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Abstract

We develop a deep learning algorithm for contour de-
tection with a fully convolutional encoder-decoder network.
Different from previous low-level edge detection, our al-
gorithm focuses on detecting higher-level object contours.
Our network is trained end-to-end on PASCAL VOC with
refined ground truth from inaccurate polygon annotations,
yielding much higher precision in object contour detection
than previous methods. We find that the learned model gen-
eralizes well to unseen object classes from the same super-
categories on MS COCO and can match state-of-the-art
edge detection on BSDS500 with fine-tuning. By combining
with the multiscale combinatorial grouping algorithm, our
method can generate high-quality segmented object propos-
als, which significantly advance the state-of-the-art on PAS-
CAL VOC (improving average recall from 0.62 to 0.67) with
a relatively small amount of candidates (∼1660 per image).

1. Introduction

Object contour detection is fundamental for numerous
vision tasks. For example, it can be used for image segmen-
tation [44, 3], for object detection [16, 19], and for occlu-
sion and depth reasoning [22, 2]. Given its axiomatic im-
portance, however, we find that object contour detection is
relatively under-explored in the literature [49]. At the same
time, many works have been devoted to edge detection that
responds to both foreground objects and background bound-
aries (Figure 1 (b)). In this paper, we address “object-only”
contour detection that is expected to suppress background
boundaries (Figure 1(c)).

Edge detection has a long history. Early research fo-
cused on designing simple filters to detect pixels with high-
est gradients in their local neighborhood, e.g. Sobel [17]
and Canny [9]. The main problem with filter based methods

(a) Image (b) [13] Ours

Figure 1. Object contour detection. Given input images (a), our
model can effectively learn to detect contours of foreground ob-
jects (c) in contrast to traditional edge detection (b).

is that they only look at the color or brightness differences
between adjacent pixels but cannot tell the texture differ-
ences in a larger receptive field. With the advance of texture
descriptors [37], Martin et al. [39] combined color, bright-
ness and texture gradients in their probabilistic boundary
detector. Arbelaez et al. [3] further improved upon this
by computing local cues from multiscale and spectral clus-
tering, known as gPb, which yields state-of-the-art accu-
racy. However, the globalization step of gPb significantly
increases the computational load. Lim and Dollar [32, 13]
analyzed the clustering structure of local contour maps and
developed efficient supervised learning algorithms for fast
edge detection [13]. These efforts lift edge detection to a
higher abstract level, but still fall below human perception
due to their lack of object-level knowledge.

Recently deep convolutional networks [31] have demon-
strated remarkable ability of learning high-level represen-
tations for object recognition [19, 11]. These learned fea-
tures have been adopted to detect natural image edges [27,
6, 46, 51] and yield a new state-of-the-art performance [51].
All these methods require training on ground truth contour
annotations. However, since it is very challenging to col-
lect high-quality contour annotations, the available datasets
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for training contour detectors are actually very limited and
in small scale. For example, the standard benchmarks,
Berkeley segmentation (BSDS500) [38] and NYU depth v2
(NYUDv2) [47] datasets only include 200 and 381 training
images, respectively. Therefore, the representation power
of deep convolutional networks has not been entirely har-
nessed for contour detection. In this paper, we scale up
the training set of deep learning based contour detection to
more than 10k images on PASCAL VOC [15]. To address
the quality issue of ground truth contour annotations, we
develop a method based on dense CRF [28] to refine the
object segmentation masks from polygons.

Given image-contour pairs, we formulate object contour
detection as an image labeling problem. Inspired by the
success of fully convolutional networks [36] and deconvolu-
tional networks [40] on semantic segmentation, we develop
a fully convolutional encoder-decoder network (CEDN).
Being fully convolutional, our CEDN network can operate
on arbitrary image size and the encoder-decoder network
emphasizes its asymmetric structure that differs from de-
convolutional network [40]. We initialize our encoder with
VGG-16 net [48] (up to the “fc6” layer) and to achieve
dense prediction of image size our decoder is constructed
by alternating unpooling and convolution layers where un-
pooling layers re-use the switches from max-pooling layers
of encoder to upscale the feature maps. During training,
we fix the encoder parameters (VGG-16) and only optimize
decoder parameters. This allows the encoder to maintain its
generalization ability so that the learned decoder network
can be easily combined with other tasks, such as bounding
box regression or semantic segmentation.

