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Abstract

In recent years, several methods have been developed
to utilize hierarchical features learned from a deep convo-
lutional neural network (CNN) for visual tracking. How-
ever, as the features from a certain CNN layer character-
ize an object of interest from only one aspect or one level,
the performance of such trackers trained with features from
one layer (usually the last second layer) can be further im-
proved. In this paper, we propose a novel CNN based track-
ing framework, which takes full advantage of features from
different CNN layers and uses an adaptive Hedge method to
hedge several CNN trackers into a stronger one. Extensive
experiments on a benchmark dataset of 100 challenging im-
age sequences demonstrate the effectiveness of the proposed
algorithm compared with several state-of-the-art trackers.

1. Introduction
Visual tracking has attracted increasing interest in the

past decades due to its importance in numerous applica-
tions, such as intelligent video surveillance, vehicle navi-
gation, and human-computer interaction. Despite the sig-
nificant effort that has been made to develop algorithm-
s [20, 22, 14, 36, 9, 38, 32, 37, 39, 35] and benchmark
evaluations [34, 27] for visual tracking, it is still a chal-
lenging task owing to complicated interfering factors like
heavy illumination changes, shape deformation, partial and
full occlusion, large scale variations, in-plane and out-of-
plane rotations, and fast motion, to name a few.

Most existing tracking approaches focus on either de-
signing effective decision models [13, 12, 16, 40] or ex-
tracting effective features [6, 24, 41, 1]. Recently, inspired
by the success of deep convolutional neural networks (C-
NNs) in object recognition and detection [26, 15, 21, 11],
several CNN based trackers [30, 18, 9, 25] have been de-
veloped and demonstrated state-of-the-art results on a large
object tracking benchmark, compared to methods based on
hand-crafted features such as HOG [6], SIFT [24], and color

Figure 1. Tracking results of using CNN features from different
convolutional layers on a representative frame of four sequences
with diverse challenges. The best tracking results are obtained
using layers 12, 16, 10, and 10 on four sequences, respectively.

histogram [28, 1].

Despite achieving state-of-the-art performance, existing
CNN trackers still have some limitations. Most of these
methods only use the features from the last layers (e.g.
fully-connected layers) of CNNs to represent target objects.
Although features from deeper layers capture rich category-
level semantic information, which is useful for object clas-
sification, they are not the optimal representation for visual
tracking since spatial details captured by earlier layers are
also important for accurately localizing the targets as shown
in the last two cases in Figure 1. On the other hand, as the
features in the earlier layers are more generic rather than
discriminative as ones in the later layers, methods based on
features from earlier layers are likely to fail in challenging
scenarios, such as the first two cases shown in Figure 1. To
achieve better tracking performance, it is thus imperative to
combine features from different layers to best represent and
separate foreground objects from the background clutters.



In this paper, we propose a novel CNN based tracking
algorithm, which first builds a weak tracker from a convo-
lutional layer by applying a correlation filter on the layer
output, and then hedges all weak trackers into a stronger
one by using an online decision-theoretical Hedge algorith-
m. Specifically, we treat each weak tracker as an expert and
compute weights to all experts as their decision confidences.
The tracking result in current frame is the weighted decision
of all experts, which combines advantages of all considered
CNN layers. Since the tracked target moves a small off-
set between consecutive frames and undergoes appearance
variance gradually, the experts that perform well in previous
frames may still perform well in current frame with high
probability. By factoring in the historical performance of
experts to make decisions, we propose an improved Hedge
algorithm to update the weights of experts, which is more
suitable for real-world tracking tasks.

The contributions of this paper are summarized below:
• We propose a novel tracking algorithm that combines

weak CNN trackers from numerous convolutional lay-
ers into a stronger tracker.
• We develop an improved Hedge algorithm for visu-

al tracking by considering historical performance of
weak trackers.
• We carry out extensive experiments on a large-scale

benchmark dataset [34] with 100 challenging se-
quences to demonstrate the effectiveness of the pro-
posed algorithm with comparisons to the state-of-the-
art trackers.

2. Related Work
We give a brief review of tracking methods closely relat-

ed to this work. Comprehensive reviews on visual tracking
approaches can be found in [23, 27].

