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Abstract

Sparse representation has found applications in numer-
ous domains and recent developments have been focused
on the convex relaxation of the `0-norm minimization for
sparse coding (i.e., the `1-norm minimization). Neverthe-
less, the time and space complexities of these algorithms
remain significantly high for large-scale problems. As sig-
nals in most problems can be modeled by a small set of pro-
totypes, we propose an algorithm that exploits this property
and show that the `1-norm minimization problem can be
reduced to a much smaller problem, thereby gaining signif-
icant speed-ups with much less memory requirements. Ex-
perimental results demonstrate that our algorithm is able to
achieve double-digit gain in speed with much less memory
requirement than the state-of-the-art algorithms.

1. Introduction
Recent years have witnessed a considerable resurgence

of interest in sparse representation [27, 21, 5]. Much of
its popularity as well as effectiveness come from the fact
that signals in most problems are structured and can be well
represented by a small set of basis vectors. It plays an im-
portant role in the success of recent developments in dic-
tionary learning [2, 5] and compressive sensing [8, 9, 13],
among others. Given a set of basis vectors (i.e., a dictio-
nary), finding a sparse representation of a signal is often
posed as an optimization problem with either `0-norm or `1-
norm, which usually results in solving an underdetermined
linear system. Each sample is then represented as a sparse
linear combination of the basis vectors. The complexity
of solving `0-norm minimization problems is known to be
NP-hard and numerically unstable. Greedy algorithms such
as matching pursuit [25], and orthogonal matching pursuit
(OMP) [10, 29] have been proposed to approximate the `0-
norm solution. Although these methods are rather simple
and efficient, the solutions are sub-optimal. Recent devel-
opments in sparse coding have shown that, under certain as-
sumptions, the solution of `0-norm minimization problem is
equivalent to `1-norm minimization problem which can be
solved by convex optimization [11, 13]. Numerous algo-

rithms have been proposed for `1-regularized sparse coding
[7, 8, 9, 13, 12, 32]. As these algorithms often recast the
original problem as a convex program with quadratic con-
straints, the computational cost for practical applications
can be prohibitively high.

For numerous problems in computer vision, machine
learning, signal processing, and computer graphics, one
simple yet effective approach is to assume that the samples
of the same class can be modeled with prototypes or ex-
emplars. Such prototypes can be either the samples them-
selves, or learned from a set of samples (e.g., eigenvectors
and means from vector quantization). Examples abound. In
visual processing, it has been shown that prototypical mod-
els are capable of capturing intra-class variations such as ap-
pearance [26] and lighting [3]. In graphics, prototypes are
learned from images and utilized for synthesizing videos
for animation [16]. Prototypical representations have also
been exploited in signal processing, clustering, dimension-
ality reduction, dictionary learning compressive sensing, vi-
sual tracking and motion analysis , to name a few [5]. In this
paper, we assume that samples from one class can be mod-
eled with a small set of prototypes from the same class.

Among the above-mentioned prototype learning algo-
rithms, the method of optimal directions (MOD) [15] and
K-SVD algorithms [14] are of great interest as they are able
to represent each sample with a sparse combination of dic-
tionary atoms or prototypes. Assuming that we are given a
learned dictionary, we can first approximate the basis vec-
tors with sparse representation using the prototypes in this
dictionary. As will be explained later in this paper, the orig-
inal sparse representation problem can then be reduced to
a much smaller problem with `1-norm constraints. By ex-
ploiting the linear constraints of these prototypes and basic
concepts in linear algebra, we show that the original `1-
norm minimization problem can be reduced from a large
and dense linear system to a small and sparse one, thereby
obtaining significant speed-up. We apply the proposed al-
gorithm to several large data sets and demonstrate that it is
able to achieve double-digit gain in speed with much less
memory requirement than the state-of-the-art sparse coding
methods.



