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Abstract

In this paper we propose a robust object tracking al-

gorithm using a collaborative model. As the main chal-

lenge for object tracking is to account for drastic appear-

ance change, we propose a robust appearance model that

exploits both holistic templates and local representations.

We develop a sparsity-based discriminative classifier (SD-

C) and a sparsity-based generative model (SGM). In the S-

DC module, we introduce an effective method to compute

the confidence value that assigns more weights to the fore-

ground than the background. In the SGM module, we pro-

pose a novel histogram-based method that takes the spatial

information of each patch into consideration with an oc-

clusion handing scheme. Furthermore, the update scheme

considers both the latest observations and the original tem-

plate, thereby enabling the tracker to deal with appearance

change effectively and alleviate the drift problem. Numer-

ous experiments on various challenging videos demonstrate

that the proposed tracker performs favorably against sever-

al state-of-the-art algorithms.

1. Introduction

The goal of object tracking is to estimate the states of

the target in image sequences. It plays a critical role in nu-

merous vision applications such as motion analysis, activ-

ity recognition, video surveillance and traffic monitoring.

While much progress has been made in recent years, it is

still a challenging problem to develop a robust algorithm

for complex and dynamic scenes due to large appearance

change caused by varying illumination, camera motion, oc-

clusions, pose variation and shape deformation (See Fig-

ure 1).

In a fixed frame, an appearance model is used to repre-

sent the object with proper features and verify predictions

using object representations. In the successive frames, a

motion model is applied to predict the likely state of an ob-

ject (e.g., Kalman filter [6] and particle filter [20, 14]). In

this paper, we focus on the appearance model since it is usu-

ally the most crucial component of any tracking algorithm.

Figure 1. Tracking in challenging environments including heavy

occlusions (caviar), rotation (panda), illumination change (shak-

ing) and cluttered background (board). The results of the Frag [1],

IVT [21], MIL [4], ℓ1 [19], PN [12], VTD [13] tracking method-

s and our tracker are represented by cyan, blue, magenta, green,

black, yellow and red rectangles, respectively.

Several factors need to be considered for an effective ap-

pearance model. First, an object can be represented by dif-

ferent features such as intensity [21], color [20], texture [3],

superpixels [25], and Haar-like features [10, 11, 4, 12].

Meanwhile, the representation schemes can be based on

holistic templates [6] or local histograms [1, 28]. In this

work, we use intensity values for representation because of

their simplicity and efficiency. Furthermore, our approach

exploits both the strength of holistic templates to distinguish

the target from the background, and the effectiveness of lo-

cal patches in handling partial occlusion.

Second, a model needs to be developed to verify any s-

tate prediction, which can be either generative or discrim-

inative. For generative methods, tracking is formulated as

searching for the most similar region to the target object

within a neighborhood [6, 1, 21, 19, 16, 15]. For discrimi-

native methods, tracking is treated as a binary classification

problem which aims at designing a classifier to distinguish



the target object from the background [2, 10, 3, 23, 11, 4,

12]. Furthermore, several algorithms have been proposed to

exploit the advantages of both generative and discriminative

models [31, 17, 22, 18, 7]. We develop a simple yet robust

model that makes use of the generative model to account for

appearance change and the discriminative classifier to effec-

tively separate the foreground target from the background.

The third issue is concerned with online update schemes

so that the tracker can adapt to appearance variations of

the target object and the background. Numerous successful

update approaches have been proposed [6, 10, 3, 21, 19].

However, straightforward and frequent updates of tracking

results may gradually result in drifts due to accumulated er-

rors, especially when the occlusion occurs. To address this

problem, Babenko et al. [4] devise a strategy for choosing

positive and negative samples during update and introduce

multiple instance learning (MIL) to learn the true target ob-

ject which is included in the positive bag. Kalal et al. [12]

propose a bootstrapping classifier. They explore the struc-

ture of unlabeled data via positive and negative constraints

which help to select potential samples for update. In order

to capture appearance variations as well as reduce tracking

drifts, we propose a method that takes occlusions into con-

sideration for updating appearance model.