Correlation filters based trackers. Correlation filters are
introduced into visual tracking for its high computation-
al efficiency [4, 16, 17]. These methods approximate the
dense sampling scheme by generating a circulant matrix, of
which each row denotes a vectorized sample. As such, its
regression model can be computed in the Fourier domain,
which brings hundreds of times speed improvement in both
training and testing stages. Bolme et al. [4] develop the
Minimum Output Sum of Squared Error (MOSSE) method
to learn the filters, and use intensity features for object rep-
resentation. In [16], Henriques et al. propose a tracking
method based on correlation filters by introducing kernel
methods and employing ridge regression. Subsequently a
method that extends the input features from single channel
to multiple channels (e.g., HOG) is presented [17]. Danell-
jan et al. [7] propose an algorithm that searches over scale
space for correlation filters to handle large variation in ob-
ject size. However, all above mentioned works use only

one correlation filter, which limits the power of correlation
filtered trackers. In this work, we exploit the high computa-
tional efficiency of correlation filters to construct an ensem-
ble tracker where each is based on CNN features extracted
from one convolutional layer.

CNN based trackers. Hierarchical features learned from
convolutional neural networks have been shown to be effec-
tive for numerous vision tasks, e.g., classification and recog-
nition [21, 26, 15] in recent years. Numerous methods have
since been proposed to exploit CNN features [9, 30, 18] for
visual tracking. In [9], Fan et al. utilize a pre-trained deep
network for human tracking. Wang and Yeung [30] design
an autoencoder network to learn representative features for
generic objects. Hong et al. [18] construct a discrimina-
tive model with features from the first fully-connected layer
of R-CNN [11] and a generative model with saliency map
for visual tracking. While this method is effective for visual
tracking, the computational complexity is high. We note the
above mentioned methods do not exploit the features from
different layers adequately. As shown in Figure 1, features
from different layers are effective for different scenarios.
Based on these observations, we use an ensemble of multi-
ple CNN trackers where each one is trained with CNN fea-
tures from one layer. We regard each one as a weak expert
and hedge them adaptively for visual tracking.

Ensemble trackers. Ensemble approaches have been de-
veloped to exploit multiple experts for visual tracking. Nu-
merous ensemble tracking methods [2, 31, 12, 3] have been
developed based on hand-crafted features. In this paper, we
combine weak trackers based on features from different C-
NN layers. Existing ensemble methods [2, 12, 3] under the
boosting framework [10] incrementally build an ensemble,
which trains each new weak tracker to emphasize the train-
ing samples that previous trackers mis-classified. In [31],
Wang and Yeung use a conditional particle filter to infer the
target position and the reliability of each member tracker.
Different from these works, we consider visual tracking as
a decision-theoretic online learning task [5] based on mul-
tiple expert trackers. That is, in every round each expert
makes a decision and the final decision is determined by
weighted decision of all experts.

3. Algorithmic Overview
As shown in Figure 2, the proposed approach consists

of three steps: extracting CNN features, constructing weak
trackers, and hedging weak trackers. The pre-trained VGG-
Net [26] is used to extract feature maps of convolutional
layers from the interested image region, which represent the
tracked target at different resolutions and semantic levels.
Each feature map is then convoluted by correlation filters to
generate response maps, from which a weak tracker is con-
structed with moderate performance. All weak trackers are



Figure 2. Main steps of the proposed algorithm. The proposed algorithm consists of three components: 1) extracting CNN features from
different convolutional layers using the pre-trained VGG-Net (Section 4.1); 2) constructing weak trackers using correlation filters where
each one is trained with CNN features from one layer (Section 4.2); 3) hedging weak trackers into a stronger one using an improved Hedge
algorithm (Section 4.3).

finally hedged into a stronger tracker by the proposed adap-
tive Hedge algorithm for visual tracking, which exploits the
strength of all CNN layers for robust performance.

4. Proposed Algorithm
In this section, we first present the technical details of

the proposed algorithm and then describe the online update
scheme.

