Fast Human Pose Estimation using Appearance and Motion
via Multi-Dimensional Boosting Regression

Alessandro Bissacco Ming-Hsuan Yang Stefano Soatto
Google, Inc. Honda Research Institute Computer Science Department
605 Arizona Avenue 800 California Street University of California, Los Angeles
Santa Monica, CA 90401 Mountain View, CA 94041 Los Angeles, CA 90095
bissacco@gmail.com mhyang@ieee.org soatto@cs.ucla.edu
Abstract configuration hypothesis and a given image. Consequently,

it is common to extract a feature representation which is

We address the problem of estimating human pose in, " - o
video sequences, where rough location has been deteriNsensitive to nuisance factors. For pose estimation, a fre-

mined. We exploit both appearance and motion information 9U€nt choice is binary silhouettes, which can be computed
by defining suitable features of an image and its temporal fl0M images using motion, a background model, or a com-
neighbors, and learning a regression map to the parameters.b_'”""t'o_n of the two [1, 15, 7]. Using only silhouettes is lim-

of a model of the human body using boosting techniques.'t'n_g’ since important appearance information is discarded,
Our algorithm can be viewed as a fast initialization step for Which could help resolving ambiguous cases.

human body trackers, or as a tracker itself. We extend gra-  Finally, the space of admissible solutions, that is all pos-
dient boosting technigues to learn a multi-dimensional map sible positions and orientations of all body parts, is ex-
from (rotated and scaled) Haar features to the entire set of tremely large, and the search for the optimal configuration
joint angles representing the full body pose. We test ourin this space is a combinatorial problem. To address this
approach by learning a map from image patches to body issue, most approaches proposed so far attempt to reduce
joint angles from synchronized video and motion capture the feasible space using both static and dynamic constraints.
walking data. We show how our technigue enables learning Static constraints restrict the search to the set of physically
an efficient real-time pose estimator, validated on publicly feasible body configurations. Dynamic constraints work

available datasets. by enforcing temporal continuity between adjacent frames,
specified through a set of motions. A common approach is
1. Introduction to learn a statistical model of the human dynamics and to

use it in a sampling scheme where, given the body config-
uration in the current frame and the motion model, we can
compute a probability distribution which allows us to make

An important problem in modern computer vision is full
body tracking of humans in video sequences. In this work
we focus In particular on estimating t_he 3D pose of a kine_— informed guesses on the limb positions in the next frame.
matic model of the human body from images. Such atask s ]
extremely challenging for several reasons. First there exist Although learned motion models have been shown to
multiple plausible solutions to a query, since we are trying greatly improve trapkmg performance for S'”.‘P'e motions
to recover 3D information from 2D images (this is espe- sych as walking gaits, it is not clear how to efficiently com-
cially true in the presence of partial occlusions). In order Pine different models in order to represent the ample vari-
to disambiguate such cases, we can use prior knowledge oty Of motions that can be performed by humans. Indeed, in

the most likely configurations, for example in a walking gait the literature, examples of effective tracking are limited to a
we expect the occluded arm to be parallel to the torso. small number of motions not too different from the training

Second, humans are articulated objects with many partsdataset. Moreover, each learned model represents a partic-

whose shape and appearance change due to various nutlar motion at a particular speed, so the system is unli_kely
sance factors such as illumination, clothing, viewpoint and to successfully track even an instance of the same motion if
pose. This fact causes difficulties when using a discrimi- Performed at a speed different from the one used for learn-

native approach (e.g. [19]) to learn the map from images '"9:
to poses, or when using a generative approach (e.g. [5]) to In general, there are conditions where the tracker either
build a likelihood function as a matching score between a provides an inaccurate estimate or loses track altogether.



This is particularly true for fast motions, where the body simpler problem of estimating the 3D pose from human
limbs undergo large displacements from one frame to thebody silhouettes [1, 15, 19, 7]. It is possible to learn a
next. Recent approaches which have shown considerablenap from silhouettes to poses, either direct [1], one-to-
success for fast motions perform tracking by doing pose es-many [15] or as a probabilistic mixture [2, 19]. However,
timation independently at each frame [13]. Although we do as we mentioned in the introduction, silhouettes are inher-
not argue that this is necessarily the right approach to track-ently ambiguous as very different poses can generate simi-
ing, we believe in the importance of having an efficient pose lar silhouettes, so to obtain good results either we resort to
estimator, which can take action whenever the tracking al- complex mixture models [19] or restrict the set of poses [3],
gorithm fails. Therefore, the focus of this work is on build- or use multiple views [7]. Shakhnarovich et al. [16] demon-
ing a fast body pose estimator for human tracking applica- strates that combining appearance with silhouette informa-
tions. Our pose estimator can be applied for automatically tion greatly improves the quality of the estimates. Assum-
initializing a tracking module in the first frame and reini- ing segmented images, they propose a fast hashing function
tializing it every time it loses track, or by running it at every that allows matching edge orientation histograms to a large
frame, as a tracking algorithm. set of synthetic examples. We experimented with a simi-

