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Abstract
We address the problem of estimating human pose in

video sequences, where rough location has been deter-
mined. We exploit both appearance and motion information
by defining suitable features of an image and its temporal
neighbors, and learning a regression map to the parameters
of a model of the human body using boosting techniques.
Our algorithm can be viewed as a fast initialization step for
human body trackers, or as a tracker itself. We extend gra-
dient boosting techniques to learn a multi-dimensional map
from (rotated and scaled) Haar features to the entire set of
joint angles representing the full body pose. We test our
approach by learning a map from image patches to body
joint angles from synchronized video and motion capture
walking data. We show how our technique enables learning
an efficient real-time pose estimator, validated on publicly
available datasets.

1. Introduction
An important problem in modern computer vision is full

body tracking of humans in video sequences. In this work
we focus in particular on estimating the 3D pose of a kine-
matic model of the human body from images. Such a task is
extremely challenging for several reasons. First there exist
multiple plausible solutions to a query, since we are trying
to recover 3D information from 2D images (this is espe-
cially true in the presence of partial occlusions). In order
to disambiguate such cases, we can use prior knowledge on
the most likely configurations, for example in a walking gait
we expect the occluded arm to be parallel to the torso.

Second, humans are articulated objects with many parts
whose shape and appearance change due to various nui-
sance factors such as illumination, clothing, viewpoint and
pose. This fact causes difficulties when using a discrimi-
native approach (e.g. [19]) to learn the map from images
to poses, or when using a generative approach (e.g. [5]) to
build a likelihood function as a matching score between a

configuration hypothesis and a given image. Consequently,
it is common to extract a feature representation which is
insensitive to nuisance factors. For pose estimation, a fre-
quent choice is binary silhouettes, which can be computed
from images using motion, a background model, or a com-
bination of the two [1, 15, 7]. Using only silhouettes is lim-
iting, since important appearance information is discarded,
which could help resolving ambiguous cases.

Finally, the space of admissible solutions, that is all pos-
sible positions and orientations of all body parts, is ex-
tremely large, and the search for the optimal configuration
in this space is a combinatorial problem. To address this
issue, most approaches proposed so far attempt to reduce
the feasible space using both static and dynamic constraints.
Static constraints restrict the search to the set of physically
feasible body configurations. Dynamic constraints work
by enforcing temporal continuity between adjacent frames,
specified through a set of motions. A common approach is
to learn a statistical model of the human dynamics and to
use it in a sampling scheme where, given the body config-
uration in the current frame and the motion model, we can
compute a probability distribution which allows us to make
informed guesses on the limb positions in the next frame.

Although learned motion models have been shown to
greatly improve tracking performance for simple motions
such as walking gaits, it is not clear how to efficiently com-
bine different models in order to represent the ample vari-
ety of motions that can be performed by humans. Indeed, in
the literature, examples of effective tracking are limited to a
small number of motions not too different from the training
dataset. Moreover, each learned model represents a partic-
ular motion at a particular speed, so the system is unlikely
to successfully track even an instance of the same motion if
performed at a speed different from the one used for learn-
ing.

In general, there are conditions where the tracker either
provides an inaccurate estimate or loses track altogether.
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This is particularly true for fast motions, where the body
limbs undergo large displacements from one frame to the
next. Recent approaches which have shown considerable
success for fast motions perform tracking by doing pose es-
timation independently at each frame [13]. Although we do
not argue that this is necessarily the right approach to track-
ing, we believe in the importance of having an efficient pose
estimator, which can take action whenever the tracking al-
gorithm fails. Therefore, the focus of this work is on build-
ing a fast body pose estimator for human tracking applica-
tions. Our pose estimator can be applied for automatically
initializing a tracking module in the first frame and reini-
tializing it every time it loses track, or by running it at every
frame, as a tracking algorithm.