2. Sparse Representation with Prototypes
In numerous problems we are often given a set of la-

beled samples for each class and the goal is to correctly
infer the class of unseen samples by using the knowledge
learned from the given samples. Suppose that we collect ni
samples from the i-th ofK distinct signal classes, we define
a matrix Φi ∈ IRm×ni for class i as columns of samples:

Φi = [φi,1,φi,2, · · · ,φi,ni
], (1)

where φi,j ∈ IRm stands for the j-th sample of the class
i. We then concatenate all samples for all K classes into a
matrix Φ ∈ IRm×N :

Φ = [Φ1,Φ2, · · · ,ΦK ], (2)

where N is the total number of samples from all classes.
Given a sufficient number of samples for class i, an ob-
served sample y can be well approximated by a linear com-
bination of the samples if y belongs to class i:

y = ci,1φi,1 + ci,2φi,2 + · · ·+ ci,ni
φi,ni

, (3)

where the scalar ci,j represents the weighted contribution
of the j-th sample in reconstructing the observed sample y.
However, we do not know which class the sample y belongs
to in most circumstances. Thus, we can rewrite the linear
representation of y using all samples compactly as:

y = Φx, (4)

where x = [0, · · · , 0, ci,1, · · · , ci,ni
, 0, · · · , 0]> is a sparse

coefficient vector. Usually, Φ is a fat and dense matrix as
illustrated in Figure 1(a).

2.1. Solving Inverse Linear System

With the formulation in (4), each observed sample y can
be represented with the corresponding coefficient vector x
by solving the linear system y = Φx. If the dimension of
the observation data y is larger than the number of all sam-
ples (i.e., m > N ), then the unique solution can usually be
obtained by solving the overdetermined system. However,
in most applications, the linear systems are ill-conditioned
or underdetermined, resulting in infinitely many solutions to
this inverse problem (as shown in Figure 1(a)). Therefore,
regularization constraints are of critical importance for ob-
taining useful solutions. For example, solutions can be ob-
tained by solving the following minimum `2-norm problem:

min
x
‖x‖2 subject to y = Φx, (5)

and the minimum `2-norm solution can be obtained by
x̂2 = (ΦTΦ)−1ΦTy. However, the minimum `2-norm so-
lution x̂2 is usually dense (i.e., with many nonzero entries),
thereby losing the discriminative ability to select the most
relevant samples for representing the observed sample y.

Since an observed sample is assumed to belong to one
certain class, it can usually be well represented using other

(a) (b)

(c) (d)

Figure 1. Sparse representation algorithms. (a) The original prob-
lem that solves y = Φx where Φ is a dense fat matrix. (b) The
proposed method solves wỹ = Wx where W is a tall sparse matrix.
(c) The proposed method further reduces W to a tall skinny matrix
WR and solves wỹ = WRxR. (d) The proposed method reduces
the matrix W to a tall skinny matrix WR with relaxed constraints
and solves wỹ = WRxR.

samples from that class. Such property has been exploited
extensively in the literature, e.g., local linear embedding,
image clustering, spectral methods, and face recognition
[5]. With a sufficiently large number of samples for each
class, the coefficient vector x is expected to be very sparse,
i.e., only a small portion of entries are nonzero. Regular-
ized via sparsity constraints, we seek a representation for
an observed sample y:

min
x
‖x‖0 subject to y = Φx, (6)

where ‖ · ‖0 : IRN → IR counts the number of nonzero
entries. However, solving the `0-norm minimization of an
underdetermined system is both numerically unstable and
NP-hard [5].

Recently, theories developed from sparse representation
and compressive sensing [8, 9, 13] suggest that if the solu-
tion of x is sparse enough, then the sparsest solution can be
recovered via the `1-norm minimization:

min
x
‖x‖1 subject to y = Φx, (7)

where the `1-norm sums up the absolute weights of all en-
tries in x. Note that the equality constraint in (7) can be re-
laxed to allow small noise, and the sparest solution x0 can be
approximately recovered by finding the minimum `1-norm
vector, x, that best explains the observed sample y:

min
x
‖x‖1 subject to ‖y−Φx‖2 ≤ ε, (8)

where ε is the allowed error tolerance. The problems
of solving (7) and (8) are convex programs which can
be solved by recasting them as linear programs (LP) and
second-order cone programs (SOCP) [7, 5], respectively.