The main distinction of our approach with respect to cur- lar basic representation of the body appearance, by masking
rent state-of-the-art human pose estimators is that we aimout the background and computing our set of oriented filters
to develop an algorithm which is fast enough to be run at on the resulting patch.
every frame and used for real-time tracking applications.  Besides silhouettes and appearance, motion is another
Unavoidably, to accomplish this we have to trade-off esti- important cue that can be used for pose estimation and
mation accuracy for execution speed. tracking [4, 24]. Most works assume a parametric model

Our work can also be seen as an element of an effec-of the optical flow, which can be either designed [24] or
tive automatic body pose estimator system from video se-learned from examples [4]. But complex motion models
quences. On one hand we have efficient body detectors [22]are not the only way to make use of motion information.
which can estimate presence and location of people in im-As shown in [22], simple image differences can provide an
ages. On the other hand we have accurate but computationeffective cue for pedestrian detection. We follow this path,
ally expensive dynamic programming approaches [5] which and integrate our representation of human body appearance
can find the optimal pose estimate of an articulated body with motion information from image differences.
model in a neighborhood of a proposed body configuration.  Finally, recent work [13] advocates tracking by indepen-
Our method bridges the gap between these two approachedently estimating pose at every frame. Our approach has a
by taking an image patch putatively containing a human andnatural application in such a scenario, given that it can pro-
computing an initial guess of her body pose, which can bevide estimates in remarkably short order and, unlike [13],
later refined using one of the pose estimators available inone does not need to learn an appearance model specific to
the literature. a particular sequence.

An important characteristic of our approach is that, in
order to estimate the body pose, instead of restricting to bi-3. Appearance and Motion Features for Pose
nary silhouettes, we exploit both appearance and motion. Estimation
By doing so we can resolve some of the ambiguities that The input to our algorithm is a video sequence, together

we would face if trying to directly map silhouettes to poses i the hounding boxes of the human body for each frame
and Wh!ch have .Ied many researchers in this field to employas extracted by a detector (e.g. [22]). We do not require
sophisticated mixture models [2, 19, 20]. continuity of the detector responses across frames, however
our approach cannot provide an estimate for the frames in
2. Related work which the human body is not detected. If available, our ap-
Estimating pose from a single image without any prior proach may also take advantage of the binary silhouettes of
knowledge is an extremely challenging problem. It has the person, which can be extracted from the sequence using
been cast as deterministic optimization [5, 14], as inferenceany background subtraction or segmentation scheme. How-
over a generative model [9, 11, 8, 18], as segmentation ancever, in practical real-time scenarios the quality of the ex-
grouping of image regions [12], or as a sampling problem tracted silhouettes is generally low and in our experiments
[9]. Proposed solutions either assume very restrictive ap-we noticed that using bad silhouettes degrades the estimator
pearance models [5] or make use of cues, such as skin coloperformance.
[23] and face position [11], which are not reliable and can  In this section we introduce our basic representation of
be found only in specific classes of images (e.g. sport play-appearance and motion for the pose estimation problem. We
ers or athletes). use a set of differential filters tailored to the human body to
A large body of work in pose estimation focus on the extract essential temporal and spatial information from the



images. We create a large pool of features, which later will ‘ ‘ ‘ \ ‘ ‘ ‘ \

be used in a boosting scheme to learn a direct map from | |
image frames to 3D joint angles. | Y 1110
3.1. Motion and Appearance Patches (a) (b) (©)

The starting point of our algorithm are patches contain- Figure 1. Basic types of Haar features used in this work: edges
ing the human body, extracted from the image frames us-(a), thick (b) and thin (c) lines. Each of these features can assume
ing the bounding boxes provided by a human body detector.any position and scale within the estimation window (although for
Patches are normalized in intensity value and scaled to aScale some restrictions apply, see text for details). Each feature
default resolution4 x 64 in our experiments). can assume a set 8 equally spaced orientations in the range

We can use the silhouette of the human body (extracted[o’ﬂ_’ here we shovy the horizontal orientations, vertlca! ones are
by any background subtraction technique) to mask out theobtalned by swapping axes. The value of the feature is computed

back d pixel i der 1o i | . d and by subtracting the sum of pixels values inside white regions from
ackground pixel in order 1o Improve learning Speed an pixels in black regions, scaled by their area. It is intuitive to see

generalization perfor_mance. ) However, this step is by n_o how features (c) are suitable to match body limbs, while features
means necessary: Given sufficient amount of data and train<a) and (b) can be used to match trunk, head and full body.

ing time, the boosting process automatically selects only the
features whose support lies mostly in the foreground region.

