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Abstract
The goal of face hallucination is to generate high-

resolution images with fidelity from low-resolution ones. In
contrast to existing methods based on patch similarity or
holistic constraints in the image space, we propose to ex-
ploit local image structures for face hallucination. Each
face image is represented in terms of facial components,
contours and smooth regions. The image structure is main-
tained via matching gradients in the reconstructed high-
resolution output. For facial components, we align in-
put images to generate accurate exemplars and transfer
the high-frequency details for preserving structural consis-
tency. For contours, we learn statistical priors to generate
salient structures in the high-resolution images. A patch
matching method is utilized on the smooth regions where
the image gradients are preserved. Experimental results
demonstrate that the proposed algorithm generates halluci-
nated face images with favorable quality and adaptability.

1. Introduction
Face hallucination is a domain-specific super-resolution

problem with the goal to generate high-resolution (HR) im-
ages from low-resolution (LR) inputs, which finds numer-
ous vision applications. Since a LR image can be mod-
eled from a HR image by a linear convolution process with
downsampling, the hallucination problem can be viewed as
an inverse task to reconstruct the high-frequency details.
While recent work focuses on the generic super-resolution
problem, considerable less attention is paid to face halluci-
nation. In this paper, we propose a face hallucination al-
gorithm that exploits domain-specific image structures to
generate HR results with high fidelity.

The structure of face image is described in terms of facial
components, contours and smooth regions. A landmark de-
tection algorithm is utilized to locate facial components and
contours, and process facial alignment in both frontal faces
and those at different poses. In this work, the exemplar face
dataset consists both LR face images and the corresponding
HR ones. The landmark points of each HR exemplar face

image are extracted with two labels (pose information and
glasses indicator). From the set of HR exemplar images,
the corresponding LR images with landmarks and labels are
generated.

Given a test LR image, the pose and landmark points
are extracted from an intermediate HR image via bicubic
interpolation. Based on the pose and landmark points, the
aligned facial components of the input images are compared
with those of the training LR images. The LR exemplar im-
ages with most similar components are selected, and their
gradients are preserved in reconstructing the output HR im-
age. To preserve the structure of edges, we generate HR
edges through an anisotropic interpolation and restore the
sharpness of edges via statistical priors. For other remain-
ing smooth region, we generate the HR details through a
patch match method. The image gradients of these three
sources are integrated and used to generate the HR image
via the back-projection algorithm. Extensive experiments
with comparisons to the state-of-the-art methods show that
high-quality images with richer details can be generated
by the proposed algorithm without assuming faces are well
aligned, at fixed pose and without facial expression change.

2. Related Work
In contrast to generic super-resolution algorithms, recent

work in face hallucination aims to learn the mapping be-
tween HR and LR patches from a set of exemplar images
to recover the missing details of an input frame. In [1], the
relationship between LR and HR image patches are mod-
eled in a probabilistic framework such that high-frequency
details can be transferred from exemplar images for face
hallucination. For every query patch cropped from an in-
put image, the most similar LR patch is retrieved from an
exemplar set and the corresponding HR patch is transferred
in terms of the first and second order derivatives. The gen-
erated face images contain significantly richer details than
those by bicubic interpolation, but some artifacts also can be
introduced as the transferred HR patches are not structurally
consistent although their LR patches are similar to the LR
test patches. In other words, a pure patch-based approach



Figure 1. Main steps of the proposed algorithm. (a) A LR input image. (b) Landmarks are estimated to align components and detect pose.
(c) Component masks are generated from the test face images. (d) A direction-preserving upsampling method is used to generate HR
image. (e) Based on the component masks, the corresponding HR components are found and the set of gradient maps Uc are generated. (f)
Priors are used to restore edge sharpness and generate the set of gradient maps Ue. (g) Three sets of gradient maps based on components,
edges and smooth regions are generated. (h) Three sets of gradient maps are combined into one. (i) A HR reconstructed image is generated
through Eq. 1.

without exploiting structural information is not effective in
resolving ambiguities between HR and LR patches.

In [9], a face hallucination method is proposed which
enforces linear constraints for HR face images using a sub-
space learned from a set of training images via Principal
Component Analysis (PCA). To restore the high-frequency
details not included in the PCA subspace, a patch-based
Markov Random Field model is used to reconstruct the
residues. Due to the limitation of linear subspace represen-
tations, this method performs well only when the images are
precisely aligned at fixed poses and expressions. In other
cases, the results usually contain ghosty effects due to the
adopted PCA-based holistic appearance model.