The main distinction of our approach with respect to cur-
rent state-of-the-art human pose estimators is that we aim
to develop an algorithm which is fast enough to be run at
every frame and used for real-time tracking applications.
Unavoidably, to accomplish this we have to trade-off esti-
mation accuracy for execution speed.

Our work can also be seen as an element of an effec-
tive automatic body pose estimator system from video se-
quences. On one hand we have efficient body detectors [22]
which can estimate presence and location of people in im-
ages. On the other hand we have accurate but computation-
ally expensive dynamic programming approaches [5] which
can find the optimal pose estimate of an articulated body
model in a neighborhood of a proposed body configuration.
Our method bridges the gap between these two approaches
by taking an image patch putatively containing a human and
computing an initial guess of her body pose, which can be
later refined using one of the pose estimators available in
the literature.

An important characteristic of our approach is that, in
order to estimate the body pose, instead of restricting to bi-
nary silhouettes, we exploit both appearance and motion.
By doing so we can resolve some of the ambiguities that
we would face if trying to directly map silhouettes to poses
and which have led many researchers in this field to employ
sophisticated mixture models [2, 19, 20].

2. Related work
Estimating pose from a single image without any prior

knowledge is an extremely challenging problem. It has
been cast as deterministic optimization [5, 14], as inference
over a generative model [9, 11, 8, 18], as segmentation and
grouping of image regions [12], or as a sampling problem
[9]. Proposed solutions either assume very restrictive ap-
pearance models [5] or make use of cues, such as skin color
[23] and face position [11], which are not reliable and can
be found only in specific classes of images (e.g. sport play-
ers or athletes).

A large body of work in pose estimation focus on the

simpler problem of estimating the 3D pose from human
body silhouettes [1, 15, 19, 7]. It is possible to learn a
map from silhouettes to poses, either direct [1], one-to-
many [15] or as a probabilistic mixture [2, 19]. However,
as we mentioned in the introduction, silhouettes are inher-
ently ambiguous as very different poses can generate simi-
lar silhouettes, so to obtain good results either we resort to
complex mixture models [19] or restrict the set of poses [3],
or use multiple views [7]. Shakhnarovich et al. [16] demon-
strates that combining appearance with silhouette informa-
tion greatly improves the quality of the estimates. Assum-
ing segmented images, they propose a fast hashing function
that allows matching edge orientation histograms to a large
set of synthetic examples. We experimented with a simi-
lar basic representation of the body appearance, by masking
out the background and computing our set of oriented filters
on the resulting patch.

Besides silhouettes and appearance, motion is another
important cue that can be used for pose estimation and
tracking [4, 24]. Most works assume a parametric model
of the optical flow, which can be either designed [24] or
learned from examples [4]. But complex motion models
are not the only way to make use of motion information.
As shown in [22], simple image differences can provide an
effective cue for pedestrian detection. We follow this path,
and integrate our representation of human body appearance
with motion information from image differences.

Finally, recent work [13] advocates tracking by indepen-
dently estimating pose at every frame. Our approach has a
natural application in such a scenario, given that it can pro-
vide estimates in remarkably short order and, unlike [13],
one does not need to learn an appearance model specific to
a particular sequence.

3. Appearance and Motion Features for Pose
Estimation

The input to our algorithm is a video sequence, together
with the bounding boxes of the human body for each frame
as extracted by a detector (e.g. [22]). We do not require
continuity of the detector responses across frames, however
our approach cannot provide an estimate for the frames in
which the human body is not detected. If available, our ap-
proach may also take advantage of the binary silhouettes of
the person, which can be extracted from the sequence using
any background subtraction or segmentation scheme. How-
ever, in practical real-time scenarios the quality of the ex-
tracted silhouettes is generally low and in our experiments
we noticed that using bad silhouettes degrades the estimator
performance.

In this section we introduce our basic representation of
appearance and motion for the pose estimation problem. We
use a set of differential filters tailored to the human body to
extract essential temporal and spatial information from the



images. We create a large pool of features, which later will
be used in a boosting scheme to learn a direct map from
image frames to 3D joint angles.