4.1. Deep CNN features

Numerous CNN models, such as AlexNet [21], R-
CNN [11], CaffeNet [19], and VGG-Net [26], have been
developed for large-scale image classification and objec-
t recognition tasks. The proposed method is based on the
VGG-Net, as it has a much deeper architecture (up to 19
weight layers) and hence can provide features from more
levels compared to most CNNs which usually have 5 or 7
layers. The VGG-Net is trained using 1.3 million images
of the ImageNet dataset and achieves the state-of-the-art re-
sults on classification challenges [26].

Different from classification tasks which only require the
extracted features to capture more category-level semantic
information, visual tracking also requires the extracted fea-
tures to have precise localization ability since a small drift
from the tracked target to its surrounding background caus-
es gradual degradation in tracking performance and eventu-
al failure. The deep VGG-Net facilitates features extracted
from different layers to describe target objects with greater

details. In other words, tracking methods using CNN fea-
tures from any layer alone is less effective (see Figure 1 for
example of tracking failures).

4.2. Weak CNN trackers

In this work, a module based on correlation filters on
CNN features extracted from one layer is considered as a
weak tracker. Correlation filters based trackers [4, 7, 17, 16]
exploit the circulant structure of training and testing sam-
ples to greatly accelerate the training and testing processes
with negligible precision loss. Let Xk ∈ RP×Q×D de-
notes the feature map extracted from the k-th convolutional
layer; Y ∈ RP×Q denotes a gaussian shape label matrix,
which is subject to a 2D Gaussian distribution with zero
mean and standard deviation proportional to the target size;
and X k = F(Xk), Y = F(Y ), where F(·) denotes dis-
crete Fourier transformation (DFT). The k-th filter can be
modeled in the Fourier domain by

Wk = arg min
W
‖Y − X k •W‖2F + λ‖W‖2F , (1)

where
X k •W =

∑D

d=1
X k∗,∗,d �W∗,∗,d, (2)

and the symbol � denotes element-wise product.
The optimization problem in (1) has a simple closed for-

m solution, which can be efficiently computed in the Fourier
domain by

Wk
∗,∗,d =

Y
X k • X k + λ

�X k∗,∗,d. (3)



Given the testing data T k from the output of the k-th layer,
we first transform it to the Fourier domain T k = F(T k),
and then the responses can be computed by

Sk = F−1(T k •Wk), (4)

where F−1 denotes the inverse of DFT.
The k-th weak tracker outputs the target position with

the largest response

(xk, yk) = arg max
x′,y′

Sk(x′, y′). (5)

4.3. Hedging CNN trackers

The standard parameter-free Hedge algorithm [5] is pro-
posed to tackle the decision-theoretic online learning prob-
lem in a multi-expert multi-round setting. Given the initial
confidence weights on all experts, in the current round, a
final decision is made based on weighted decisions of all
experts. The weights of experts are then updated to reflect
each expert’s decision loss. In the visual tracking scenario,
it is natural to treat each CNN tracker as an expert and then
predict the target position in the t-th frame by

(x∗t , y
∗
t ) =

∑K

k=1
wkt · (xkt , ykt ), (6)

where wkt is the weight of expert k and
∑K
k=1 w

k
t = 1.

Once the ultimate target position is predicted, each expert
will incur a loss.

Let
`kt = max(Skt )− Skt (x∗t , y

∗
t ) (7)

be the loss suffered by expert k at frame t, where max(·)
operates on a matrix and returns the largest element of the
matrix and S(x, y) denotes the element at position (x, y)
of matrix S. The standard parameter-free Hedge algorithm
generates a new weight distribution on all experts by intro-
ducing a regret measure defined by

rkt = ¯̀k
t − `kt , (8)

where the weighted average loss among all experts is com-
puted as ¯̀k

t =
∑K
k=1 w

k
t `
k
t .

By optimizing the cumulative regret

Rkt =
∑t

τ=1
rkτ , (9)

to any expert k, for any round of t, the new weights
w1
t+1, · · · , wKt+1 are generated.
Although the standard parameter-free Hedge algorithm

performs well in the simulated one-dimension tracking ex-
periment, where the target stays stationary or moves in a
constant velocity [5], it is less effective for the real-world
tracking tasks since it does not consider two crucial factors:
(i) The target appearance usually changes at irregular pace

(sometimes gradually and sometimes rapidly). This means
the proportion of the historic regret Rkt−1 should vary with
time t to better reflect the current state for visual tracking.
(ii) Since each expert captures a different aspect of the tar-
get, it is not effective to fix the ratio of the cumulative re-
gret over all experts. To address these issues, we propose an
adaptive Hedge algorithm, which considers the difference
of historic regrets over time t and expert k simultaneously.