We evaluate the trained network on unseen object cat-
egories from BSDS500 and MS COCO datasets [33], and
find the network generalizes well to objects in similar
“super-categories” to those in the training set, e.g. it gener-
alizes to objects like “bear” in the “animal” super-category
since “dog” and “cat” are in the training set. We also show
the trained network can be easily adapted to detect natu-
ral image edges through a few iterations of fine-tuning and
yields comparable results with the state-of-the-art [51].

An immediate application of contour detection is gener-
ating object proposals. Previous literature has investigated
various methods of generating bounding box or segmented
object proposals by scoring edge features [53, 12] and com-
binatorial grouping [50, 10, 4] and etc. In this paper, we use
a multiscale combinatorial grouping (MCG) algorithm [4]
to generate segmented object proposals from our detected
contour maps. As a result, our method significantly im-
proves the quality of segmented object proposals on the
PASCAL VOC 2012 validation set, achieving 0.67 aver-
age recall from overlap 0.5 to 1.0 with only about 1660
candidates per image, compared to the 0.62 average re-
call by original MCG algorithm with near 5140 candidates

per image. We also evaluate object proposals on the MS
COCO dataset with 80 object classes and analyze the av-
erage recalls from different object classes and their super-
categories. Our key contributions are summarized below:

• We develop a simple yet effective fully convolutional
encoder-decoder network for object contour detection
and the trained model generalizes well to unseen ob-
ject classes from the same super-categories, yielding
significantly higher precision than previous methods.

• We show we can fine tune our network for edge detec-
tion and match the state-of-the-art in terms of precision
and recall.

• We develop a method to generate accurate object con-
tours from imperfect polygon based segmentation an-
notations, which makes training easier.

• Our method significantly improves the state-of-the-art
results on segmented object proposals by integrating
with combinatorial grouping [4].

2. Related Work
Semantic contour detection. Hariharan et al. [20] study
the problem of detecting semantic boundaries between
different object classes without considering the occlusion
boundaries of two adjacent object instances from the same
class, e.g. a mom hugging her daughter. Although their
method can be extended to detect object instance contours,
it might encounter challenges of generalizing to unseen ob-
ject classes due to the use of object detector output. Berta-
sius et al. [7] improve semantic contour detection with con-
volutional features and shows its application to semantic
segmentation. Our object contour detector can be poten-
tially used to improve a more challenging and practical
problem of instance-level semantic segmentation [21].

Occlusion boundary detection. Hoiem et al. [22] study
the problem of recovering occlusion boundaries from a sin-
gle image. It is a very challenging ill-posed problem due
to the partial observability while projecting 3D scenes onto
2D image planes. They formulate a CRF model to inte-
grate various cues: color, position, edges, surface orienta-
tion and depth estimates. We believe our instance-level ob-
ject contours will provide another strong cue for addressing
this problem that is worth investigating in the future.

Object proposal generation. There is a large body of
works on generating bounding box or segmented object pro-
posals. Hosang et al. [23] and Pont-Tuset et al. [42] present
nice overviews and analyses about the state-of-the-art algo-
rithms. Bounding box proposal generation [50, 53, 12, 1] is
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Figure 2. Architecture of the proposed fully convolutional encoder-decoder network.

motivated by efficient object detection. One of their draw-
backs is that bounding boxes usually cannot provide accu-
rate object localization. More related to our work is gener-
ating segmented object proposals [4, 10, 14, 24, 26, 29, 43].
At the core of segmented object proposal algorithms is con-
tour detection and superpixel segmentation. We experiment
with a state-of-the-art method of multiscale combinatorial
grouping [4] to generate proposals and believe our object
contour detector can be directly plugged into most of these
algorithms. In addition, Pinheiro et al. [41] propose a net-
work that learns to generate proposals directly from the test
image without the grouping stage.

3. Object Contour Detection
In this section, we introduce the proposed fully convo-

lutional encoder-decoder network for object contour detec-
tion.

3.1. Fully Convolutional Encoder-Decoder Network

We formulate contour detection as a binary image la-
beling problem where “1” and “0” indicates “contour” and
“non-contour”, respectively. Image labeling is a task that re-
quires both high-level knowledge and low-level cues. Given
the success of deep convolutional networks [31] for learn-
ing rich feature hierarchies, image labeling has been greatly
advanced, especially on the task of semantic segmenta-
tion [11, 36, 34, 52, 40, 35]. Among those end-to-end
methods, fully convolutional networks [36] scale well up
to the image size but cannot produce very accurate label-
ing boundaries; unpooling layers help deconvolutional net-
works [40] to generate better label localization but their
symmetric structure introduces a heavy decoder network
which is difficult to train with limited samples.