Instead of enforcing constraints only in reconstructing
HR images, a method using constraints in both LR and HR
image space is proposed [14]. However, the HR images usu-
ally contain ghosty artifacts as a result of using a subspace
representation. Furthermore, this method is hard to be ex-
tended to handle faces at different poses and expressions
effectively. The global linear constraints of subspace repre-
sentations are replaced by multiple local constraints learned
from exemplar patches [10]. When the exemplar and test
images are precisely aligned with similar appearance, the
adopted local linear constraints are effective as the mapping
between HR and LR local patches can be modeled via mani-
fold learning [3]. However, the hallucinated images contain
blocky artifacts. On the other hand, the bases can also be
learned from all training patches [16] using sparse repre-
sentation. However, the resulting HR images may contain
significant noisy artifacts along contours since the number
of training patches collected along edges are relatively less
than that of smooth regions and thus the sparse represen-
tation dictionary is not effective in reconstructing these re-

gions.
Most recently an algorithm is introduced [13] to handle

faces with various poses and expressions by aligning im-
ages based on optical flow of SIFT features. This method
performs well when training faces are highly similar to the
test face in terms of the identity, pose, and expression. How-
ever, the global structure of faces is not preserved with this
approach as the segments are matched based on local fea-
tures, thereby generating significant distortion of HR im-
ages especially when the identity is not known.

3. Proposed Algorithm
Given a LR test image Il, we generate a set of HR gradi-

ent maps U from exemplar images such that we can gener-
ate a HR image Ih based on matching HR gradients and LR
intensity values by

Ih = argmin
I
‖∇I − U‖2 s.t. (I ⊗G) ↓= Il, (1)

where∇ is a gradient operator,⊗ denotes convolution, G is
σ-width Gaussian kernel, and ↓ represents a downsampling
operator. We group image structures of a face into three cat-
egories including facial components, edges, and smooth re-
gions, whose gradients are generated by specific methods to
produce the best visual quality. The gradients of facial com-
ponents are transferred from the corresponding components
of exemplar images to preserve the consistency of high-
frequency details. The pair of two eyes or two eyebrows is
considered as one component rather than two to better pre-
serve consistency, as illustrated in Figure 1(e). On the other
hand, local edge properties can be well modeled to learn
the statistical relationship between LR and HR to produce
stable high-quality results. For smooth regions (e.g., hair



and background), the gradients are reconstructed by small
patches to prevent over-smooth artifacts. In addition, we ex-
ploit the similarity between the test image and the training
images to drive an efficient patch matching algorithm to re-
duce the computational load of retrieving exemplar patches.
Figure 1 shows the main steps of the proposed algorithm.

3.1. Gradient Maps for Facial Components

In order to generate effective gradients of facial compo-
nents, we prepare a dataset in which every face image is
associated with a set of landmark points and two label sets
indicating the pose of the face and the existence of glasses
on the face. The landmark points are used to generate an
aligned image while the pose and glasses labels restrict the
search domains.

Aligning exemplar images. Given a LR test image Il, we
generate an intermediate HR image Ib by bicubic interpo-
lation, localize its landmark points and estimate the pose of
the test image using [17]. We use the estimated results to se-
lect a set of exemplar images in the dataset which have the
same pose as Ib. Each face is annotated by several landmark
points such that all the facial components and contours are
known (Figure 1(b)). Suppose a facial component is anno-
tated by n landmark points denoted as {xbi , ybi }ni=1 of Ib and
{xei , yei }ni=1 of an exemplar image. We determine the opti-
mal parameters of rotation, scaling and in-plane shift (θ, λ,
4x, and4y) from

argmin
θ,λ,4x,4y

n∑
i=1

‖T (xei , y
e
i )− (xbi , y

b
i )‖2, (2)

where T is a non-reflective symmetric transformation. We
use the estimated parameters to generate an aligned exem-
plar image, denoted byH . Note that the alignment is carried
out for each facial component individually, which is differ-
ent from existing methods [9, 16, 10] in which faces are
aligned based on eyes locations. The proposed alignment
approach is more flexible for dealing with face images con-
taining various expressions and shapes because they cannot
be effectively aligned by eye positions only.