In this paper, we propose a robust object tracking algo-

rithm with an effective and adaptive appearance model. We

use intensity to generate holistic templates and local rep-

resentations in each frame. Within our tracking scheme,

the collaboration of generative models and discriminative

classifiers contributes to a more flexible and robust likeli-

hood function for particle filter. The appearance model is

adaptively updated with the consideration of occlusions to

account for variations and alleviate drifts. Numerous ex-

periments on various challenging sequences show that the

proposed algorithm performs favorably against the state-of-

the-art methods.

2. Related Work

Sparse representation has recently been applied to vision

problems [26], including image enhancement [29], objec-

t recognition [27], and visual tracking [19, 16, 15]. Mei

and Ling [19] apply sparse representation to visual tracking

and deal with occlusions via trivial templates. Despite of

demonstrated success, there are still several issues to be ad-

dressed. First, the algorithm is able to deal with occlusion

with ℓ1 minimization formulation using trivial templates at

the expense of high computational cost. Second, the trivial

templates can be used to model any kind of image regions

whether they are from the target objects or the background.

Thus, the reconstruction errors of images from the occluded

target and the background may be both small. As a result

of generative formulation where the sample with minimal

reconstruction error is regarded as the tracking result, ambi-

guities are likely to accumulate and cause tracking failure.

Liu et al. [16] propose a method which selects a sparse and

discriminative set of features to improve tracking efficiency

and robustness. One potential problem with this approach

is that the number of discriminative features is fixed, which

may not be effective for tracking in dynamic and complex

scenes. In [15], a tracking algorithm based on histograms

of local sparse representation is proposed. The target object

is located via mean-shift of voting maps constructed basing

on reconstruction errors. In contrast to the histogram gener-

ation scheme in [15] that does not differentiate foreground

and background patches, we propose a weighting method

to ensure that the occluded patches are not used to account

for appearance change of the target object, thereby result-

ing a more robust model. Furthermore, the average pool-

ing method in [15] does not consider geometric informa-

tion between patches while our method exploits the spatial

information of local patches with histograms. In addition

to model object appearance with local histograms, we also

maintain a holistic template set that further helps identify

the target object.

Occlusion is one of the most challenging problems in

object tracking. Adam et al. [1] propose a fragments-based

method to handle occlusions. The target is located by a vot-

ing map formed by comparing histograms of the candidate

patches and the corresponding template patches. However,

the template is not updated and sensitive to large appear-

ance variations. Yang et al. [28] present the “bag of fea-

tures” algorithm to visual tracking. Nevertheless, each lo-

cal feature is assigned to the nearest codeword, which may

result in loss of visual information [5] and ambiguity, e-

specially when the features lie near the center of several

codewords. This may lead to poor and unstable appearance

representation of the target object and cause tracking fail-

ure. We develop an effective method which estimates and

rejects possible occluded patches to improve robustness of

appearance representation when occlusions occur. In addi-

tion, our tracker is adaptively updated with consideration of

whether patches are occluded or not to better account for

appearance change.

3. Proposed Algorithm

In this section, we present the proposed algorithm in de-

tails. We first discuss the motivation of this work. Next, we

describe how the holistic and local visual information are

exploited. The update scheme of our appearance method is

then presented.

3.1. Problem Formulation

The representation schemes for object tracking mainly

consist of holistic templates and local histograms. While

most tracking algorithms use either holistic or local repre-

sentations, our approach exploits the collaborative strength



of both schemes. Most tracking methods use rectangle to

represent the tracking result, yet the pixels within the track-

ing rectangle are not all from foreground. As a result, the

local representation-based classifier may be affected when

updated with the background patches as positive samples.

On the contrary, the holistic templates are often distinct to

be foreground or background. Thus, the holistic templates

are more suitable for discriminative models. Meanwhile, lo-

cal representations are more amenable for generative mod-

els because of their flexibility. Therefore, we develop a col-

laborative model that integrates a discriminative classifier

based on holistic templates and a generative model using

local representations.