2.2. Feature Extraction by Linear Transformation

Since directly operating on the original space of image
observations is computationally expensive due to extremely
high data dimensions, numerous feature extraction methods
have been proposed to project the original data onto a low
dimensional feature space. Thanks to the fact that most fea-
ture extraction methods require or can be approximated by
linear transformations, the mapping from the image obser-
vation space to the feature space can be characterized by a
matrix T ∈ IRd×m, where d << m. For example, T can
be the projection matrix obtained from principal component
analysis or simply a downsampling matrix.

Applying T on both sides of (4), we have

ỹ = Ty = TΦx = Fx, (9)

where ỹ = Ty is the feature vector of the observed sample
y and F = TΦ = [f1,1, f1,2, · · · , fi,ni

, · · · , fK,nK
] contains

the feature vectors of all samples. As the system of linear
equations ỹ = Fx is underdetermined and the solution x
is expected to be sparse, we can recover the solution x by
solving an `1-norm minimization problem similar to (8):

min
x
‖x‖1 subject to ‖ỹ− Fx‖2 ≤ ε. (10)

3. Fast Sparse Approximation with Prototypes
While sparse representations have demonstrated much

success in numerous applications [17, 14, 22, 30, 34, 33, 5],
solving the convex programs in (7) or (8) remains a chal-
lenging problem [11, 13, 5, 32]. Furthermore, a sufficiently
large number of samples are often necessary in order to ob-
tain good approximation. The high computational overhead
obstructs sparse representations for large-scale real-world
problems.

In this section, we present a fast algorithm by exploiting
the structure of the basis matrix F using sparse approxima-
tion. The proposed algorithm is motivated by the recent
advances in designing overcomplete dictionary for sparse
signal representation [2, 5]. Using either pre-defined dictio-
naries (e.g., overcomplete DCT and wavelets) or adaptive
dictionaries learned from data (e.g., K-SVD [2] and MOD
[15]), the basis matrix F consisting of feature vectors of
all samples can be well approximated by a linear combi-
nation of a small number of dictionary atoms with their cor-
responding sparse coefficients. With sparse approximation
on the basis matrix F, the problem becomes searching for
the sparsest solution on a sparse dictionary. Consequently,
the original `1-norm minimization problem with a large and
dense matrix in (10) can be reduced to one with a small and
sparse matrix, which can be solved very efficiently com-
pared to the original one. We first briefly describe the most
relevant works on dictionary learning for sparse representa-
tion, and then present how this can be utilized for fast `1-
norm minimization.

3.1. Learning Overcomplete Dictionary for Sparse
Representation

Sparse and redundant modeling of signals has been
proven to be very effective for signal reconstruction and
classification. Using an overcomplete dictionary D ∈
IRd×L that contains L prototypes or atoms as column vec-
tors, the signal f ∈ IRd can be represented (or well ap-
proximated) by a sparse linear combination of these atoms.
Specifically, there exists a sparse coefficient vector w such
that the reconstruction of f can be either exact f = Dw,
or approximated f ≈ Dw. Numerous algorithms have
been proposed for the design of dictionaries, including
predefined and adaptive ones. Predefined dictionaries in-
clude overcomplete DCT, wavelets, curvelts, contourlets,
steerable wavelets filters, short-time Fourier transforms, etc
[5]. Recently, adaptive dictionary learning algorithms have
been shown to achieve superior performance over the pre-
defined dictionaries in several image processing applica-
tions, including denoising [14], compression [6], inpainting
[23, 24], and super resolution [34]. Among all the existing
dictionary learning algorithms [27, 28, 21, 18, 15, 2], the
recently proposed K-SVD [2] is one of the most efficient
algorithms due to its simplicity and effectiveness.

Given a set of samples {fi}Ni=1, the K-SVD algorithm
finds the best dictionary D to represent the samples as sparse
decompositions by minimizing the reconstruction error in
`2-norm:

min
D,W

‖F− DW‖2F =

K∑
i=1

ni∑
j=1

‖fi,j − Dwi,j‖22

subject to ‖wi,j‖0 ≤ S0, (11)

where wi,j is the sparse representation for j-th samples of
class i, and S0 indicates the maximum allowed nonzero en-
tries in wi,j (i.e., the coding length). The sparsification pro-
cess alternates between the sparse coding and the dictionary
update stages iteratively to minimize the objective function
in (11). The detailed derivations of the K-SVD algorithm
can be found in [2].