We borrow the ideas of full convolution and unpooling
from above two works and develop a fully convolutional
encoder-decoder network for object contour detection. The
network architecture is demonstrated in Figure 2. We use
the layers up to “fc6” from VGG-16 net [48] as our encoder.
Since we convert the “fc6” to be convolutional, so we name
it “conv6” in our decoder. Due to the asymmetric nature of
image labeling problems (image input and mask output), we
break the symmetric structure of deconvolutional networks

and introduce a light-weighted decoder. The first layer of
decoder “deconv6” is designed for dimension reduction that
projects 4096-d “conv6” to 512-d with 1×1 kernel so that
we can re-use the pooling switches from “conv5” to upscale
the feature maps by twice in the following “deconv5” layer.
The number of channels of every decoder layer is properly
designed to allow unpooling from its corresponding max-
pooling layer. All the decoder convolution layers except
“deconv6” use 5×5 kernels. All the decoder convolution
layers except the one next to the output label are followed
by relu activation function. We also add a dropout layer
after each relu layer in the decoder. A complete decoder
network setup is listed in Table 1 and the loss function is
simply the pixel-wise logistic loss.

Table 1. Decoder network setup.
name deconv6 deconv5 deconv4
setup conv unpool-conv unpool-conv
kernel 1×1×512 5×5×512 5×5×256

acti relu relu relu
name deconv3 deconv2 deconv1 pred
setup unpool-conv unpool-conv unpool-conv conv
kernel 5×5×128 5×5×64 5×5×32 5×5×1

activation relu relu relu sigmoid

3.2. Contour Ground Truth Refinement

Drawing detailed and accurate contours of objects is a
challenging task for human beings. This is why many large
scale segmentation datasets [45, 15, 33] provide contour an-
notations with polygons as they are less expensive to col-
lect at scale. However, because of unpredictable behaviors
of human annotators and limitations of polygon representa-
tion, the annotated contours usually do not align well with
the true image boundaries and thus cannot be directly used
as ground truth for training. Among all, the PASCAL VOC
dataset is a widely-accepted benchmark with high-quality
annotation for object segmentation. VOC 2012 release in-
cludes 11540 images from 20 classes covering a majority of
common objects from categories such as “person”, “vehi-
cle”, “animal” and “household”, where 1464 and 1449 im-
ages are annotated with object instance contours for train-
ing and validation. Hariharan et al. [20] further contribute
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Figure 3. Contour refinement. The polygon based annotations (a)
cannot be directly used for training due to its inaccurate boundaries
(thin white area reflects unlabeled pixels between objects). We
align them to image boundaries by re-labeling the uncertain areas
with dense CRF (d), compared to Graph Cut (c).

more than 10000 high-quality annotations to the remaining
images. Together there are 10582 images for training and
1449 images for validation (the exact 2012 validation set).
We choose this dataset for training our object contour detec-
tor with the proposed fully convolutional encoder-decoder
network.

The original PASCAL VOC annotations leave a thin un-
labeled (or uncertain) area between occluded objects (Fig-
ure 3(b)). To find the high-fidelity contour ground truth for
training, we need to align the annotated contours with the
true image boundaries. We consider contour alignment as
a multi-class labeling problem and introduce a dense CRF
model [28] where every instance (or background) is as-
signed with one unique label. The dense CRF optimization
then fills the uncertain area with neighboring instance labels
so that we obtain refined contours at the labeling boundaries
(Figure 3(d)). We also experimented with the Graph Cut
method [8] but find it usually produces jaggy contours due
to its shortcutting bias (Figure 3(c)).

3.3. Training

We train the network using Caffe [25]. For each training
image, we randomly crop four 224×224×3 patches and to-
gether with their mirrored ones compose a 224×224×3×8
minibatch. The ground truth contour mask is processed in
the same way. We initialize the encoder with pre-trained
VGG-16 net and the decoder with random values. Dur-
ing training, we fix the encoder parameters and only op-
timize the decoder parameters. This allows our model to
be easily integrated with bounding box regression [18] and
other decoders such as semantic segmentation [40] for joint
training. As the “contour” and “non-contour” pixels are ex-
tremely imbalanced in each minibatch, the penalty for being

“contour” is set to be 10 times the penalty for being “non-
contour”. We use the Adam method [5] to optimize the net-
work parameters and find it is more efficient than standard
stochastic gradient descent. We set the learning rate to 10−4

and train the network with 30 epochs with all the training
images being processed each epoch. Note that we fix the
training patch to 224×224 for memory efficiency and the
learned parameters can be used on images of arbitrary size
because of its fully convolutional nature. Our CEDN net-
work can be trained easily and efficiently in a single stage
without batch-normalization due to the much smaller “de-
conv6” layer, which only contains 4096×1×1×512 param-
eters in comparison with 4096×7×7×512 parameters of
“deconv-fc6” layer of DeconvNet [40].