3.2. Sparsity­based Discriminative Classifier (SDC)

Motivated by the demonstrated success of sparse repre-

sentation classifier [27], we propose our sparsity-based dis-

criminative classifier for object tracking. For simplicity, we

use the vector x to represent the gray-scale values of a target

image.

3.2.1 Templates

The training image set is composed ofNp positive templates

and Nn negative templates. Initially, we sample Np images

around the manually selected target location (e.g., within a

radius of a few pixels). Then, the selected images are nor-

malized to the same size (32 × 32 in our experiments) for

efficiency. Each downsampled image is stacked to form the

corresponding positive template vector. Similarly, the neg-

ative training set is composed of images further away from

the marked location (e.g., within an annular region a few

pixels away from the target object). In this way, the nega-

tive training set consists of both the background and images

of parts of the target object. This facilities better object lo-

calization as samples containing only partial appearance of

the target are treated as the negative samples and their con-

fidence values are restricted to be small.

In each frame, we draw N candidates around the tracked

result in the previous frame with a particle filter. To bet-

ter track the target, we employ affine transformation [21] to

model object motion. In addition, we assume that the affine

parameters are independent and can be modeled with six

scalar Gaussian distributions.

3.2.2 Feature Selection

The above-mentioned gray-scale feature space is rich yet

redundant, from which determinative ones that distinguish

foreground from background can be extracted. We select

discriminative features by

min
s

∥

∥A⊤s− p
∥

∥

2

2
+ λ‖s‖1, (1)

where A ∈ R
K×(Np+Nn) is composed of Np positive tem-

plates A+ and Nn negative templates A−, and K is the

feature dimension before feature selection. Each elemen-

t of the vector p ∈ R
(Np+Nn)×1 represents the property

of each template in the training set A, i.e., +1 for positive

templates and −1 for negative templates. The solution of

Eq. 1 is the sparse vector s, whose nonzero elements corre-

spond to discriminative features selected from the original

K-dimension feature space. Note that the feature selection

scheme adaptively chooses suitable number of discrimina-

tive features in the dynamic environment.

We project the original feature space to the selected fea-

ture space via a project matrix S. It is formed by removing

all-zero rows from a diagonal matrix S′ where the elements

are determined by

S′

ii =

{

0, si = 0
1, otherwise,

(2)

where the diagonal element S′

ii is zero when si of s is ze-

ro. Both the training template set and the candidates sam-

pled by a particle filter are projected to the selected and dis-

criminative feature space. Thus, the training template set

and candidates in the projected space are A′ = SA and

x′ = Sx.

3.2.3 Confidence Measure

The proposed SDC is developed based on the assumption

that the target can be better represented by the linear com-

bination of positive templates while the background can be

better represented by the span of negative templates. Given

the candidate, it is represented by the training template set

with the coefficients α computed by

min
α

‖x′ −A′α‖
2
2 + λ‖α‖1. (3)

A candidate with smaller reconstruction error using the

foreground template set indicates it is more likely to be a

target object, and vice versa. Thus, we formulate the confi-

dence value Hc of the candidate x by

Hc = exp (− (εf − εb) /σ) , (4)

where εf = ‖x′ −A′
+α

′
+‖

2
2 is the reconstruction error

of the candidate x with the foreground template set A+, and

α+ is the corresponding sparse coefficient vector. Similarly,

εb = ‖x′ −A′
−α

′
−‖

2
2 is the reconstruction error of the

candidate x using the background template set A−, and α−

is the related sparse coefficient vector. The variable σ is

fixed to be a small constant that balances the weight of the

discriminative classifier and the generative model presented

in Section 3.3.

In [27], the authors employ the reconstruction error on

the target (positive) templates. It is not quite appropriate for



tracking, since both the negative samples and the indistin-

guishable samples have large reconstruction errors on the

target (positive) templates. Thus, it introduces ambiguity

for the tracker. Our confidence measure exploits the distinc-

tion between the foreground and the background; its benefit

is presented in Section 3.4.

