object of the k-th category. We make two
assumptions for solving zk=c

c .
• For image I with yc = 1, at least one proposal in Bc

belongs to the c-th category, i.e., 1> · zk=c
c ≥ 1 where

1 is an M -dimensional all-one vector.
• For image I′ with yc = 0, none of proposals in B′c′ 6=c

belongs to the c-th category, i.e., 1> · zk=c
c′ 6=c = 0.

Under the two assumptions, we can treat each image with
yc = 1 as a positive bag and treat each image with yc = 0
as a negative bag. We then cast the task of solving zk=c

c as
an MIL problem. Note that multiple positive instances can
be collected according to the scores of the MIL classifier for
each class.

We use the smoothed hinge loss function in [36]. Note
that the initialization step in [36] is carried out via a sub-
modular clustering method from the initial object propos-
als. The noisy collection of proposals limits the perfor-
mance of clustering process. Also, the initialization step
is time-consuming as the similarity measures among all the
proposals in all the images need to be computed. Our class-
specific proposals not only help filter the object proposal
collection but also reduce the training time of MIL.

4.2. Object detector learning

In this step, we aim at adapting the network from multi-
label image classification for object detection. We jointly
train the detection network with C object classes and a
background class instead of training each object detec-
tor independently. Similar to [13], we replace the 2C-
dimensional classification layer (for image-level classifica-

Figure 5. Examples of the mined object proposals using the mask-
out strategy. We show top 10 proposals for each category (different
colors indicate mined proposals for different categories). Note that
the mined object proposals are class-specific.

tion) with a randomly initialized (C+1)-dimensional classi-
fication layer (for instance-level classification with C object
classes and background). We take the top-scoring proposals
given by MIL as positive samples for each object category.
We collect background samples from object proposals that
have a maximum IoU ∈ [0.1, 0.5) overlap with the mined
object proposals by MIL. For data augmentation, we also
treat all the proposals that have IoU ≥ 0.5 overlap with a
mined object as positive samples.

Given a test image, we first generate object proposals us-
ing Edge Boxes [46] and use the adapted detection network
to score each proposal. We then rank all the proposals and
use non-maximum suppression to obtain final detections.

5. Experiments
5.1. Implementation details

For multi-label image classification training, we use the
AlexNet [21] as our base CNN model, initialized with the
parameters pre-trained on ImageNet dataset. We train the
network with SGD at a learning rate of 0.001 for 10,000
mini-batch iterations. We set the size of mini-batch to 500.
For class-specific proposal mining, we use Edge Boxes [46]
to generate 2,000 initial object proposals and select top
M=50 proposals as the input for multiple instance learning.
For object detector training, we use AlexNet [21] and VG-
GNet [32] as our base models. Similar to Fast-RCNN [13],
we set the maximum number iterations to 40k.

We implement our network using Caffe [19]. For the
PASCAL VOC 2007 trainval set, fine-tuning the AlexNet
for classification and detection adaptation takes about 10
hours and 1 hours with a Tesla K40 GPU, respectively.
With our mined class-specific proposals, it takes about
3 hours to mine confident object samples on PC wBaz-
zani:WACV16ith a 4.0 GHz Intel i7 CPU and 16 GB mem-
ory. The source code, as well as the pre-trained models, are
available at the project webpage1.

5.2. Datasets and evaluation metrics

Datasets. We extensively evaluate the proposed method
on the PASCAL VOC 2007, 2010, 2012 datesets [10, 9] and
ILSVRC 2013 detection dataset [6, 28]. For VOC 2007, we

1https://sites.google.com/site/lidonggg930/wsl
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use both train and val splits as the training set and test split
as our test set. For VOC 2010 and 2012, we use train split as
the training set and val split as the test set. For the ILSVRC
detection dataset, we follow the RCNN [14] in splitting the
val data into val1 and val2. We use val1 for training ob-
ject detectors and val2 for validating the localization perfor-
mance. Note that we do not use any instance-level anno-
tations (i.e., object bounding boxes) for training in all the
datasets.