3.2. Solving Equivalent `1-norm Minimization
Problems with Prototype Constraints

Assume that we have learned the dictionary D from a
set of samples, we can then approximate the matrix F of
(9) with D and its sparse representation W from (11). For
a new observation ỹ, we can find its atom decomposition
(i.e., the sparsest representation) over the learned dictionary
D. Then, the system of linear equations in the feature space
(9) can be rewritten as

ỹ ≈ Dwỹ ≈ DWx. (12)

If the learned dictionary D is capable of approximating the
signals ỹ well, i.e., ‖ỹ − Dwỹ‖2 ≤ ε for a small constant ε,



we can represent the signal ỹ as ỹ = Dwỹ + eỹ, where eỹ
is the residual with ‖eỹ‖2 ≤ ε. Similarly, the matrix F can
be expressed as F = DW + eF, where eF ∈ IRd×N is the
residual and ‖eF‖F ≤

√
Nε. By introducing the residual

signals, we can rewrite (12) as

Dwỹ+eỹ = DWx+eFx =⇒ D(wỹ−Wx) = eFx−eỹ. (13)

Recall that the solution x is assumed to be sparse, say s-
sparse (i.e., only s entries are non-zeros), we have

‖D(wỹ −Wx)‖2 ≤ (s+ 1)ε. (14)

Let z = wỹ −Wx, which is also a sparse vector1, we have
‖Dz‖2 ≤ (s + 1)ε. Using the restricted isometry property
(RIP) [9], we can determine whether the sparse coding with
a dictionary can be stably obtained. Recall a matrix D sat-
isfies the RIP of order sz with constant ρ = ρsz < 1 if

‖z‖0 ≤ sz =⇒ (1−ρ)‖z‖22 ≤ ‖Dz‖22 ≤ (1+ρ)‖z‖22. (15)

Suppose that z is sz-sparse and the dictionary satisfies the
RIP of order sz, we can derive an upper-bound for z using
(14) and (15):

(1− ρ)‖z‖22 ≤ ‖Dz‖22 ≤ (s+ 1)2ε2, (16)

and thus

‖z‖2 = ‖wỹ −Wx‖2 ≤
(s+ 1)ε√

(1− ρ)
= ε̃. (17)

The exact value of RIP constant is unknown (as comput-
ing the value is an NP-hard problem). However, suppose
that the RIP holds, D approximately preserves the Euclidean
length of sz-sparse signal. Thus we know that ‖z‖2 is upper-
bounded by a certain constant value, thereby ensuring that
the sparse solution x can be approximately recovered by
solving a much smaller problem. That is, the solution x
can now be obtained by solving the following equivalent
`1-minimization problem:

min
x
‖x‖1 subject to ‖wỹ −Wx‖2 ≤ ε̃. (18)

If the dictionary D is assumed to provide exact reconstruc-
tion for signals (i.e., allowing enough non-zero entries in
the coefficient vectors), then ε̃ = 0 and the problem in (18)
is reduced to

min
x
‖x‖1 subject to wỹ = Wx, (19)

as illustrated in Figure 1(b).

1 The vector z is based on two closely related sparse coefficients. In the
case of relaxed constraint, generally the vector z would be sparse as long
as the solution x is sufficiently sparse, say with s non-zero entries. Denote
the sparsity of the coefficient vector wỹ and the columns of matrix W as
sw. Then, we can derive an upper-bound for the sparsity of the vector z:
sz <= sw + s(sw − 1), which is the case that for each column in W
chosen, there is only one support match to wỹ (worst case).