3.1. Motion and Appearance Patches
The starting point of our algorithm are patches contain-

ing the human body, extracted from the image frames us-
ing the bounding boxes provided by a human body detector.
Patches are normalized in intensity value and scaled to a
default resolution (64× 64 in our experiments).

We can use the silhouette of the human body (extracted
by any background subtraction technique) to mask out the
background pixel in order to improve learning speed and
generalization performance. However, this step is by no
means necessary: Given sufficient amount of data and train-
ing time, the boosting process automatically selects only the
features whose support lies mostly in the foreground region.
In our experiments we noticed that using low quality silhou-
ettes compromises performance, so we opted to omit this
preprocessing step.

Motion information is represented using the absolute dif-
ference of image values between adjacent frames:∆i =
abs(Ii − Ii+1). As done before, from the image difference
∆i we compute the motion patches by extracting the de-
tected patch. We could use the direction of motion as in
[22] by taking the difference of the first image with a shifted
version of the second, but in order to limit the number of
features considered in the training stage we opted for not
using this additional source of information. In Figure 2 we
can see some sample appearance and motion patches.

Normalized appearanceIi and motion∆i patches to-
gether form the vector input to our regression function:
xi = {Ii,∆i}.

3.2. Features for Body Parts
Our human pose estimator is based on Haar-like features

similar to the ones proposed by Viola and Jones in [22].
These filters measure the difference between rectangular ar-
eas in the image with any size, position and aspect ratio.
They can be computed very efficiently from the integral im-
age. However, in the context of this work a straightforward
application of these filters to appearance and motion patches
is not doable for computational reasons.

For detection of either faces or pedestrians, a small patch
of about20 pixels per side is enough for discriminating the
object from the background. But our goal is to extract full
pose information, and if we were to use similar resolutions
we would have limbs with area of only a few pixels. This
would cause their appearance to be very sensitive to noise
and would make it extremely difficult to estimate pose. We
chose the patch size by visual inspection, perceptually de-
termining that a64×64 image contains enough information
for pose estimation by a human observer. Unfortunately,
augmenting the patch size greatly increases the number of

(a) (b) (c)
Figure 1. Basic types of Haar features used in this work: edges
(a), thick (b) and thin (c) lines. Each of these features can assume
any position and scale within the estimation window (although for
scale some restrictions apply, see text for details). Each feature
can assume a set of18 equally spaced orientations in the range
[0, π], here we show the9 horizontal orientations, vertical ones are
obtained by swapping axes. The value of the feature is computed
by subtracting the sum of pixels values inside white regions from
pixels in black regions, scaled by their area. It is intuitive to see
how features (c) are suitable to match body limbs, while features
(a) and (b) can be used to match trunk, head and full body.

basic features that fit in the patch (approximately squared in
its area), therefore we need a strategy for selecting a good
subset for training.

Another weakness of these basic features is that, by us-
ing vertical rectangles only, they are not suited to capture
edges that are not parallel to the image axes. For pose es-
timation this is a serious shortcoming, since the goal is to
localize limbs which can have arbitrary orientation. There-
fore, we extended the set of basic Haar features by introduc-
ing their rotated versions, computed at a few major orienta-
tions, as shown in Figure1. Notice that these filters are very
similar to oriented rectangular templates commonly used
for detecting limbs in pose detection approaches [5, 13].
Oriented features can be extracted very efficiently from in-
tegral images computed on rotated versions of the image
patch. Notice that by introducing orientation in the features
we further increase their number, so a good subset selection
in the training process becomes crucial.

We experimented with various schemes for feature se-
lection. Among the possible configurations, we found that
one type of edge feature (Figure 1a) and two types of lines
features (Figure 1b and 1c) are the best performers. Each
feature can assume any of18 equally spaced orientations in
the range[0, π], and they can have any position inside the
patch. To limit the number of candidates, we restrict each
rectangle to have a minimum area of80 pixels, do not come
closer than8 pixels from the border, have even width and
even height.