Evaluation metrics. We use two metrics to evaluate lo-
calization performance. First, we compute the fraction of
positive training images in which we obtain correct local-
ization (CorLoc) [7]. Second, we measure the performance
of object detectors using average precision (AP) in the test
set. For both metrics, we consider that a bounding box is
correct if it has an intersection-over-union (IoU) ratio of at
least 50% with a ground-truth object instance annotation.

5.3. Comparison to the state-of-the-art

We compare the proposed algorithm with state-of-the-
art methods for weakly supervised object localization, in-
cluding the MIL-based methods [33, 4, 36, 37, 2, 3], topic
model [30], and latent category learning [41]. For fair com-
parisons, we do not include methods that use strong labels
for training.

Table 1 shows performance comparison in terms of Cor-
Loc on the PASCAL VOC 2007 trainval set. Our method
achieves 52.4% of average CorLoc for all the 20 categories,
outperforming all the state-of-the-art algorithms. Compared
to the MIL-based approaches [33, 3, 4], we achieve signif-
icant improvements by 10 to 20 points. While these ap-
proaches use sophisticated model initialization or optimiza-
tion strategies for improving MIL, the inevitable noise in
the initial collection of category-independent proposals lim-
its the performance of trained object detectors during MIL
iterations. Compared to the topic model [30], we incorpo-
rate inter-class relations by jointly training CNN with all ob-
ject classes and background class while they rely on hand-
crafted features. Wang et al. [41] use a pre-trained CNN
for feature extraction. In contrast, we learn feature repre-
sentations with our classification and detection adaptation,
boosting the performance of CorLoc by 3.9 points.

Table 2 shows the detection average precision (AP) per-
formance on the PASCAL VOC 2007 test set. Our method
achieves 39.5% mAP, outperforming the state-of-the-art ap-
proaches by 8 points. Our method using the AlexNet
achieves comparable performance with the second best
method [41], 31.6% (ours) vs. 31.0% [41]. Most of ex-
isting methods [41, 3, 2, 36, 37] use pre-trained networks to
extract features for object detector learning and do not fine-
tune the network. In contrast, we progressively adapt the
network from whole-image classification to object detec-
tion. Such domain adaptation helps learn better object de-

tectors from weakly annotated data. Unlike previous work
that relies on noisy and class-independent proposals to se-
lect object candidates, we mine purer and class-specific pro-
posals for MIL training, which can discard background clut-
ters and confusion with similar objects.

Table 3 shows our detection performance in terms of
mean average precision on the PASCAL VOC 2010 and
2012 and ILSVRC 2013 datasets2. Using the VGGNet, our
method achieves better localization performance. We in-
clude the full results in the supplementary materials.

5.4. Ablation studies

To quantify the relative contribution of each step, we ex-
amine the performance of our approach using different con-
figurations.
• OM: Using mask-out strategy to mine top M=50 class-

specific object proposals.
• MIL: Using MIL to mine confident objects.
• FT: Using the mined object candidates to fine-tune the

detection network.
The last four rows of Table 1 show our CorLoc per-

formance on the PASCAL VOC 2007 trainval set. We
achieve average CorLoc of 31.8% by directly using top-
ranked class-specific object proposals. Using MIL for se-
lecting confident objects, we obtain 41.2% with around 10
points improvement. The result demonstrates that MIL it-
erations help to select better object proposals. The per-
formance boost comes from: (1) the mined object pro-
posals are less noisy and can discard background clutters,
and (2) the mined object proposals are class-specific and
can discard confusion with similar objects. Furthermore,
adding detection network fine-tuning, we obtain 49.8% per-
formance using the AlexNet and 52.4% using a deeper VG-
GNet [32]. Such network training further boosts the per-
formance by another 10 points. In detection adaptation, we
collect confident object proposals and use them to train all
the layers. This fine-tuning step helps turn image classifiers
to object detectors for modeling object appearance.