We now present how the reduced `1-minimization prob-
lem can recover the same sparse solution with significant
gain in speed than existing algorithms. First consider the
exact reconstruction case in (19), where W is now of dimen-
sionL×N instead of d×N . At first glance, we have a larger
linear programming problem to solve. However, since W
contains only sparse column vectors, the equation in (19)
can be significantly reduced by identifying only the relevant
columns that have the same supports as wỹ, i.e., the sparse
representation of observed sample ỹ. The identification of
such columns (i.e., prototypes of each sample class) and
matrix reduction process are as follows. Given wỹ, we first
locate nonzero entries in wỹ, denoted as α = {i|wỹ(i) 6= 0}
and |α| = NR (as shown in Figure 1(b)). We then sweep
all the columns in W to check whether the nonzero entries
in each column vector matches the support of wỹ. For those
columns with non-identical supports, there is by no chance
that these columns will be used in representing the wỹ (a
straightforward result of the column space from linear al-
gebra). We can simply discard these columns and set the
corresponding coefficient values in x to zero, and have a re-
duced matrix WR which is usually much smaller than W.
For example, suppose wỹ has only three nonzero entries at
its 1st, 4th, and 9th elements. We will sweep over all the
columns of W and retain only those vectors with same sup-
ports (i.e., whose 1st, 4th, and 9th elements are nonzero) as
shown in Figure 1(b). After identifying columns that may
be used for representing wỹ, we can have the same exact
solution by solving the reduced `1-norm minimization:

min
xR
‖xR‖1 subject to wỹ = WRxR, (20)

where WR ∈ IRL×NR contains only relevant columns (with
the same support of wỹ) and xR ∈ IRNR , as shown in Figure
1(c). As NR is usually much smaller than N , the resulting
matrix WR is a skinny matrix.

3.3. Relaxed Prototype Constraints

As for the second case in (18), we use the same identi-
fication and reduction process to discard irrelevant column
vectors. However, since we allow small error ε̃ in recon-
structing wỹ, columns with partial overlapping supports as
wỹ can also be used in representing wỹ. In other words,
we relax the prototype constraints without using exactly the
same supports. Our motivation is that if the number of over-
lapped entries of a certain column vector with wỹ is small,
the likelihood of this column vector being used for repre-
senting wỹ is low as the reconstruction cost when selecting
this column is higher. Therefore, we propose a set of ap-
proximation criteria for reducing the problem in (18). We
denote these approximation criteria as {Rj}Jj=1, where j in-
dicates the number of minimal allowed overlapped entries
with the supports of wỹ and columns in W. For example, if
j = 2, then WRj

contains columns with supports that have



at least 2 overlapped entries with wỹ. , as illustrated in Fig-
ure 1(d). As j increases, the number of columns in WRj

decreases, resulting in a faster minimization process. How-
ever, it may introduce errors when j is large. It is actually
a trade-off between speed performance and accuracy. Nev-
ertheless, one can still have the solution as (19) by simply
discarding those columns with no overlapped entries with
wỹ.

3.4. Time and Space Complexity

There are three main steps in solving the reduced prob-
lem in (20). First, the matrix wỹ can be computed efficiently
using OMP with O(dLNR) flops [5, 31]. Second, W can
be computed from (11) using the K-SVD algorithm which
takes O(LN2

R + dL) flops [5, 31]. It then takes one sweep
over the columns of wỹ in order to obtain WR, and the time
complexity is O(LN). The state-of-the-art algorithm for
`1-norm minimization, Ax = b, recasts the original prob-
lem as a SOCP which is then solved by the log-barrier algo-
rithm [7, 12, 32]. At the core of the log-barrier algorithm,
it solves a linear system with quadratic constraints formed
by A>A using the conjugate gradient method [7, 12, 32].
That is, the computational costs for solving (4) and (20)
hinge on Φ>Φ and WR

>WR [4]. Thus, the time complex-
ity of the matrix multiplication for a dense matrix Φ and
WR is O(m2N2) flops and O(L2N2

R) flops, respectively.
The time complexity ratio between the original and pro-
posed method is mainly determined by the quadratic terms,
i.e., O( m2N2

L2N2
R+dLNR+LN2

R+dL+LN
) ≈ O( N2

N2
R

), as NR is
much smaller than N , and L and m are usually of the same
scale. As a result, the proposed algorithm achieves signifi-
cant quadratic speed-up.

In the intermediate step, the space complexity of the pro-
posed algorithm for storing the learned dictionary and basis
matrix W of (12) is O(LK + KN). However, the space
complexity for the reduced matrix wỹ is O(NR). As the
quadratic constraints of Φ>Φ and WR

>WR are computed
in solving `1-minimization, the original formulation again
has much higher space complexity than the proposed one,
with the ratio of O( N2

LK+KN+N2
R

) ≈ O( N2

N2
R

).