With this configuration, we obtain a pool of about3 mil-
lion filters for each of the motion and image patches. Since
this number is still too high, we randomly selectK of these
features by uniform sampling. The result is a set of features
{fk(xi)}k=1,··· ,K that map motion and appearance patches
xi = {Ii,∆i} to real values.



4. Multidimensional Gradient Boosting
In this section we introduce a novel approach for learning

the regression map from motion and appearance features to
3D body pose.

We start with the robust boosting approach to regression
proposed in [6]. This algorithm is particularly suited to our
problem since it provides an efficient way to automatically
select from the large pool of filters the most informative
ones to be used as basic elements for building the regression
function. Our contribution is to extend the gradient boosting
technique [6] to multidimensional maps. Instead of learning
a separate regressor for each joint angle, we learn a vector
function from features to sets of joint angles representing
full body poses.

The advantage of learning multidimensional maps is that
it allows the joint angle estimators to share the same set of
features. This is beneficial because of the high degree of
correlation between joint angles for natural human poses.
The resulting pose estimator is sensibly faster than the col-
lection of scalar counterparts, since it uses a number of fea-
tures which grows with the effective dimension of the tar-
get space instead of with the number of joint angles. This
has some similarities with the work of Torralba et al. [21],
where detectors of a multiclass object classifier are trained
jointly so that they share set of features.

An approach closely related to ours is the multidimen-
sional boosting regression of Zhou et al. [25]. There, the
regression maps are linear combinations of binary functions
of Haar features, with the additional constraint that all re-
gressors have the same coefficients. Restricting the learned
maps to such a simple function class allows the authors to
derive a boosting-type gradient descent algorithm that mini-
mizes the least-squares approximation error in closed-form.
However, such a representation is not suited to fit multi-
dimensional maps having components at different scales,
it cannot be easily extended to include more complex ba-
sic functions such as regression trees, and most importantly
there is no sharing of features between regressors. We pro-
pose an approach that overcomes these limitations and can
successfully learn maps from image patches to 3D body
pose.

In the next section we review the basic gradient boost-
ing algorithm, then we derive our extension to multidimen-
sional mappings.

4.1. Gradient Treeboost
Given a training set{yi,xi}N

1 , with inputsxi ∈ Rn and
outputsyi ∈ R independent samples from some underlying
joint distribution, the goal of regression is to find a function
F ∗(x) that mapsx to y, such that the expected value of
a loss functionEx,y [Ψ(y, F (x))] is minimized. Typically,
the expected loss is approximated by its empirical estimate,
thus the regression problem can be written as:

F ∗(x) = argmin
F (x)

N∑
i=1

Ψ(yi, F (xi)). (1)

In this work we impose regularization by assuming an ad-
ditive expansion forF (x) with basic functionsh:

F (x) =
M∑

m=0

h(x;Am,Rm) (2)

where h(x;Am,Rm) =
∑L

l=1 alm1(x ∈ Rlm) are
piecewise constant functions ofx with valuesAm =
{a1m, · · · , aLm} and input space partitionRm =
{R1m, · · · , RLm)1. ForL = 2 our basic functions are de-
cision stumps, which assume one of two values according
to the response of a featurefkm(x) compared to a given
thresholdθm. In generalh is a L-terminal node Classifica-
tion and Regression Tree (CART)[10], where each internal
node splits the partition associated to the parent node by
comparing a feature response to a threshold, and the leaves
describe the final valuesAm.

We solve(1) by a greedy stagewise approach where at
each stepm we find the parameters of the basic learner
h(x;Am,Rm) that maximally decreases the loss function
(1):

Am,Rm = argmin
A,R

N∑
i=1

Ψ(yi, Fm−1(xi) + h(xi;A,R))

(3)

Since the basic learner is a piecewise-constant function,
solving (3) by gradient descent on the parameters is infea-
sible - it is easy to see that the partial derivatives ofh with
respect toRim are Dirac deltas.