Determining exemplar images. Suppose {Hj} is a set of
aligned HR exemplar images for a specific component c,
e.g., a nose, a mouth, a pair of eyes, or a pair of eyebrows.
We generate the corresponding LR exemplar image

Lj = (Hj ⊗G) ↓, (3)

and compare Lj and the Il to determine the best exemplar
image for the component c. Since everyHj is aligned to the
intermediate image Ib at component c, we focus on compar-
isons of pixels belonging to component c and disregard the
other pixels. Based on the landmark points belonging to
component c estimated from Ib, we create a HR mask map

Figure 2. Transferring structural information of each facial compo-
nent. (a) Input image. (b) Facial components are extracted based
on component masks. (c) Components of HR images correspond-
ing to the best matched LR exemplars. (d) Gradient maps Uc are
transferred. (e) Selected LR exemplars.

Mh whose pixel values are 1 if the pixel is in c, and other-
wise are 0, as shown in Figure 1(b). We generate a LR mask
mapMl by downsamplingMh through Eq. 3 and determine
the best exemplar by

j∗ = argmin
j∈S

∑
p∈Il

Ml(p) · ‖V (p)− Vj(p)‖2, (4)

where V is the gradient maps of Il as well as Vj of Lj , and
S is a set of index j. The index set S is determined by the
component c and the labels of glasses associated with the
exemplar images {Hj}. Due to low-pass filtering and sub-
sampling for generating LR images in Eq. 3, some struc-
tures of HR images may be missing. For example, the de-
tails of glasses frames of a HR image may be missing in the
downsampled LR images. As we determine the best exem-
plar by comparing features in LR, to prevent artifacts caused
by selecting an incorrect HR exemplar image, we utilize the
labels of glasses to exclude gradient maps Vj from index
set S if the component c may be covered by glasses. On
the contrary, if the component c is irrelevant to glasses such
as a mouth, all Vj are included in S. Figure 2 shows an
example of four matched images based on different facial
components (the dark boundary of each LR exemplar is the
result of alignment). Note that the best matched facial com-
ponents are matched from images of different subjects.

Transferring gradients of components. Once the best LR
exemplar image Lj∗ is determined for a component, we
transfer the gradients of the corresponding source HR im-
age Hj∗ for the pixels whose values in the mask Mh are 1
as the gradients in the set of gradient maps Uc. The same
process is carried out for each component to generate the
most effective image gradients, and together they form the
gradient map Uc.



Figure 3. Direction-preserving upsampling. (a) Input image. (b)
A set of LR similarity maps is generated. (c) The set of LR sim-
ilarity maps are upsampled to a set of HR maps through bilinear
interpolation to preserve the directions of edges. (d) The HR im-
age is generated by the set of HR similarity maps (c) and the input
image (a) through Eq. 6.

3.2. Gradient Maps for Facial Contours

Contours of faces are often represented by image edges
which are usually a few pixels in width. Several meth-
ods that exploit edge statistics of natural images for super-
resolution have been proposed [5, 12]. Although the gen-
erated edges are visually pleasing, the HR image may con-
tain significant artifacts (especially along sharp edges) as
they are generated by enhancing the contrast of edges from
a bicubic interpolated image where edges are jaggy. In
this work, we propose to preserve the structure of edges
and restore their sharpness through learned statistical pri-
ors. Rather than generating sharp edges based on interpo-
lated images, we develop a direction-preserving upsampling
function that eliminates the artifacts for prior learning.

Direction-preserving upsampling. For each pixel p in Il,
we compute the directional similarity for each direction k

fk(p) = exp(−‖P −Qk‖/σ), k = 1, . . . ,K, (5)

where σ is a parameter, P is a patch centered at pixel p,
and Qk is a neighboring patches of pixel p at direction
k. We use patches rather than pixels to compute the di-
rectional similarity because patches are less sensitive to
noise then pixels. Let {Sk} be the K maps of directional
similarity computed from Il. We individually upsample a
LR map Sk to a HR map Tk through bilinear interpola-
tion, which does not change the relative magnitude from
the original sequence {S1(p), . . . , SK(p)} to the new se-
quence {T1(p), . . . , TK(p)}, thereby preserving the direc-
tionality similarity. We use the upsampled directional sim-
ilarity maps {Tk} to regularize an under-constrained opti-
mization problem

Id = argmin
I

∑
k

‖fk(I)− Tk‖2 s.t. (I ⊗G) ↓= Il, (6)

where fk(I) is a matrix where each position has the value of
fk(p). Figure 3 shows the process of direction-preserving
upsampling. The algorithmic details for solving Eq. 6 are
described in the supplementary material.