4. Experimental Results
In this section, we present experimental results on both

synthetic and real data sets to demonstrate the efficiency
and effectiveness of the proposed algorithm. All the ex-
periments were carried out using MATLAB implementa-
tions to solve the original and proposed relaxed `1-norm
minimization problems described in Section 2.2 as well
as Section 3.3 on a 1.8 GHz machine with 2 GB RAM.
The MATLAB code and processed data is available at
faculty.ucmerced.edu/mhyang/fsr.html.

4.1. Synthetic Data
We validate the effectiveness of sparse representations

and the efficiency of the proposed approximation for signal
classification in the presence of Gaussian white noise. We
first build a dictionary with all elements drawn from a Gaus-
sian random variable with zero mean and unit variance. The
columns of the dictionary are then normalized to unit norm.
Since samples from one specific class are assumed to lie
in certain subspace that can be modeled by prototypes, we
generate samples by first selecting five columns in the dic-
tionary and then obtain each sample by a linear combination
of the selected columns. In the first experiment, we generate
50 samples for each of the 10 classes, where the dimension
of each sample is 25. The test samples, assumed to lie in
one unknown subspace, are generated by randomly select-
ing one signal class and combining three training samples
from the selected class with random coefficients. Gaussian
noise of different levels are added to the test samples for
experiments. We generate 100 test samples to evaluate the
recognition capability of the classification based on sparse
representation. That is, for each test sample, we need to
solve (10) with matrix F ∈ IR25×500 for recognition (using
their sparse coefficients to find the class with minimum re-
construction error). In this experiment, we use the K-SVD
algorithm to learn the underlying dictionary D ∈ IR25×100

from F although other algorithms such as MOD can be sub-
stituted. In the sparse coding stage, OMP with sparsity fac-
tor 5 (i.e., the maximum allowed nonzero coefficients) is
used. After 10 iterations of the dictionary learning process,
we compute the sparse representations of samples in F and
ỹ. With these sparse representations, we can obtain the ap-
proximated solution of x by solving (18).

In Figure 2, we report the recognition rates of methods
with sparse representation from solving (10) and (18) where
the label is determined based on minimum reconstruction
error. It shows that these methods are able to recognize
correct classes even under substantial noise corruption (up
to 20%). Furthermore, the classifier with the proposed al-
gorithm (using (18)) achieves higher recognition rate than
the one with original one (using (10)). This is because that
when samples in F are coded with sparse representation us-
ing dictionary D, noise in the signals are also removed as a
by-product of `1-norm minimization.

In the second synthetic experiment, we present the run-
time performance of the proposed method and the state-of-
art `1-norm optimization solver with SOCP techniques [7].
We increase both the number of signal class and the feature
dimension of samples to 50. Following similar procedure
as described in the first experiment, we generate three sets
of training samples (500, 1000, 1500). Like the previous
experiment, 100 test samples are obtained in the same way
as previous setting with noise of zero mean and σ2 is set to
0.1. Table 1 shows the mean value of the recognition rates



Table 1. Comparison on recognition speed and accuracy using synthetic data sets.
Sample size 500 1000 1500

Method Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)
Original 96.0 0.7575 96.6 4.4548 97.0 12.3191
Proposed 93.0 0.0061 94.6 0.0114 96.0 0.0217
Speed-up 124.2 390.8 567.7

Figure 2. Recognition rates of the original and the proposed algo-
rithm in signal classification task with the presence of noise.

and the average computation time per test sample needed
in solving these two equations. Although the classifier with
sparse representation obtained by the original l1-norm min-
imization has slightly higher recognition rate in this setting,
however, the execution time increases rapidly as the number
of the samples increases. On the other hand, the classifier
with the proposed algorithm achieves comparable results in
accuracy but with significant speed-up. For the set of 1500
samples, our method solves the l1-norm minimization prob-
lem 567.7 times faster than the l1-magic solver (using log
barrier algorithm for SOCP) [7]. The reason that the pro-
posed method achieves slightly worse results in accuracy
may result from the imperfect approximation of the sparse
approximation using the K-SVD algorithm. We note that
this is a trade-off between accuracy and speed that can be
adjusted with parameters in the K-SVD algorithm (e.g., the
number of coefficients in OMP). It is also worth noticing
that l1-magic solver can handle up to 4500 data points (of 50
dimensions) whereas our algorithm is able to handle more
than 10000 data points.