We apply Gradient Treeboost [6], an efficient ap-
proximate minimization scheme solving (1) with a two-
step approach. At each stagem it uses the previ-
ous estimateFm−1 to compute the “pseudo-residuals”

ỹim = −
[

∂Ψ(yi,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

First it finds the input space partitionRm (a L-node
regression tree) by least-squares fitting the basic learner
h(x;A,R) to the pseudo residuals:

Ãm,Rm = argmin
A,R

NX
i=1

|ỹim − h(xi;A,R)|2 (4)

When the basic learnersh are decision stumps con-
structed from a pool ofK features, the solution to(4) is
found by estimating for each featurefkm the thresholdθm

and approximating valuesa1m, a2m minimizing (4), and
picking the one with the lowest error. This step is equiv-
alent to solving(3) assuming least-squares lossΨ(y, x) =

1Here we denote1(c) the function that is1 if condition c is true,0
otherwise.



|y − x|2. Then it computes the regression tree valuesAm

by optimizing the original loss functionΨ(y, F (x)) within
each partitionRlm, i.e. by finding the constant offsetalm

to the previous approximationFm−1 that best fits the mea-
surements:

alm = argmin
a

N∑
i=1

Ψ(yi, Fm−1(xi) + a)1(xi ∈ Rlm). (5)

The pseudo residuals̃yim and the tree predictionsalm de-
pend on the choice of the loss criterionΨ.

In the case of Least Squares (LS)Ψ(y, F (x)) = |y −
F (x)|2, the pseudo residuals are just the current residuals:

ỹim = yi − Fm−1(xi) (6)

and both input partitionR and function valuesA are com-
puted in the first step(4). In this case the Gradient Tree-
Boost algorithm reduces to(3).

Using Least-Absolute-Deviation (LAD orL1 error)
Ψ(y, F (x)) = |y − F (x)|, we have:

ỹim = sign(yi − Fm−1(xi))

alm = mediani:xi∈Rlm{yi − Fm−1(xi)}. (7)

An important feature of the Gradient TreeBoost algorithm
is that, before updating the current approximation, the es-
timated regression tree is scaled by a shrinkage parameter
0 < ν < 1, whereν controls the learning rate (smaller
values lead to better generalization):

Fm(x) = Fm−1(x) + ν

L∑
l=1

alm1(x ∈ Rlm). (8)

In our setting, the regions are defined by thresholdsθ on
filter responsesfk(x), wherefk is thek-th Haar filter com-
puted on the appearance and motion patchesx = {I,∆}.
For the case of degenerate regression trees with a single
node (decision stumps), we have:

hs(x; a1m, a2m, km, θm) =

�
a1m if fkm(x) ≤ θm

a2m if fkm(x) > θm

(9)

Notice that these basic learners are more general than the
ones proposed in [25], since we do not have the constraint
thata2m = −a1m. Additionally, while [25] is restricted to
decision stumps as basic functions, our boosting framework
supports general regression trees. As we show in the exper-
iments (Figure4), boosting Classification and Regression
Trees yields regressors clearly having higher accuracy than
boosted decision stumps.

4.2. Multidimensional Gradient TreeBoost
In this section we propose an extension to the Gradient

TreeBoost algorithm in order to efficiently handle multidi-
mensional maps.

Given a training set{yi,xi}N
1 with vector inputsxi ∈

Rn and outputsyi ∈ Rp, our goal is to find the mapF(x) :
Rn → Rp minimizing the lossΨ(y,F(x)).