3.3. Sparsity­based Generative Model (SGM)

Motivated by the success of sparse coding for image

classification [30, 24, 9] as well as object tracking [15],

we present a generative model for object representation that

considers the location information of patches and takes oc-

clusion into account.

3.3.1 Histogram Generation

For simplicity, we use the gray-scale features to represent

the local information. We use overlapped sliding windows

on the normalized images to obtain M patches and each

patch is converted to a vector yi ∈ R
G×1, where G denotes

the size of the patch. The sparse coefficient vector β of each

patch is computed by

min
βi

‖yi −Dβi‖
2
2 + λ‖βi‖1, (5)

where the dictionary D ∈ R
G×J is generated from k-means

cluster centers (J denotes the number of cluster centers) via

the patches belonging to the labeled target object in the first

frame and it consists of the most representative patterns of

the target object.

In this work, the sparse coefficient vector βi ∈ R
J×1 of

each patch is concatenated to form a histogram by

ρ = [β1, β2, · · · , βM ]
⊤
, (6)

where ρ ∈ R
(J×M)×1 is the proposed histogram for one

candidate.

The average pooling scheme for histogram generation

used in [15] is efficient, yet the strategy may miss the spatial

information of each patch. For example, if we change the

location of the left part and the right part of a human face

image, the average pooling scheme neglects the exchange

while our method will discover it.

3.3.2 Occlusion Handling

In order to deal with occlusions, we modify the constructed

histogram to exclude the occluded patches when describing

the target object. The patch with large reconstruction error

is regarded as occlusion and the corresponding sparse coef-

ficient vector is set to be zero. Thus, a weighted histogram

is generated by

ϕ = ρ⊙ o, (7)

where ⊙ denotes the element-wise multiplication. Each el-

ement of o is an indicator of occlusion of the corresponding

patch and is obtained by

oi =

{

1 εi < ε0
0 otherwise

, (8)

where εi = ‖yi −Dβi‖
2
2 is the reconstruction error of

patch yi, and ε0 is a predefined threshold which determines

the patch is occluded or not.

We thus have a sparsity-based histogram ϕ for each can-

didate. The proposed representation scheme takes spatial

information of local patches and occlusion into account,

thereby making it more effective and robust.

3.3.3 Similarity Function

We use the histogram intersection function to compute the

similarity of histograms between the candidate and the tem-

plate due to its effectiveness [9] by

Lc =
∑J×M

j=1
min

(

ϕj
c, ψ

j
)

, (9)

where ϕc and ψ are the histograms for the c-th candidate

and the template.

The histogram of the template (denoted by ψ) is generat-

ed by Eqs. 5-7. The patches y in Eq. 5 are all from the first

frame and the template histogram is computed only once for

each image sequence. It is updated every several frames and

the update scheme is presented in Section 3.5. The vector o

in Eq. 8 reflects the occlusion condition of the correspond-

ing candidate. The comparison between the candidate and

the template should be carried out under the same occlusion

condition, so the template and the c-th candidate share the

same vector oc in Eq. 7. For example, when the template is

compared with the c-th candidate, the vector o of the tem-

plate in Eq. 7 is set to oc.

3.4. Collaborative Model

We propose a collaborative model using SDC and SGM

within the particle filter framework. In our tracking algo-

rithm, the confidence value based on the holistic templates

and the similarity function based on the local patches joint-

ly contribute to an effective and robust description of the

probability. The likelihood function of the c-th candidate is

constructed by

pc = HcLc

= exp (− (εf − εb) /σ)
(

∑J×M

j=1 min
(

ϕj
c, ψ

j
)

)

,

(10)

and the tracking result is the candidate with the highest

probability.

The multiplicative formula is more effective in our track-

ing scheme compared with the alternative additive scheme.



The confidence value Hc gives higher weights to the can-

didates considered as positive samples (i.e., εf smaller than

εb) and penalizes the others. As a result, it can be consid-

ered as the weight of the local similarity function. More-

over, the confidence value of indistinguishable candidate

(i.e., it can be equally constructed by positive and negative

template sets when εf is almost equal to ≈ εb) is equal to

1 and it has no effect on the likelihood function when mul-

tiplying with the local similarity function. Consequently,

in the collaborative model, the SGM module plays a more

important role in object tracking.