4.2. Face Recognition
We use the extended Yale database B which consists of

2414 frontal face images of 38 subjects for experiments
[20]. These images were acquired under various lighting
conditions and normalized to canonical scale (as shown in
Figure 3). For each subject, we randomly select half of the
images as training samples and use the rest for tests.

Figure 3. Sample images from the extended Yale database B.

Since the original data dimension is very high (192 ×
168 = 32256), we use two feature extraction methods
(downsampling and PCA) to reduce their dimensionality
(i.e. difference choice of T in (9)). In the appearance-
based face recognition setup each image is downsampled to
12 × 11 pixels (i.e., d = 132). For PCA, we compute the
eigenfaces using the training images and retain the coeffi-
cients of the largest 132 eigenvectors. A dictionary of size
132× 264 (i.e., redundancy factor of 2) is trained using the
K-SVD algorithm with 10 iterations. For each sample, at
most 10 coefficients are used for sparse coding with OMP.

As shown in Table 2, the proposed algorithm achieves
comparable recognition rates but with significant speed-
up. Note that the required time to classify one image us-
ing the original l1-norm minimization is more than 20 sec-
onds, which makes it infeasible for real-world applications.
By increasing the redundancy of the dictionary or reducing
the maximum allowed number of coefficients for in repre-
senting an image (i.e., making the representation even more
sparser), we can achieve more speed-ups at the expense of
slight performance degradation.

Table 2. Recognition accuracy and speed using the Extended Yale
database B.

Feature Downsampled image PCA
Method Acc (%) Time (s) Acc (%) Time (s)
Original 93.78 20.08 95.01 13.17
Proposed 91.62 0.51 92.28 0.32
Speed-up 39.4 41.2

4.3. Single Image Super-Resolution
We apply the proposed algorithm to image super resolu-

tion using sparse representation [34], which assumes spar-
sity prior for patches from a high-resolution image. Two
dictionaries, one for the low-resolution image and the other
for the high-resolution one, are trained using patches ran-
domly selected from an image collection. The reconstructed
high resolution image can then be obtained by solving `1-
norm penalized sparse coding. Here the original `1-norm
penalized sparse coding adopted is based on the efficient
sparse coding algorithm in [19]. The dictionary size is set
6 times the feature dimensions in the low-resolution dic-
tionary. For each sample, 3 coefficients are used for spare
approximation by OMP.

In Table 3, we report the root-mean-square error (RMSE)
values in pixel intensity and the execution time of sparse



coding for all patches on four test images used in [34]:
Girl, Flower, Panthenon, and Racoon. The proposed al-
gorithm achieves double-digit speedups with slight per-
formance degradation (in terms of RMSE). However, the
RMSE measure is not the best metric for super resolution
as it does not directly reflect the visual quality and often-
times we do not have ground truth high-resolution images.
Figure 4 shows visual quality of the proposed algorithm is
much better than the results using bicubic interpolation, and
very similar to the results of [34].

Table 3. Execution time and RMSE for sparse coding on four test
images (scale factor = 3)

Image Original [19] Proposed
Method RMSE Time (s) RMSE Time (s) Speedup

Girl 5.6684 17.2333 6.2837 1.5564 11.07
Flower 3.3649 14.9173 3.8710 1.3230 11.27

Panthenon 12.247 35.1163 13.469 3.1485 11.15
Racoon 9.3584 27.9819 10.148 2.3284 12.02

(a) (b) (c) (d)
Figure 4. Image super-resolution visual results. (a) Ground-truth
high resolution image. (b) Bicubic interpolation. (c) Super-
resolution via sparse representation [34]. (d) Proposed method.

4.4. Human Pose Estimation
We apply the sparse representation to the problem of es-

timating human pose from single images. Here we pose this
problem as a regression that maps image observations to
three-dimensional joint angles. In training set, we are given
a number of silhouette images and their corresponding pose
parameters. The task is to infer the three-dimensional hu-
man pose of an unseen test image.