Learning statistical priors for edge sharpness. Edges in
the upsampled image Id are clear and smooth but the not
sharp enough because the sharpness is not modeled in the
regularization term of Eq. 6. We learn a non-parametric
mapping function to restore the sharpness of edge in Id.
Given a HR training image Ih, we generate a LR image
through Eq. 3 and upsample it through Eq. 6 to generate a
direction-preserving image Id. Since the structure of edges
are highly symmetric with greatest magnitude of gradients
along the center, we label the pixels at edge centers (Fig-
ure 4(d)) in Id by

C(p) =

{
1 if mp > mq and mp > mr

0 otherwise, (7)

where m is the magnitude of gradients, and q and r are
two neighboring pixels of p at the two opposite normal di-
rections (the direction with largest magnitude changes, as
shown in Figure 4(e)). Suppose m′ is the magnitude of gra-
dients computed from the training image Ih. For every pixel
p in Id, we extract the (m′p,mp,mc, t) as the features of a
statistic sample, where c is the closest edge center pixel of
p at distance t in Id. We collect millions of samples from
images of the exemplar dataset, and separate the domain of
(mp,mc, t) into thousands of bins. We partition the col-
lected samples into each bin, and compute the average of
m′p values of the partitioned samples in individual bins to
produce a lookup table (Figure 4(f)) mapping (mp,mc, t)
to m̄′p. More details regarding this non-parametric mapping
function are described in the supplementary material.

Generating gradient maps. Given a LR test image Il, we
obtain its direction-preserving image Id through Eq. 6 and
label the pixels of edge center by Eq. 7. For very pixel p
in Id, we extract features (mp,mc, d) and use the learned
look up table to retrieve an expected magnitude value m̄′p.
Suppose Ud are the gradient maps of Id, we generate the
Suppose Ud is the set of the gradient maps of Id, we gener-
ate the set of gradient maps for facial contours Ue by

Ue(p) =
m̄′p
mp
· Ud(p). (8)

According to the definition of magnitude of gradientsmp =
‖Ud(p)‖, and statistically m̄′p presents the magnitude of
gradients of p in the training image. Thus the sharpness of
edges is stored in Ue as well as the directions are preserved
through Ud from Id.

3.3. Gradient Maps for Smooth Regions

For upsampling regions without distinct structures such
as the background, we use small patches to account for large
variation of appearance. We generate LR exemplar images
from the matched dataset using Eq. 3 and utilize the Patch-
Match algorithm [2] to reduce the computational load of re-
trieving the most similar LR exemplar patches. Suppose the



Figure 4. Sharpness restoration (best viewed on a color display).
(a) An input LR image. (b) The upsampled image of (a) through
Eq. 6. (c) The magnitude of gradients of (b). (d) The map of edge
center labeled computed from (c) through Eq. 7. (e) An enlarged
region of (c,d). (f) The averaged me values in different bins where
t is 1 in the top figure and

√
5 in the bottom figure. (g) The map of

restored magnitude of gradients from (e) through (f). Note the val-
ues are increased over (d). (h) An image generated by the restored
gradients to show the effectiveness of the restored edge sharpness.

scaling factor is s, every pixel in the LR image is upsampled
to s×s pixels in HR. Since every retrieved LR patch is gen-
erated from a HR patch, we use the central s×s pixels of the
HR patch to generate a HR image and then apply the back
projection algorithm [7] to adjust HR image based on the
input image Il to ensure the HR image satisfies Eq. 3. We
extract the gradients of the back-projected HR image as the
gradients of smooth regions, denoted by Ub (Figure 1(g)).

3.4. Integrating Gradient Maps

In order to generate the required gradient map set U for
producing the output HR image, we generate two weight
maps wc and we. We set map wc as the summation of
all HR mask maps Mh (Figure 1(b)), and set we(p) =
min{1, αm̄e},where m̄e is the gradient magnitude in Eq. 8,
and α is a parameter to control the weight. In the map
we, the weight values are large when the pixels are close
to edges. We integrate the three sets of gradient maps
Uc, Ue, Ub by

U = wcUc + (1− wc)
(
weUe + (1− we)Ub

)
, (9)

for every pixel, and generate the output HR image using U
through Eq. 1. Figure 5 shows HR images generated by dif-
ferent gradient maps. It is clear that the use of each gradient
map facilitates generating better results for different facial
structures.