As in the previous section, Multidimensional Treeboost
is derived by assuming that the mapF(x) can be expressed
as a sum of basic piecewise constant (vector) functions:

F(x) =
MX

m=0

h(x; {A1
m, · · · ,Ap

m},Rm) =

2
4
PM

m=0 h(x;A1
m,Rm)

· · ·PM
m=0 h(x;Ap

m,Rm)

3
5

(10)

and by minimizingEy,xΨ(y,F(x)) using the Gradient
Treeboost scheme described in the previous section.

Notice that (10) differs from applying the expansion (2)
to each element of the vector mapF(x) in that we restrict
all the basic functionshi(x) = h(x;Ai,Ri) to share the
same input space partition:Ri ≡ R. For our application,
this translates into requiring all the joint angle regressors to
share the same set of features, thereby substantially improv-
ing the efficiency of the representation.

Let us also point out the main difference with respect
to the multidimensional boosting regression of Zhou et al.
[25]. There, correlation between regressors is enforced
by restricting the basic functions to have the same ab-
solute value at each step, i.e.|ai

1m| = |ai
2m| ≡ am, i ∈

{1, · · · , p}. Such modeling assumption allows us to solve
(3) for least-squares loss with an efficient gradient based ap-
proach. However, it is clear that such a representation can
effectively describe only multidimensional processes with
equally scaled components, so a whitening preprocessing
step is required. Also, using a least-squares loss does not
provide robustness to outliers. Most importantly, we obtain
a different set of features for each output componenti, and
for high-dimensional output spaces this yields inefficiency
in the learned maps.

Using decision stumps on Haar feature responses as ba-
sic learners and assuming Least Squares or Least Absolute
Deviation loss functions we obtain the simple versions of
Multidimensional Gradient Treeboost shown in Algorithm
1. Here we give a brief outline of the main steps of the
algorithm.

The approximation is initialized in line 1 with the con-
stant function minimizing the loss function, i.e. either the
mean or the median of the training outputsyi depending on
the loss function. At line 3 the pseudo-residual vectors are
computed, as either the current training residualsyi−F (xi)
or their signs. Line 4 computes the regionsRlm by finding
optimal feature and associated threshold value: For every
featurefk, we compute the least-squares approximation er-



Algorithm 1 Multidimensional Gradient TreeBoost for Least-Squares (LS) and Least-Absolute-Deviation (LAD) loss.

1: F0(x) =

�
mean{yi}i=1,··· ,N LS
median{yi}i=1,··· ,N LAD

2: for m = 1 to M do

3: ỹim = (ỹ1
im, · · · , ỹp

im) =

�
yi − Fm−1(xi) , i = 1, · · · , N LS
ỹim = sign(yi − Fm−1(xi)) LAD

4: km, θm = argmink,θ

Pp
j=1 mina1,a2

PN
i=1

�
ỹj

im − hs(xi; a1, a2, k, θ)
�2

5: a1m,a2m =

�
mean{yi − Fm−1(xi)}i:fk(xi)<θ , mean{yi − Fm−1(xi)}i:fk(xi)≥θ LS

median{yi − Fm−1(xi)}i:fk(xi)<θ , median{yi − Fm−1(xi)}i:fk(xi)<θ LAD
6: Fm(x) = Fm−1(x) + νhs (x;a1m,a2m, km, θm)
7: end for

rors to the pseudo-residuals̃yim usingp vector stumpshs

whose inputs are the filter responsesfk(xi), and pick the
one with the lowest error. This is the most computationally
expensive part of the algorithm, since we need to evaluate
all featuresk = 1, · · · ,K on the entire training set. Notice
that the least-squares criterion allows us to efficiently find
the valuesai, since we only need to incrementally compute
the mean of the outputs sorted by feature value while we
search for the optimal threshold. Line 5 finds the two vec-
tor parametersa1,a2 of the basic stump learnerhs, which
are the constant predictions of the residuals in the two re-
gions found in the previous step. For least-squares they are
the valuesai computed in step 4, forL1 lossaj they are
the medians of the sample residuals. Line 6 adds the stump
classifierhs to the current vector function approximation
Fm, scaled by the learning rateν.