As the object appearance usually does not change signif-
icantly at least in a short time period, we model the loss of
each expert `k during time period ∆t via a Gaussian distri-
bution with mean µkt and standard variance σkt

µkt =
1

∆t

t∑
τ=t−∆t+1

`kτ , (10)

σkt =

√√√√ 1

∆t− 1

t∑
τ=t−∆t+1

(`kτ − µkt )2. (11)

We then measure the stability of expert k at time t using

skt =
|`kt − µkt |

σkt
. (12)

A smaller skt indicates that this expert tends to be more sta-
ble than the one with a larger skt , and therefore we prefer a
larger proportion on its current regret. In contrast, a larger
skt means this expert varies greatly, and therefore we com-
pute its cumulative regret mainly depending on its historic
information. Based on this principle, we obtain the follow-
ing adaptive cumulative regret

Rkt = (1− αkt )Rkt−1 + αkt r
k
t , (13)

αkt = min (g, exp (−γskt )), (14)

where γ is a scale factor and g defines a maximum ratio on
current regret to avoid that no historic information is consid-
ered. We validate the effectiveness of the proposed adaptive
Hedge compared to the original one in Section 5.4.

Since our adaptive Hedge algorithm adheres to the
framework of the standard one, the solution to minimize the
cumulative regret (13) has the same form,

wkt+1 ∝
[Rkt ]+
ct

exp
([Rkt ]+)2

2ct
, (15)

where [Rkt ]+ denotes max {0, Rkt }, and ct servers as a s-
cale parameter like in [5], which is determined by solving
1
K

∑K
k=1 exp(

([Rk
t ]+)2

2ct
) = e.

4.4. Model update

Since the feature maps of VGG-Net have up to 512 chan-
nels, retraining of ridge regression models with newly col-
lected samples is impractical, especially when the amount



Algorithm 1: Hedged deep tracking
1 Input: initial weights w1

1, · · · , wK
1 ; target position (x1, y1)

in the 1st frame; VGG-Net19; Rk
1 = 0, `k1 = 0;

2 Crop interested image region;
3 Initiate K weak experts using (3);
4 for t = 2, 3, · · · do
5 Exploit the VGG-Net19 to obtain K representations;
6 Compute correlation filter responses using (4);
7 Find target position predicted by each expert using (5);
8 if t 6= 2 then
9 Compute ultimate location using (6);

10 else
11 Set ultimate location with ground truth;
12 end
13 Compute experts’ losses using (7);
14 Update stability models using (10) and (11);
15 Measure each expert’s stability using (12);
16 Compute adaptive proportion of historic regret for each

expert using (14);
17 Update cumulative regret of each expert using (13);
18 Update weights for each expert using (15) and

normalize them to have a sum of 1;
19 end

of the training data becomes extremely large over time. In
practice, we adopt an incremental update manner like that
in [7], which only uses new samples X̄ k in the current frame
to partially update the existed models,

Zk∗,∗,d =
Y

X̄ k • X̄ k + λ
� X̄ k∗,∗,d, (16)

Wk
t = (1− η)Wk

t−1 + ηZkt . (17)

Algorithm 1 summarizes the main steps of the proposed
approach for visual tracking.

5. Experimental Results
In this section, we present extensive experimental eval-

uations on the proposed hedged deep tracker (HDT). We
first discuss the implementation details and the evaluation
protocol. We present two sets of experimental evaluations:
one compared with several state-of-the-art trackers and the
other one compared with several baseline trackers includ-
ing individual weak trackers and the hedged strong tracker
using the standard parameter-free Hedge method [5].