3.5. Update Scheme

Since the appearance of an object often changes signif-

icantly during the tracking process, the update scheme is

important and necessary. We develop an update scheme in

which the SDC and SGM are updated independently.

For the SDC model, we update the negative templates

every several frames (5 in our experiments) from image re-

gions away (e.g., more than 8 pixels) from the current track-

ing result. The positive templates remain the same in the en-

tire sequence. As the SDC model aims at distinguishing the

foreground from the background, it must make sure that the

positive templates and the negative templates are all correct

and distinct. In this way, the SDC model is adaptive and

discriminative.

For the SGM model, the dictionary D is fixed for the

same sequence. Therefore, the dictionary is not deteriorated

by the update of tracking failures or occlusions. In order

to capture the new appearance and recover the object from

occlusions, the template histogram is updated by

ψn = µψf + (1− µ)ψl ifOn < O0, (11)

where the new histogram ψn is composed of the histogram

ψf at the first frame and the histogram ψl last stored accord-

ing to the weights assigned by the constant µ. The variable

On denotes the occlusion condition of the tracking result in

the new frame. It is computed by the corresponding occlu-

sion indication vector on (by Eq. 8) using

On =
∑J×M

i=1

(

1− oin
)

. (12)

The update is performed as long as the occlusion condi-

tion On in this frame is smaller than a predefined constant

O0. The update scheme preserves the first template which

is usually correct and takes the newly arrived template into

account.

4. Experimental Results

In order to evaluate the performance of our tracker, we

conduct experiments on ten challenging image sequences.

These sequences cover most challenging situations in ob-

ject tracking: heavy occlusion, motion blur, in-plane and

Table 1. Average center location error (in pixel). The best and

second best results are shown in red and blue fonts.

Frag IVT MIL ℓ1 PN VTD Our

animal 92.1 127.5 66.5 15.3 – 12.0 10.8

board 45.4 165.4 66.7 184.0 90.1 105.0 12.7

car11 64.0 2.2 43.5 33.3 25.2 27.1 1.8

caviar 116.1 66.0 100.2 65.7 44.5 58.3 2.7

faceocc2 15.5 10.3 14.1 11.2 18.6 10.5 4.8

girl 18.1 48.5 32.3 62.5 23.2 21.5 9.8

jumping 58.5 36.9 9.9 12.5 3.6 63.0 3.8

shaking 52.8 152.7 11.2 118.7 – 6.1 9.4

singer1 22.1 8.5 15.2 4.6 32.7 4.1 3.8

panda 90.1 169.8 103.4 94.0 – 94.8 2.5

Table 2. Average overlap rate based on [8]. The best and second

best results are shown in red and blue fonts.

Frag IVT MIL ℓ1 PN VTD Our

animal 0.07 0.21 0.21 0.53 0.41 0.57 0.59

board 0.65 0.14 0.46 0.12 0.34 0.32 0.78

car11 0.08 0.80 0.17 0.43 0.37 0.43 0.79

caviar 0.13 0.14 0.13 0.13 0.16 0.15 0.85

faceocc2 0.60 0.58 0.61 0.67 0.49 0.59 0.81

girl 0.68 0.42 0.51 0.32 0.57 0.51 0.69

jumping 0.13 0.28 0.52 0.55 0.69 0.07 0.73

shaking 0.24 0.02 0.65 0.03 0.12 0.73 0.67

singer1 0.34 0.66 0.33 0.70 0.41 0.79 0.85

panda 0.23 0.15 0.35 0.16 0.60 0.36 0.69

out-of-plane rotation, large illumination change, scale vari-

ation and complex background (See Figure 3). For compar-

ison, we run six state-of-the-art algorithms with the same

initial position of the target. These algorithms are the Frag

tracking [1], IVT tracking [21], MIL tracking [4], ℓ1 track-

ing [19], PN tracking [12] and VTD tracking [13] method-

s. We present some representative results in this section.