4. Results

In this section, we evaluate our method on contour detec-
tion and proposal generation using three datasets: PASCAL
VOC 2012, BSDS500 and MS COCO. We will explain the
details of generating object proposals using our method af-
ter the contour detection evaluation. More evaluation results
are in the supplementary materials.

4.1. Contour Detection

Given trained models, all the test images are fed-forward
through our CEDN network in their original sizes to pro-
duce contour detection maps. The detection accuracies
are evaluated by precision-recall curves and F-measure (F).
Note that a standard non-maximum suppression is used to
clean up the predicted contour maps (thinning the contours)
before evaluation.

PASCAL val2012. We present quantitative results on
the PASCAL VOC 2012 validation set, shortly “PAS-
CAL val2012”, with comparisons to three baselines, struc-
tured edge detection (SE) [13], singlescale combinatorial
grouping (SCG) and multiscale combinatorial grouping
(MCG) [4]. We also compare with the latest holistically-
nested edge detection (HED) algorithm [51]. Note that
the HED model was originally trained on the BSDS
dataset [38]. We refer the results of applying the pretrained
HED model to PASCAL val2012 as “HED-pretrain”. To
have a fair comparison, we further re-trained the HED
model on PASCAL VOC using the same training data as
our model with 30000 iterations. The contour prediction
precision-recall curves from our CEDN model, baselines,
HED-pretrain and HED are illustrated in Figure 5. It can
be seen that the F-score of HED is improved (from 0.42 to
0.44) by training on PASCAL VOC but still significantly
lower than CEDN (0.57). Note that we use the originally
annotated contours instead of our refined ones as ground
truth for unbiased evaluation. Accordingly we consider the
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Figure 4. Example results on PASCAL VOC val2012. In each row from left to right we present (a) input image, (b) ground truth annotation,
(c) edge detection [13], (d) our object contour detection and (e) our best object proposals.
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Figure 5. PR curve for contour detection on PASCAL val2012.

refined contours as the upper bound since our network is
learned from them. Its precision-recall value is referred as
“GT-DenseCRF” with a green spot in Figure 5. Compared
to the baselines, our method (CEDN) yields very high pre-
cisions, which means it generates visually cleaner contour
maps with background clutters well suppressed (the third
column in Figure 4). Note that the occlusion boundaries be-
tween two instances from the same class are also well recov-
ered by our method (the second example in Figure 4). We

also note that there is still a big performance gap between
our current method (F=0.57) and the upper bound (F=0.74),
which requires further research for improvement.

BSDS500 with fine-tuning. BSDS500 [38] is a standard
benchmark for contour detection. Different from our object-
centric goal, this dataset is designed for evaluating natural
edge detection that includes not only object contours but
also object interior boundaries and background boundaries
(examples in Figure 6(b)). It includes 500 natural images
with carefully annotated boundaries collected from multi-
ple users. The dataset is divided into three parts: 200 for
training, 100 for validation and the rest 200 for test. We
first examine how well our CEDN model trained on PAS-
CAL VOC can generalize to unseen object categories in
this dataset. Interestingly, as shown in the Figure 6(c),
most of wild animal contours, e.g. elephants and fish are
accurately detected and meanwhile the background bound-
aries, e.g. building and mountains are clearly suppressed.
We further fine-tune our CEDN model on the 200 training
images from BSDS500 with a small learning rate (10−5)
for 100 epochs. As a result, the boundaries suppressed
by pretrained CEDN model (“CEDN-pretrain”) re-surface
from the scenes. Quantitatively, we evaluate both the pre-
trained and fine-tuned models on the test set in compar-
isons with previous methods. Figure 7 shows that 1) the
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Figure 6. Example results on BSDS500 test set. In each row from
left to right we present (a) input image, (b) ground truth contour,
(c) contour detection with pretrained CEDN and (d) contour de-
tection with fine-tuned CEDN.
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Figure 7. PR curve for contour detection on the BSDS500 set set.

pretrained CEDN model yields a high precision but a low
recall due to its object-selective nature and 2) the fine-tuned
CEDN model achieves comparable performance (F=0.79)
with the state-of-the-art method (HED) [51]. Note that our
model is not deliberately designed for natural edge detec-
tion on BSDS500, and we believe that the techniques used
in HED [51] such as multiscale fusion, carefully designed
upsampling layers and data augmentation could further im-
prove the performance of our model.