4. Experimental Results
We use the Multi-PIE dataset [6] to evaluate the pro-

posed algorithm as it consists of subjects with variation of

(a) without Uc (b) with Uc (c) without Ue (d) with Ue
Figure 5. Effectiveness of the integrated gradient maps. (a)(b) The
generated gradient maps Uc ensure consistency of high-frequency
details at components. (c)(d) The generated gradient maps Ue en-
sure clear and sharp edges.

age, pose, and expression. As the main goal of this paper
is on face hallucination, we use the set of images taken un-
der the same lighting conditions. The pose labels and land-
marks of each image are given in the dataset, and we manu-
ally generate the glasses labels for training images. One set
with 2,184 320× 240 images at upright frontal pose of 289
individuals is used as the training dataset for face hallucina-
tion experiments (Figure 6, Figure 7 and Figure 8). Another
set of 283 images with pose at 30 degrees of 60 subjects is
also used for experiments (Figure 9 and Figure 10). The test
set consists of LR images consist of 351 images of frontal
and different poses where there the subject identities do not
overlap with those of the training set. We generate the in-
put LR images by downsampling the original HR test im-
ages through Eq. 3 with a scaling factor 4 and the Gaussian
kernel width 1.6, commonly used in the literature [9]. The
ground truth HR images in the test set are used for compar-
isons with the generated hallucination results. Implemented
in MATLAB, it takes 1 minute to process one 60 × 80 LR
image on a machine with 2.8 GHz Quad Core CPU. All the
MATLAB code and dataset will be made available to the
public.

For color images, we apply the proposed algorithm on
grayscaling channel and the color channels are upsampled
by bicubic interpolation to make fair comparisons with
existing methods [9, 16, 10]. We quantitatively evalu-
ate the generated images using PSNR, structural similarity
(SSIM) [15] and DIIVINE index [11]. The PSNR and SSIM
values indicate the fidelity of the generated images to the
original image, while DIIVINE index measures the image
quality based on regressed scores collected from user study.

To label facial landmarks, we use the algorithm of [17]
which produces the landmarks as the active appearance
model [4] with 68 points as shown in Figure 1(b). For eye
and mouth components, the masks are generated by the con-
vex polygons formed by adjacent landmarks. As the land-
marks of eyebrows and nose do not form a close polygons,
we mask eyebrows as the rectangles where the landmarks
are the center vertical segments. The nose mask is defined
by a triangle covering the top and bottom landmark points
(Figure 1(c)).

We implement several state-of-the-art face hallucination



algorithms [9, 16, 10] for comparisons. More qualitative
and quantitative results with comparisons to other generic
super resolution methods are available in the supplemen-
tary material. Figures 6, 7 and 8 show hallucinated faces of
frontal pose where the input images are enlarged by nearest
neighbor interpolation for illustration purpose. The method
of [9] performs well but it generates noisy and blocky ef-
fects (e.g., hair) and over-smooth details (e.g., mouth). In
addition, the hallucinated results are inconsistent (e.g., one
eye of Figure 6(e) contains glasses and the other one does
not) with significant ghosty effects. While the algorithms
based on sparse coding [16] and position-patch [10] gener-
ate high-frequency textures, the results do not contain fine
facial details such as contours and hair (See Figure 6). This
can be attributed to that most training patches are composed
of textures without sharp edges. The proposed algorithm re-
construct fine details of facial components such as the spots
and moles in Figure 7(f) and individual tooth in Figure 6(f).
Note the details in the transferred components are different
from the ones in the ground truth images (e.g., the width
of pupils and the arrangements of teeth are different) as the
subjects of training and test sets do not overlap. However,
they are visually correct and pleasing because downsam-
pling is a many-to-one mapping and the ground truth image
is just one of many feasible HR images. We also note that
the classic back-projection method [7] produces the largest
PSNR and SSIM values in many cases but the results con-
tain jaggy edges (e.g., hair, nose and contour of Figure 6(b),
Figure 7(b), and Figure 8(b)) and fewer details (eyes and
mouth of Figure 6(b), Figure 7(b), and Figure 8(b)).

In addition, the proposed algorithm also generates bet-
ter details due to the glasses label and the component-level
alignment. Take glasses for example, while other meth-
ods [16, 9, 10] easily generate false glasses contours (Fig-
ure 6(c),(e) and Figure 7(c),(e)), no glasses at all (Fig-
ure 8(d) and Figure 9(e)), or ghosty effects (Figure 9(d)),
the hallucinated results by the proposed algorithm are gen-
erally correct with more details.