All the MATLAB source codes and datasets are available

on our web sites (http://ice.dlut.edu.cn/lu/publications.html,

http://faculty.ucmerced.edu/mhyang/pubs.html).

The parameters are presented as follows. Note that they

are fixed for all sequences. The numbers of positive tem-

plates Np and negative templates Nn are 50 and 200 re-

spectively. The variable λ in Eq. 1 is fixed to be 0.001. The

variable λ in Eqs. 3 and 5 is fixed to be 0.01. The row num-

ber G and column number J of dictionary D in Eq. 5 are 36
and 50. The threshold ε0 in Eq. 8 is 0.04. The update rate µ
is set to be 0.95. The threshold O0 in Eq. 11 is 0.8.

4.1. Quantitative Comparison

We evaluate the above-mentioned algorithms using the

center location error as well as the overlapping rate [8], and

the results are shown in Table 1 and Table 2. Figure 2 shows

the center location errors of the evaluated algorithms on all

test sequences. Overall, the proposed tracker performs well

against the other state-of-the-art algorithms.
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Figure 2. Quantitative evaluation in terms of center location error (in pixel). The proposed algorithm is compared with six state-of-the-art

methods on ten challenging image sequences.

4.2. Qualitative Comparison

Heavy occlusion: Occlusion is one of the most general yet

crucial problems in object tracking. In fact, several track-

ers including the FragTrack method [1], the MIL tracking

algorithm [4], the ℓ1 tracking method [19] and our tracker

are developed to solve this problem. In contrast, the IVT

tracking method [21], the PN tracking method [12] and the

VTD tracking system [13] are less effective in handling oc-

clusions as shown in Figure 3(a), especially at frames 175,

497, 819 of the faceocc2 sequence. In our SGM module, we

estimate the possible occluded patches and develop a robust

histogram which only compares the patches that are not oc-

cluded. Thus, the occlusion handling scheme effectively al-

leviates the affect of occlusions. Aside from tracking a tar-

get object under occlusion, our method updates appearance

change correctly especially when heavy occlusions occur.

In addition, our tracker is able to deal with in-plane rota-

tion when the target is occluded at frame 497, owing to the

appearance model we employ. Our tracker can accurately

locate the target object at frame 819 as our generated his-

togram takes the spatial information of local patches into

consideration.

In the caviar sequence, the target is occluded by two peo-

ple at times and one of them is similar in color and shape

to the target. The other trackers all fail before frame 134

due to heavy occlusion (Figure 3(a)). Furthermore, for most

template-based trackers, simple update with occluded por-

tion often leads to drifts (frame 442 of Figure 3(a)). In con-

trast, our tracker achieves stable performance in the entire

sequence when there is a large scale change with heavy oc-

clusion. This can be attributed to our SGM model that re-

duces the effect of occlusions and only compares the fore-

ground with the stored histograms. Besides, our update

scheme doesn’t introduce heavy occlusions which may lead

to drift problem.

Motion blur: Fast motion of the target object or the camera

leads to blurred image appearance which is difficult to ac-

count for in object tracking. Figure 3(b) presents the track-

ing results on the animal sequence in which the appearance

of the target object is almost indistinguishable due to the

motion blur. Most tracking algorithms fail to follow the tar-

get right at the beginning of this sequence. At frame 42,

the PN tracking method [12] mistakenly locates a similar

object instead of the correct target. The reason is that the

true target is blurred and it is difficult for the detector of P-

N [12] to distinguish it from the background. The proposed

algorithm well handles the situation with similar objects as

the SDC module selects the discriminative features to bet-

ter separate the target from the background. By updating

the negative templates online, the proposed algorithm suc-

cessfully tracks the target object throughout the sequence.

The appearance change caused by motion blur in the

jumping sequence is drastic that the Frag [1] and VTD [13]

methods fail before frame 31. The IVT [21] method is able

to track the target in some frames (e.g., frame 100) but fails

when the motion blur occurs (e.g., frame 238). Our tracker

successfully keeps track of the target object with small er-

rors. The main reason is that we use the SDC module which

separates the foreground from the background. Meanwhile,

the confidence measure by Eq. 4 assigns smaller weights to

the candidate of background. Thus, the tracking result will

not drift to the background.