As the name suggests, this algorithm is not limited to
stumps but can be formulated for arbitrary decision trees.
For the sake of clarity, we presented here only the simplest
case. However, in the experiments we also show results
from applying Classification and Regression Trees (CART)
[10] as basic functionsh(x). These are decision trees mod-
eling a piecewise constant function, where each node of the
tree uses a featurefk and a thresholdθ to recursively split
the current region of the input space in two, and the terminal
leaves define the input space partitionRlm.

5. Experiments
In our experiments we used the synchronized video and

human motion dataset for human tracking and pose estima-
tion recently made publicly available by the Brown Group
[17]. The dataset consists of 4 views of people with motion
capture makers attached to their body walking in a circle,
see Figure2 for some sample frames. In our experiments
we use only the walking sequences for which both video
and motion data are available, having a total of three sub-
jects and2950 frames (first trial of subjects S1, S2, S3). Our
goal is pose estimation from a single view, therefore we use
only the images taken from a single camera (C1). In order
to assess the performance of our pose estimator and com-
pare it with alternative approaches to boosting regression

we trained the model using 5-fold cross-validation.
Motion information for this data consists in the 3D trans-

formations from a global reference frame to the body part
local coordinates. We have a total of10 parts (head, torso,
upper and lower arms, upper and lower legs). We represent
motion as the relative orientation of adjacent body parts ex-
pressed in the exponential map coordinates. By discarding
coordinates that have constant value in the performed mo-
tions we reduce to26 degrees of freedom.

The first step of our approach is to extract the human
body patches and scale them to the default resolution of
64× 64 pixels and normalized in intensity. It may be help-
ful to mask out the background pixels from the patches us-
ing binary silhouettes extracted by background subtraction.
However, in our experiments such a preprocessing step ac-
tually degrades performance, the reason may be the low
quality of the silhouettes employed. We then extract motion
patches as the differences between adjacent frames, scaled
and normalized as just described. Although eventually in
real applications the patches will be provided by a detector,
we used the calibration information available in the datasets
to draw the patches. Some sample output of this preprocess-
ing stage are reported in Figure 3.

To facilitate comparison with Zhou et al. [25], we nor-
malize the joint angle trajectories, so thaty is a zero-mean
unit-variance process. In this way each joint angle con-
tributes equally to the cost function (1), while better visual
results could be obtained by scaling the joint angles accord-
ing to their contribution to the final image.

Given a set of motion and appearance patchesxi with as-
sociated normalized joint anglesyi, we use our approach to
train a multidimensional boosting regressor for both least-
squares and least-absolute-deviation loss function, using ei-
ther decision stumps (Algorithm 1) or CART as basic learn-
ers, and compare with the results from our implementation
of [25]. At each iteration, for each patch we evaluated105

features randomly sampled from the pool of oriented filters
described in section 3.2. We experimentally found the opti-
mal learning rateν = 0.5, and run the boosting process until
the improvement on the training residual is negligible. We
also experimented with different basic functions, and ob-



Figure 2. Sample frames from the dataset, and extracted appearance and motion patches. There are3 subjects (S1, S2, S3), each performing
a pair of cycles in a circular walking motion, for a total of2950 frames (1180, 875 and895 respectively for each subject). In the first row
we show a sample frame for each subject. In the second row, we display appearance and motion patches, scaled to the default resolution
64× 64 and normalized in intensity.