We also compare the hallucination results on faces at dif-
ferent pose. The training process for [9, 10, 16] are carried
out on a training set containing faces taken at 30% pose.
As shown in Figure 9 and Figure 10, the subspace-based
methods [10] and [9] do not perform well as both the sub-
space learning and the patch reconstruction at fix positions
require precise face alignment. However, it is more difficult
to align face images at different pose such that PCA sub-
space can be well constructed for hallucination. In spite of
pose variation, the back-projection [7] method and the pro-
posed algorithm perform consistently well. However, our
algorithm generates more fine details and sharper edges. We
also evaluate the performance of different algorithms using
exemplars from the PubFig dataset [8] where face images
are not taken in a well controlled lab environment. Fig-

ure 11 shows the proposed algorithm performs well whereas
the other algorithms fail to generate high quality results.

5. Conclusion
A novel approach that exploits image structures for face

hallucination is proposed in this paper. The image struc-
tures of a face are grouped into three categories including
facial components, edges, and smooth regions. Their gradi-
ent maps are generated and integrated to produce HR results
with the best visual quality. Experimental results show that
the proposed algorithm generates hallucinated face images
with fine and consistent details over state-of-the-art algo-
rithms.
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(a) Input (b) Irani91 [7] (c) Yang10 [16] (d) Ma10 [10] (e) Liu07 [9] (f) Proposed (g) Ground truth
PSNR 32.97 28.15 18.93 31.24 32.65 Infinite
SSIM 0.8842 0.7049 0.6847 0.8267 0.8649 1.0

DIIVINE idx. 48.43 32.85 54.05 39.92 30.18 22.37

Figure 6. Qualitative comparison for 4 times upsampled upright frontal faces (results best viewed on a high-resolution display).

(a) Input (b) Irani91 [7] (c) Yang10 [16] (d) Ma10 [10] (e) Liu07 [9] (f) Proposed (g) Ground truth
PSNR 35.51 29.32 19.78 15.18 34.68 Infinite
SSIM 0.9361 0.7569 0.7497 0.6667 0.9156 1.0

DIIVINE idx. 48.61 25.96 47.78 42.58 29.00 25.62

Figure 7. Qualitative comparison for 4 times upsampled upright frontal faces (results best viewed on a high-resolution display).

(a) Input (b) Irani91 [7] (c) Yang10 [16] (d) Ma10 [10] (e) Liu07 [9] (f) Proposed (g) Ground truth
PSNR 32.89 28.12 21.22 18.16 33.31 Infinite
SSIM 0.8970 0.7324 0.7620 0.7257 0.8887 1.0

DIIVINE idx. 61.61 35.24 56.45 36.04 32.43 25.23

Figure 8. Qualitative comparison for 4 times upsampled upright frontal faces (results best viewed on a high-resolution display).



(a) Input (b) Irani91 [7] (c) Yang10 [16] (d) Ma10 [10] (e) Liu07 [9] (f) Proposed (g) Ground truth
PSNR 33.87 23.17 20.89 16.53 33.23 Infinite
SSIM 0.9126 0.4943 0.7968 0.6663 0.8873 1.0

DIIVINE idx. 57.94 29.57 36.23 50.96 32.82 30.05

Figure 9. Qualitative comparison for 4 times upsampled non-frontal faces (results best viewed on a high-resolution display).

(a) Input (b) Irani91 [7] (c) Yang10 [16] (d) Ma10 [10] (e) Liu07 [9] (f) Proposed (g) Ground truth
PSNR 35.11 23.20 21.78 16.12 34.22 Infinite
SSIM 0.9028 0.4733 0.7595 0.6332 0.8711 1.0

DIIVINE idx. 48.48 27.06 40.52 49.71 30.36 22.21

Figure 10. Qualitative comparison for 4 times upsampled non-frontal faces (results best viewed on a high-resolution display).

(a) Input (b) Irani91 [7] (c) Yang10 [16] (d) Ma10 [10] (e) Liu07 [9] (f) Proposed (g) Ground truth
PSNR 29.33 24.16 15.23 13.05 30.04 Infinite
SSIM 0.8338 0.5474 0.5230 0.4948 0.8798 1.0

DIIVINE idx. 50.05 23.14 47.25 38.91 33.92 29.34

Figure 11. Qualitative comparison for 4 times upsampled upright frontal faces (results best viewed on a high-resolution display).