Rotation: The girl sequence in Figure 3(c) consists of

both in-plane and out-of-plane rotations. The PN tracking

method [12] and the VTD tracking method [13] fail when

the girl rotates her head. Compared with other algorithms,

our tracker is more robust and accurate as seen from frame

312 and frame 430. In our tracking scheme, the background

candidates are assigned quite small weights according to

Eq. 4. Therefore, the tracking result will not shift to the

background when the girl rotates (e.g., frame 111 and frame

312).



The target object in the panda sequence experiences

more and larger in-plane rotations. As seen from frame

53, the IVT method [21] fails due to occlusion and fast

movement. Most trackers drift after the target undergoes

large rotations (e.g., frame 154) whereas our method per-

forms well throughout this sequence. As the other trackers

often account for object motion with translational or sim-

ilarity transforms, they are not able to deal with complex

movements. In addition, the use of local histograms helps

in accounting for appearance change due to complex mo-

tion. Furthermore, the target object in the panda sequence

also undergoes occlusions as shown in frame 53 and frame

214. The PN tracking method [12] fails to detect occlusions

and track the target object after frame 214 while our tracker

still performs well.

Illumination change: Figure 3(d) presents the tracking

results on sequences with dramatic illumination changes.

In the singer1 sequence, the stage light changes drastical-

ly seen from frame 121 and frame 321. The PN tracking

method [12] is not able to detect and track the target object

(e.g., frame 121). On the other hand, our tracker accurate-

ly locates the target object even when there is a large scale

change at frame 321. In the shaking sequence, the target ob-

ject undergoes large appearance variation due to drastic illu-

mination change and unpredictable motion. Our SDC mod-

ule introduces the backgrounds and the images with parts

of the target as negative templates so the confidence values

of these candidates calculated by Eq .4 are small. Thus, the

tracking result is accurately located on the true target with-

out much offset.

For the car11 sequence, there is low contrast between

the foreground and the background (frame 284) as well as

illumination change. The FragTrack method [1] fails at the

beginning (at frame 19) because it only uses the local infor-

mation and does not maintain a holistic representation of the

target. The IVT tracking method [21] achieves good results

in this sequence. It can be attributed to the fact that sub-

space learning method is robust to illumination changes. In

our SDC module, we select several discriminative features

which can better separate the target from the background.

Thus, our tracker performs well in spite of the low contrast

between the foreground and the background.

Complex background: The board sequence is challenging

as the background is cluttered and the target object expe-

riences out-of-plane rotations as seen from Figure 3(e). In

frame 55, most trackers fail as holistic representations in-

evitably include background pixels that may be considered

as part of foreground object through straightforward update

schemes. Using fixed templates, the FragTrack method [1]

is able to track the target as long as there is no drastic ap-

pearance change (e.g., frame 55 and frame 183), but fails

when the target moves quickly or rotates (e.g., frame 78,

frame 395 and frame 528). Our tracker performs well in

this sequence as the target can be differentiated from the

cluttered background with the use of our SDC module. In

addition, the update scheme uses the newly arrived negative

templates that facilitate separation of the foreground object

and the background.

5. Conclusion

In this paper, we propose and demonstrate an effec-

tive and robust tracking method based on the collaboration

of generative and discriminative modules. In our tracker,

holistic templates are incorporated to construct a discrimi-

native classifier that can effectively deal with cluttered and

complex background. Local representations are adopted to

form a robust histogram that considers the spatial informa-

tion among local patches with an occlusion handling mod-

ule, which enables our tracker to better handle heavy occlu-

sion. The contributions of these holistic discriminative and

local generative modules are integrated in a unified man-

ner. Moreover, the online update scheme reduces drifts and

enhances the proposed method to adaptively account for ap-

pearance change in dynamic scenes. Quantitative and qual-

itative comparisons with six state-of-the-art algorithms on

ten challenging image sequences demonstrate the robust-

ness of our tracker.
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