The last five rows of Table 2 show our detection AP per-
formance on the PASCAL VOC 2007 test set. We refer
Song et al. [36] as our MIL baseline. A straightforward
approach to train detector uses proposals selected by MIL.
However, the simple combination only gives marginal per-
formance improvement from 22.7% to 23.0% because the
selected proposals by MIL are too noisy for training object
detection network effectively without object mining. Using
the top-ranked object proposals based on the adapted classi-
fication network, we achieve significant improvement from
23.0% to 31.0%, highlighting the importance of progressive
adaptation. Using a deeper network VGGNet [32], we can
achieve a large improvement from 26.2% to 39.5%. In ad-

2The result of Cinbis et al. [4] is obtained on the VOC 2010 test set.
The result of Wang et al. [41] is obtained on the ILSVRC 2013 val set.



Table 1. Quantitative comparison in terms of correct localization (CorLoc) on the PASCAL VOC 2007 trainval set.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Avg.
Siva et al. [33] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2
Shi et al. [30] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
Cinbis et al. [4] 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
Bilen et al. [3] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
Wang et al. [41] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

OM 50.4 30 34.6 18.2 6.2 39.3 42.2 57.3 10.8 29.8 20.5 41.8 43.2 51.8 24.7 20.8 29.2 26.6 45.6 12.5 31.8
OM + MIL 64.3 54.3 42.7 22.7 34.4 58.1 74.3 36.2 24.3 50.4 11.0 29.2 50.5 66.1 11.3 42.9 39.6 18.3 54.0 39.8 41.2
OM + MIL + FT-AlexNet 77.3 62.6 53.3 41.4 28.7 58.6 76.2 61.1 24.5 59.6 18.0 49.9 56.8 71.4 20.9 44.5 59.4 22.3 60.9 48.8 49.8
OM + MIL + FT-VGGNet 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

Table 2. Quantitative comparison in terms of detection average precision (AP) on the PASCAL VOC 2007 test set.
Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Cinbis et al. [4] 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4
Song et al. [36] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7
Song et al. [37] 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6
Bilen et al. [2] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4
Bilen et al. [3] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7
Wang et al. [41] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

OM + MIL 37.2 35.7 25.8 13.8 12.7 36.2 42.4 22.3 14.3 24.2 9.4 13.1 27.9 38.9 3.7 18.7 20.1 16.3 36.1 18.4 23.4
OM + FT-AlexNet 30.4 22.4 15.0 3.5 2.8 26.6 27.3 46.8 0.8 10.8 13.1 34.7 35.8 38.7 12.6 8.4 8.8 12.8 33.6 4.6 19.5
MIL + FT-AlexNet 17.5 50.2 22.5 4.0 9.9 38.8 48.7 39.3 0.3 22.1 10.1 19.8 22.4 49.9 3.4 15.5 32.1 10.8 40.0 1.9 23.0
OM + MIL + FT-AlexNet 49.7 33.6 30.8 19.9 13 40.5 54.3 37.4 14.8 39.8 9.4 28.8 38.1 49.8 14.5 24.0 27.1 12.1 42.3 39.7 31.0
OM+ FT-VGGNet 30.4 25.3 11.1 6.3 1.5 31.3 29.4 49.1 1.0 10.6 12.6 42.0 38.7 36.7 12.8 10.8 10.3 10.3 34.1 5.0 20.5
MIL + FT-VGGNet 25.6 58.5 25.3 1.8 11.7 43.5 53.4 35.7 0.2 32.3 10.7 19.3 32.8 56.5 1.8 15.6 37.3 16.0 43.6 2.9 26.2
OM + MIL + FT-VGGNet 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

Table 3. Object detection performance (mAP) on the PASCAL
VOC 2010 and 2012 and ILSVRC 2013 datasets.