5.1. Implementation details

For feature extraction, we crop an image patch with 2.2
times the size of the target bounding box and then resize
it to 224×224 pixels for the VGG-Net with 19 layers (16
convolutional layers and 3 fully-connected layers). After
the forward propagation, we use the outputs from six con-
volutional layers (10th∼12th, 14th∼16th) as six types of

Figure 3. Evaluation results on 100 sequences.

Figure 4. Evaluation results on 50 sequences.

features and all feature maps are resized to a same size.
This setting simultaneously takes the feature’s diversity and
the computational cost into consideration. Since VGG-Net
adopts very small convolutional filters (3×3 pixel size), the
feature maps from shallower layers (i.e., less than 10) have
limited representation strength (see Section 5.4). We imple-
ment our algorithm in MATLAB, and utilize the MatCon-
vNet toolbox [29] in this work. Our implementation runs at
10 frames per second on a computer with an Intel I7-4790K
4.00 GHz CPU, 16GB RAM, and a GeForce GTX780Ti G-
PU card which is only used to compute the CNN features.
We will make MATLAB code available to the public.

All the following experiments are carried out with the



Figure 5. Attribute-based evaluation on 100 sequences. We also put the overall performance here (the last one) for comparison convenience
facing a single challenge and their combination.

fixed parameters: the tradeoff parameter in (1) is set to λ =
10−4; the time window in (10) is set to ∆t = 5; the truncate
threshold in (14) is set to g = 0.97; the learning rate in (17)
is set to η = 0.01; and the initial weights of the six weak
experts are empirically set to (1, 0.2, 0.2, 0.02, 0.03, 0.01).

5.2. Evaluation protocol

To fully assess our method, we use one-pass evaluation
(OPE), temporal robustness evaluation (TRE), and spatial
robustness evaluation (SRE) metrics on a large object track-
ing benchmark dataset [34] which contains 100 image se-
quences. These sequences involve 11 tracking challenging
factors, such as illumination changes, camera shake, scale
variation, pose variation, partial or full occlusion, and rota-
tion, to name a few. Experimental results are reported using
overlap success plots and center location error plots, which
rank trackers in terms of area under the curve and distance
precision at threshold 20 pixels, respectively. For com-
pleteness, we also report the results on the benchmark [33],
which is a subset of [34]. More results and videos are pre-
sented in the supplementary material.

5.3. Comparison with state-of-the-art trackers

We compare our algorithm with 8 recent state-of-the-
art trackers: DLT [30], CNN-SVM [18], KCF [17],
MEEM [36], Struck [14], CXT [8], TLD [20], and
SCM [41]. The first two trackers are based on deep learn-
ing; KCF is one of the best correlation filters based trackers;
and the remaining trackers rank top 5 in benchmark [34].

Quantitative evaluation. Figure 3 shows the OPE, TRE,
and SRE evaluation results on 100 image sequences. We
note that the results from CNN-SVM are not included as
the source code is not available for fair comparisons. On the
other hand, we also provide a comparison on 50 sequences
in Figure 4 where only OPE results of CNN-SVM are re-
ported in [18]. Figure 3 and Figure 4 show that our HDT
performs favorably against the state-of-the-art methods on
all the three evaluation metrics. We note that HDT performs
better in terms of precision metric (than overlap), which in-
dicates that HDT can track target objects well but give a less
accurate bounding box since, for computational efficiency,
HDT does not search over scales to determine the best one.



Figure 6. Bounding box comparison on several challenging image sequences (from left to right and top to down are bolt2, coke, diving,
dragonBaby, football, human2, human9, ironman, shaking, and trellis, respectively).

Figure 7. Tracking results on the 12-th frame of the skiing sequence. We illustrating how the weights are assigned to the CNN trackers by
the proposed adaptive and the standard parameter-free Hedge methods.

Attribute-based evaluation. To thoroughly evaluate the
robustness of the proposed HDT in various scenes, we sum-
marize the performance based on 11 different challenging
factors on 100 image sequences. As illustrated in Figure 5,
our algorithm performs well against the other methods in al-
most all tracking attributes. In particular, HDT outperforms
other methods by a huge margin in handling low resolution,
which can be attributed to CNN features with rich spatial

details from earlier layers and features with semantics from
later layers. In contrast, DLT only takes advantage of deep-
er features, and hence its performance is suffered. We al-
so observed that HDT does not perform well in handling
out-of-view challenge, which can be explained as that HDT
does not search for the target in a whole frame to reduce
computational load, and therefore HDT may lose the target
which may reappears somewhere else.