4.2. Object Proposal Generation

Object proposals are important mid-level representations
in computer vision. Most of existing methods use bound-
ary detection as cues for proposal generation. Thus the im-
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Figure 8. Average best overlap (ABO) and average recall (AR) on
PASCAL val2012.

provements on contour detection will immediately boost the
performance of object proposals. We choose the MCG algo-
rithm to generate segmented object proposals from our de-
tected contours. The MCG algorithm is based on low-level
edge detectors, e.g. gPb and SE. It first computes ultramet-
ric contour maps from multiscale edge maps and then aligns
them into a single hierarchical segmentation. To obtain ob-
ject proposals, a multi-objective optimization is designed to
reduce the redundancy of combinatorial grouping of adja-
cent regions. The reduced set of grouping candidates are
then ranked as the final segmented object proposals. If built
on singlescale edge maps, the algorithm is referred as sin-
glescale combinatorial grouping (SCG). Based on the pro-
cedure above, we simply replace the low-level edge detec-
tor with our CEDN contour detector to generate proposals.
The multiscale and singlescale versions are referred to as
“CEDN-MCG” and “CEDN-SCG”, respectively.

We evaluate the quality of object proposals by two mea-
sures: Average Recall (AR) and Average Best Overlap
(ABO). Both measures are based on the overlap (Jaccard
index or Intersection-over-Union) between a proposal and
a ground truth mask. AR is measured by 1) counting the
percentage of objects with their best Jaccard above a cer-
tain threshold T and then 2) averaging them within a range
of thresholds T ∈ [0.5, 1.0]. It is established in [23, 42]
to benchmark the quality of bounding box and segmented
object proposals. ABO is measured by calculating the best
proposal’s Jaccard for every ground truth object and then
2) averaging them over all the objects. We compare with
state-of-the-art algorithms: MCG, SCG, Category Indepen-
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dent object proposals (CI) [14], Constraint Parametric Min
Cuts (CPMC) [10], Global and Local Search (GLS) [43],
Geodesic Object Proposals (GOP) [29], Learning to Pro-
pose Objects (LPO) [30], Recycling Inference in Graph
Cuts (RIGOR) [24], Selective Search (SeSe) [50] and Shape
Sharing (ShSh) [26]. Note that these abbreviated names are
inherited from [4].

PASCAL val2012. We feed the HED edge maps into
MCG for generating proposals and compare with others.
We refer the results from the BSDS-trained HED model
as HEDB-MCG and the ones from the PASCAL-trained
HED model as HED-MCG. Figure 8 shows that CEDN-
MCG achieves 0.67 AR and 0.83 ABO with ∼1660 pro-
posals per image, which improves the original MCG by 5%
in AR and by 3% in ABO with a third as many proposals. At
1000 proposals, CEDN-MCG outperforms the second best
HEDB-MCG by 8% in AR and by 2.5% in ABO, respec-
tively. It takes 0.1 second to compute the CEDN contour
map for a PASCAL image on a high-end GPU and 18 sec-
onds to generate proposals with MCG on a standard CPU.
We notice that the CEDN-SCG achieves similar accuracies
with CEDN-MCG, but it only takes less than 3 seconds to
run SCG. We also plot the per-class ARs in Figure 9 and
find that CEDN-MCG and CEDN-SCG improves MCG and
SCG for all of the 20 classes. Notably, the bicycle class has
the worst AR and we guess it is likely because of its incom-
plete annotations. Some examples of object proposals are
demonstrated in Figure 4(d).