We validate the applicability of the sparse representation
to this regression problem and demonstrate the improve-
ment in speed with the proposed algorithm. We use the
INRIA data set [1] in which 1927 silhouette images are
used for training and 418 images for tests (some samples are
shown in Figure 5). The image descriptors we use are the
100-dimensional feature vectors (i.e., histogram of shape
context descriptors) as computed in [1].

Figure 5. Sample images from the INRIA data set [1].

For each test image, we find the sparse representation
by solving the l1-norm minimization problem. That is, the
resulting linear combination of training images best repre-
sent the test image with minimum reconstruction error (in
`2-norm). The estimated pose of the test image is then com-
puted by the same linear combination of the associated pose
parameters in the training set.

We report in Table 4 the execution time of solving the l1-
norm minimization problem with different numbers of pro-
totypes. We note that the mean estimation error of 3D joint
angles decreases as the number of prototypes is increased.
Overall, the speed can be improved significantly with only
slight performance degradation.

4.5. Multi-View Object Recognition
We compare the proposed method against the original al-

gorithm using the Columbia Object Image Library (COIL-
100) data set [26]. The COIL-100 data set has been widely
used in object recognition literature, and it consists of color
images of 100 distinct objects; 72 images of each object
placed on a turntable were captured at pose interval of 5
degrees. Typically, a few number of images from different
views with constant interval are selected as training samples
and the others are used for tests. For example, if 18 views
are selected from each object class for experiments, there
will be 1800 training and 5400 test images.

The 128 × 128 images are first converted to gray im-
ages and then downsampled to 32 × 32 pixels. Two kinds
of simple features (downsampled image and PCA) are used
for evaluations. Meanwhile, two different feature dimen-
sions are used for experiments. The dictionary size is set 4
times the feature dimensions (i.e., 4d). For each sample, 3
coefficients are used for spare representation by OMP. The
recognition rate and the average execution time for process-
ing one sample are summarized in Table 5. Overall, the
proposed algorithm achieves about 10000 times faster than
the original method with comparable accuracy (note the ex-
ecution time are recorded in different scales).

5. Conclusion
In this paper, we have presented a fast sparse representa-

tion algorithm that exploits the prototype constraints inhere
in signals. We show that sparse representation with `1-norm
minimization can be reduced to a smaller linear system and
thus significant gains in speed can be obtained. In addition,
the proposed algorithm requires much less memory than
the state-of-the-art `1-minimization solver. Experimental



Table 4. Comparison on pose estimation accuracy and speed under different number of prototypes using the INRIA data set.
Number of coefficients 3 6 9 12 15 Original l1-norm minimization
Mean error (in degrees) 9.1348 7.9970 7.4406 7.2965 7.1872 6.6513

Execution time (in seconds) 0.0082 0.0734 0.3663 1.1020 2.3336 24.69
Speed-up 3011.0 336.4 67.4 22.4 10.6

Table 5. Comparison on recognition speed and accuracy on the COIL-100 (note some values are listed in different scales).
Number of view 8 16 8 16

Recognition accuracy Execution time
Feature used Orig. (%) Ours (%) Orig. (%) Ours (%) Orig. (s) Ours (ms) Speed-up Orig. (s) Ours (ms) Speed-up

Downsampling(16× 16) 82.43 80.93 90.01 87.43 6.85 3.2 2140.6 52.73 3.9 13520.5
Downsampling(10× 10) 75.08 74.28 84.75 84.00 4.13 3.9 1059.0 48.02 5.2 9234.6

PCA: 256 84.56 82.08 91.03 89.22 3.71 3.3 1124.2 29.58 3.8 7784.2
PCA: 100 81.23 79.23 90.58 87.72 2.54 3.6 705.6 21.00 5.6 3750.0

results on several image and vision problems demonstrate
that our algorithm is able to achieve double-digit gain in
speed with much less memory requirement and comparable
accuracy.

Our future work will focus on extending the proposed
fast algorithm for learning discriminative sparse representa-
tions for classification problems. We are also interested in
analyzing the interplay between RIP assumption and the ef-
fectiveness of the proposed method. As the proposed algo-
rithm is able to handle large-scale data collections, we will
explore other real-world applications such as image search
and visual tracking.
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