Figure 8. Comparison among the proposed algorithm and several
baselines: all its constituent CNN trackers and the one combined
by standard parameter-free Hedge. For completeness, we also in-
clude two state-of-the-art methods, CNN-SVM and MEEM, in the
plots.

Qualitative evaluation. We present some tracking results
from the evaluated methods in Figure 6, where challeng-
ing frames among 100 image sequences are selected. For
presentation clarity, the results by the top six performing
methods are shown. Overall, our tracker can localize the
targets more precisely. Other methods, however, almost
can not handle these complicated scenarios. The MEEM
tracker performs well in presence of illumination variation-
s, occlusion, and in-plane-rotation (shaking, coke, and trel-
lis), which can be explained as that MEEM simultaneously
maintains several target snapshots at different times. How-
ever, it tends to fail when similar objects appear, such as
bolt2 and football, since the features are not discriminative
enough. When the background is quite cluttered, like se-
quences diving and ironman, most of the compared meth-
ods are apt to lose the target. Although DLT adopts a deep
autoencoder network, it generally falls in failure on these
challenging sequences. This mainly attributes to that its
deep network has no shared weights and it is trained with
small amounts of data. Since our HDT hedges several weak
CNN trackers that perform well in different environments, it
can overcome these challenges much better than other track-
ers. In addition, we note that in the diving, human9, and
trellis sequences, even though HDT tracks targets accurate-
ly, some of its bounding boxes are not tight since it does not
search for the best scale as previously discussed.

5.4. Comparison with baseline trackers

To evaluate the effectiveness of the proposed adaptive
Hedge method, we compare the HDT with its constituen-
t CNN trackers denoted by VGG-10, VGG-11, VGG-12,
VGG-14, VGG-15, and VGG-16, as well as the hedged C-
NN tracker using the standard parameter-free Hedge [5], de-
noted by HDT-SH, on the benchmark [33].

Figure 8 shows the tracking results. When the CNN
features from each convolutional layer are used solely for
tracking, the performance generally increases as the layer
depth is increased. But even the best individual CNN track-

er VGG-16 still does not perform as well as CNN-SVM.
This is because CNN-SVM takes advantages of both a R-
CNN feature based discriminative model (feature of fc6
is used) and a back-project saliency map based generative
model. Note that the performance of VGG-10 is far be-
hind that of MEEM which is based on hand-crafted features.
This explains why we train weak trackers only using convo-
lutional features from layers no shallower than 10th. When
combining these six individual CNN trackers using the s-
tandard Hedge, the tracking performance is worse than the
best performed individual tracker. In contrast, the proposed
HDT achieves the best results, which demonstrates the ef-
fectiveness of the adaptive Hedge method.

To further explore the difference between the proposed
adaptive and the standard parameter-free Hedge methods,
we present a comparison of them on a typical frame at run-
ning time in Figure 7. Figure 7 shows that the proposed
adaptive Hedge method allocates more desirable weights to
weak CNN trackers than the standard one. The reason main-
ly lies in the computation of the accumulative regretR. The
standard Hedge scheme uses a fixed proportion of histori-
cal information Rt−1 for all weak trackers at any time t. In
contrast, we adaptively compute the proportion of historical
information Rt−1, i.e. we introduce a dynamic parameter α
in (13) and model the α with a Gaussian distribution in a
time window ∆t. As demonstrated in Figure 8, the hedged
tracker using the adaptive scheme performs better.

6. Conclusion

In this paper, we propose a novel CNN based tracking
framework which uses an adaptive online decision learning
algorithm to hedge weak trackers, obtained using correla-
tion filters on CNN feature maps, into a stronger one to
achieve better results. To the best of our knowledge, the
proposed algorithm is the first to adaptively hedge features
from different CNN layers in an online manner for visual
tracking. Extensive experimental evaluations on a large-
scale benchmark dataset demonstrate the effectiveness of
the proposed hedged deep tracking algorithm.
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