Ground Truth Estimated Pose Ground Truth Estimated Pose Ground Truth Estimated Pose

Figure 3. Sample estimation results. First, third and fifth columns show the provided ground truth, while second, forth and last column
show the estimated pose. Samples in the last column show that, as we could expect, large estimation errors occur for poses characterized
by prominent self-occlusions.

tained best results using5-node Classification and Regres-
sion Trees. We believe that decision stumps do not perform
as well for this kind of problem because body part config-
urations for articulated objects such as humans are highly
dependent, and an approximation of the pose map (10) as
a sum of functions of single features cannot capture these
dependencies. On the other hand, CART trees ofn nodes
can model functions having arbitrary interactions between
n − 1 variables. Figure 4 shows mean and standard devia-
tion of theL1 andL2 pose error norms on the entire dataset
during validation, together with a plot of the errors on the
individual joint angles. Our approach outperforms[25] in
estimation accuracy. Rather surprisingly, the least-squares
approach outperforms the least-absolute-deviation in all set-
tings. Since we noticed similar results with other motion
representations (i.e. 2D marker positions), we believe that
this is due to the approximated nature of the algorithm for
non-squared loss, and for a dataset with few outliers the
benefits of theL1 criterion are overcome by the error in
the approximation. We also report the number of features
used by the trained regressor, that shows the advantage of

our multidimensional approach in selecting a smaller num-
ber of features over alternative approaches [25]. Besides
computational speed (about1.2 milliseconds per patch for
our Least-Squares CART regressor), notice the memory ef-
ficiency of our approach, given that each basic functions is
represented with the descriptions of the Haar features (ori-
entation and location of the rectangles), thresholds and out-
put values. Compare this with approaches based on exem-
plar matching or kernel machines [2, 20], which often need
to retain a large part of the training examples. In Figure 3
we show some sample motion and appearance patches to-
gether with the estimated pose represented as the outline of
a cylinder-based human model superimposed onto the orig-
inal images. Here we use a regressor trained using least-
absolute-deviation and 5-node CARTs as basic functions.
From these results it is clear that the lack of prior informa-
tion adversely affects the estimations of occluded parts.

6. Conclusions
In this work we proposed a novel approach to estimate

3D human poses from images. We derived an efficient al-
gorithm which can run in real time and extract full 3D body



Algorithm Mean Standard Number of Time

Deviation Features (s)

Zhou et al. [25] 0.3031 0.0750 52000 40.55
(0.3026) (0.0703)

LS stump 0.2818 0.0931 2000 4.22
(0.2777) (0.0885)

LAD stump 0.2922 0.1020 8000 16.14
(0.2757) (0.0909)

LS 5-CART 0.2736 0.1158 2850* 3.28
(0.2701) (0.1067)

LAD 5-CART 0.2996 0.0972 6000* 5.94
(0.2863) (0.0929)
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Zhou et al.
LS Stump
LAD Stump
LS 5−CART
LAD 5−CART

Figure 4. Pose Estimation Errors. (Left) Table showing mean and standard deviation of the relativeL2 error norm (i.e.||ŷi − yi||/||yi||)
for the entire dataset during validation phase. In brackets are the mean and standard deviation of relativeL1 error norm. We report results
for the multidimensional boosting [25] and our Multidimensional TreeBoost with both Least Squares (LS) and Least Absolute Deviation
(LAD) loss, using stumps and Classification and Regression Trees [10] with5 internal nodes as basic functions. We see that the best
performer (in bold) is the CART regressor with Least-Squares loss, while the approaches using LAD criterion do not score as well. For
each classifier we also report the number of features used (for CART regressors the * denotes an upper bound, for each evaluation only a
subset of features are computed) and the evaluation time on the entire dataset (2950 frames): The efficiency of our approach is evident.
(Right) Plot of mean values and standard deviations of the joint angle relative errors for each limb, in parenthesis the number of degrees of
freedom of the parts. From the plot we see that the highest of the errors concentrates on the limbs, since they are more prone to occlusions.

pose estimates from image patches containing humans. We
introduced a set of oriented Haar features to extract low-
level motion and appearance information from images. We
proposed a multidimensional boosting regression algorithm
which can handle efficiently the high dimensionality of the
output space. We tested our approach on calibrated video
and motion capture walking sequences, and showed how
it outperforms alternative approaches to multidimensional
boosting regression.
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