MS COCO val2014. We present results in the MS COCO
2014 validation set, shortly “COCO val2014” that in-
cludes 40504 images annotated by polygons from 80 object
classes. This dataset is more challenging due to its large
variations of object categories, contexts and scales. Com-
pared to PASCAL VOC, there are 60 unseen object classes
for our CEDN contour detector. Note that we did not train
CEDN on MS COCO. We report the AR and ABO results
in Figure 10. It turns out that the CEDN-MCG achieves a
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Figure 10. Average best overlap (ABO) and average recall (AR)
on the MS COCO 2014 validation set.

competitive AR to MCG with a slightly lower recall from
fewer proposals, but a weaker ABO than LPO, MCG and
SeSe. Taking a closer look at the results, we find that our
CEDN-MCG algorithm can still perform well on known ob-
jects (first and third examples in Figure 12) but less effec-
tively on certain unknown object classes, such as food (sec-
ond example in Figure 12). It is likely because those novel
classes, although seen in our training set (PASCAL VOC),
are actually annotated as background. For example, there is
a “dining table” class but no “food” class in the PASCAL
VOC dataset. Quantitatively, we present per-class ARs in
Figure 11 and have following observations: 1) CEDN ob-
tains good results on those classes that share common super-
categories with PASCAL classes, such as “vehicle”, “ani-
mal” and “furniture”; 2) CEDN fails to detect the objects
labeled as “background” in PASCAL VOC, such as “food”
and “applicance”; 3) CEDN works well on unseen classes
that are not prevalent in PASCAL VOC, such as “sports”.
These observations urge training on COCO, but we also ob-
serve that the polygon annotations in MS COCO are less
reliable than the ones in PASCAL VOC (third example in
Figure 12(b)). We will need more sophisticated methods
for refining the COCO annotations.

5. Conclusion

We have developed an object-centric contour detection
method using a simple yet efficient fully convolutional
encoder-decoder network. Concerned with the imperfect
contour annotations from polygons, we have developed a
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Figure 11. Average recall per class on the MS COCO 2014 validation set.

(a) (b) (c) (d) (e)

Figure 12. Example results on MS COCO val2014. In each row from left to right we present (a) input image, (b) ground truth annotation,
(c) edge detection [13], (d) our object contour detection and (e) our best object proposals.

refinement method based on dense CRF so that the pro-
posed network has been trained in a fully-supervised man-
ner. As a result, the trained model yielded high precision
on PASCAL VOC and BSDS500, and achieved compara-
ble performance with the state-of-the-art on BSDS500 after
fine-tuning. We have combined the proposed contour de-
tector with MCG algorithm for generating segmented ob-
ject proposals, which significantly advances the state-of-

the-art on PASCAL VOC. We also found that the proposed
model generalized well to unseen object classes from the
known super-categories and demonstrated competitive per-
formance on MS COCO without re-training the network.
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[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Con-
tour detection and hierarchical image segmentation. PAMI,
33(5):898–916, 2011.
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[30] P. Krähenbühl and V. Koltun. Learning to propose objects.
In CVPR, 2015.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[32] J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A
learned mid-level representation for contour and object de-
tection. In CVPR, 2013.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, 2014.

[34] S. Liu, J. Yang, C. Huang, and M.-H. Yang. Multi-objective
convolutional learning for face labeling. In CVPR, 2015.

[35] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic im-
age segmentation via deep parsing network. In ICCV, 2015.

[36] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[37] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and
texture analysis for image segmentation. IJCV, 2001.

[38] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV, 2001.

[39] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect
natural image boundaries using local brightness, color, and
texture cues. PAMI, 26(5):530–549, 2004.

[40] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015.

[41] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to seg-
ment object candidates. In NIPS, 2015.

[42] J. Pont-Tuset and L. J. V. Gool. Boosting object proposals:
From Pascal to COCO. In ICCV, 2015.

[43] P. Rantalankila, J. Kannala, and E. Rahtu. Generating ob-
ject segmentation proposals using global and local search. In
CVPR, 2014.

[44] C. Rother, V. Kolmogorov, and A. Blake. Grabcut -
interactive foreground extraction using iterated graph cuts.
ACM Transactions on Graphics (SIGGRAPH), 2004.



[45] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. LabelMe: a database and web-based tool for image
annotation. IJCV, 2008.

[46] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deep-
contour: A deep convolutional feature learned by positive-
sharing loss for contour detection. In CVPR, 2015.

[47] N. Silberman, P. Kohli, D. Hoiem, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012.

[48] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[49] J. Uijlings and V. Ferrar. Situational object boundary detec-
tion. In CVPR, 2015.

[50] K. E. A. van de Sande, J. R. R. Uijlingsy, T. Gevers, and
A. W. M. Smeulders. Segmentation as selective search for
object recognition. In ICCV, 2011.

[51] S. Xie and Z. Tu. Holistically-nested edge detection. In
ICCV, 2015.

[52] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. Torr. Conditional random
fields as recurrent neural networks. In ICCV, 2015.

[53] C. L. Zitnick and P. Dollár. Edge boxes: Locating object
proposals from edge. In ECCV, 2014.