Methods VOC 2010 VOC 2012 ILSVRC 2013
Cinbis et al. [4] 18.5 - -
Wang et al. [41] - - 6.0
OM + MIL + FT-AlexNet 21.4 22.4 7.7
OM + MIL + FT-VGGNet 30.7 29.1 10.8

dition, we evaluate the performance using the best proposal
(M=1) mined by the mask-out strategy for detection adap-
tation. The OM+FT method achieves 19.5% mAP using
AlexNet and 20.5% using VGGNet. Without the MIL step,
the results are poor due to noisy training samples. These
experimental results validate the importance of the progres-
sive adaptation steps proposed in this work.

Table 4 shows results using different mask-out strategies.
Similar to the top 5 error evaluation for the ImageNet clas-
sification protocol, we compute the percentage of positive
images in which an object is correctly located by at least
one from top M proposals. When M=1, this metric reduces
to the commonly used CorLoc. These results show our con-
trastive score In-Out strategy outperforms Whole-Out. Only
using classification score of the region itself can also collect
good proposals because classification adaptation step trains
the network to be sensitive to object categories of target
datasets. As the classification network is fine-tuned using
the whole image, the mask-out image provides additional
discriminative power for ranking the object proposals. Con-
sidering the trade-off between recall and precision, we set
M=50 throughout the experiments.

Table 4. Different mask-out strategies in terms of average correct
localization from top M proposals.

Mask-out strategy M=1 M=10 M=50 M=100
In-Out 31.8 73.8 82.9 84.2

Whole-Out 29.6 64.9 76.0 78.5
In 32.7 71.0 79.9 81.8

5.5. Error analysis

In Figure 7, we apply the detector error analysis tool
from Hoiem et al. [18] to analyze errors of our detector.
Comparing the first and third columns, we achieve signifi-
cant improvement of localization performance by detection
adaptation. Fine-tuning the network for object-level detec-
tion helps learn discriminative appearance model for object
categories, particularly for animals and furniture classes.
Comparing the second and third columns, the importance of
class-specific proposal mining step is clear. We attribute the
performance boost to the classification adaptation that fine-
tunes the network from 1000-way single-label classification
(source) to 20-way multi-label classification task (target).

From the error analysis plots, the majority of errors
comes from inaccurate localization. We show a few sample
results in Figure 8. Our model often detects the correct cat-
egory of an object instance but fails to predict a sufficiently
tight bounding box, e.g., IoU ∈ [0.1, 0.5). For example,
we may detect a human face and a partial train and claim
to detect a person or a train. The error analysis suggests
that the learned model makes sensible errors. We believe
that we can further improve the performance of our model



Figure 6. Sample detection results. Green boxes indicate ground-truth instance annotation. Yellow boxes indicate correction detections
(with IoU ≥ 0.5). For all the testing results, we set threshold of detection as 0.8 and use NMS to remove duplicate detections.

Figure 7. Detector error analysis. The detections are categorized
into five types of correct detection (Cor), false positives due to
poor localization (Loc), confusion with similar objects (Sim), con-
fusion with other VOC objects (Oth), and confusion with back-
ground (BG). Each plot shows types of detection as top detections
increase. Line plots show recall as function of the number of ob-
jects by IoU ≥ 0.5 (solid) and IoU ≥ 0.1 (dash). The results of
“MIL+FT” and “OM+MIL+FT” are obtained using the VGGNet.

by incorporating techniques for addressing the inaccurate
localization issues [5, 45].

6. Conclusion
We present a progressive domain adaptation approach to

tackle the weakly supervised object localization problem.
In classification adaptation, we transfer the classifiers from
source to target domains using a multi-label loss function

Figure 8. Sample results of detection errors due to imprecise lo-
calization.

for training a multi-label classification network. In detec-
tion adaptation, we transfer adapted classifiers to object de-
tectors. We first use a mask-out strategy to generate class-
specific object proposals and apply MIL to mine confident
candidates. We then use the selected object proposals to
fine-tune all the layers for object detection. Experimental
results demonstrate that our algorithm significantly outper-
forms the state-of-the-art methods. We achieve 39.5% mAP
on VOC 2007, surpassing the second best approach by 8
points.
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