In our experiments we noticed that using low quality silhou- . . i .
ettes compromises performance, so we opted to omit thisbasic features that fit in the patch (approximately squared in
preprocessing step. its area), therefore we need a strategy for selecting a good

Motion information is represented using the absolute dif- SUPset for training.
ference of image values between adjacent frames:=
abgl; — I,11). As done before, from the image difference
A; we compute the motion patches by extracting the de-
tected patch. We could use the direction of motion as in
[22] by taking the difference of the firstimage with a shifted
version of the second, but in order to limit the number of
features considered in the training stage we opted for not
using this additional source of information. In Figure 2 we
can see some sample appearance and motion patches.

Normalized appearancg and motionA; patches to-

Another weakness of these basic features is that, by us-
ing vertical rectangles only, they are not suited to capture
edges that are not parallel to the image axes. For pose es-
timation this is a serious shortcoming, since the goal is to
localize limbs which can have arbitrary orientation. There-
fore, we extended the set of basic Haar features by introduc-
ing their rotated versions, computed at a few major orienta-
tions, as shown in Figurk Notice that these filters are very
similar to oriented rectangular templates commonly used
. . . for detecting limbs in pose detection approaches [5, 13].
gether form the vector input to our regression function: Oriented features can be extracted very efficiently from in-
xi = {1, A} tegral images computed on rotated versions of the image
3.2. Features for Body Parts patch. Notice that by introducing orientation in the features

Our human pose estimator is based on Haar-like featuredVe further increase their number, so a good subset selection
similar to the ones proposed by Viola and Jones in [22]. IN the training process becomes crucial.
These filters measure the difference between rectangular ar- experimented with various schemes for feature se-

eas in the image with any Siz?'_ position and gspect r_atio‘lection. Among the possible configurations, we found that
They can be computed very efficiently from the integral im- one type of edge feature (Figure 1a) and two types of lines

age. Hoyvever, in thg context of this work a straig_htforward features (Figure 1b and 1c) are the best performers. Each
application of these filters to appearance and motion patcheg, .+ re can assume any f equally spaced orientations in

is not doable for computational reasons. the rang€0, 7|, and they can have any position inside the
hpatch. To limit the number of candidates, we restrict each
rectangle to have a minimum area8ofpixels, do not come
closer thar8 pixels from the border, have even width and
even height.

of about20 pixels per side is enough for discriminating the
object from the background. But our goal is to extract full
pose information, and if we were to use similar resolutions
we would have limbs with area of only a few pixels. This
would cause their appearance to be very sensitive to noise With this configuration, we obtain a pool of abdumnil-

and would make it extremely difficult to estimate pose. We |ion filters for each of the motion and image patches. Since
chose the patch size by visual inspection, perceptually de-this number is still too high, we randomly selé¢tof these
termining that &4 x 64 image contains enough information  features by uniform sampling. The result is a set of features

for pose estimation by a human observer. Unfortunately, {fk(xi)}k:l,m _x that map motion and appearance patches
augmenting the patch size greatly increases the number ok; = {1, A;} to real values.



4. Multidimensional Gradient Boosting N

In this se_ction we introduce_ anovel approach for learning F*(x) = argmin U(ys, F(x,)). 1)
the regression map from motion and appearance features to F(x) —
3D body pose. . . o .

. . . In_this work we |ml%ose re_%ularlz_atlon by assuming an ad-

We start with the robust boosting approach to regressionditive expansion fo (x) with basic functionsg::
proposed in [6]. This algorithm is particularly suited to our y
problem since it provides an efficient way to automatically F(x) — hix: A R 2
select from the large pool of filters the most informative (x) mz::o (i A, Rom) 2)
ones to be used as basic elements for building the regression I
function. Our contribution is to extend the gradient boosting Where h(x; Am, Rm) = 3.2 aml(x € Riyp) are
technique [6] to multidimensional maps. Instead of learning Pi€céwise constant functions of with values A,, =
a separate regressor for each joint angle, we learn a vectof@im, - ;aLm} and input space partitionR,, =

. 1t . 1 T , :
function from features to sets of joint angles representing {Fim;- -+, RLm)". For L = 2 our basic functions are de-
full body poses. cision stumps, which assume one of two values according

The advantage of learning multidimensional maps is that {0 the response of a featufé™ (x) compared to a given
fthresholdem. In generalh is a L-terminal node Classifica-

it allows the joint angle estimators to share the same set of’, ) .
features. This is beneficial because of the high degree offion and Regression Tree (CART)[10], where each internal

correlation between joint angles for natural human poses.nOde splits the partition associated to the parent node by

The resulting pose estimator is sensibly faster than the col-COmMParing a feature response to a threshold, and the leaves
describe the final valued,,, .

lection of scalar counterparts, since it uses a number of fea- )
tures which grows with the effective dimension of the tar- Ve Solve(1) by a greedy stagewise approach where at
each stepn we find the parameters of the basic learner

get space instead of with the number of joint angles. This ; X
has some similarities with the work of Torralba et al. [21], h<’f; Am; Rin) that maximally decreases the loss function

where detectors of a multiclass object classifier are trained\*/:
jointly so that they share set of features.

An approach closely related to ours is the multidimen- _
sional boosting regression of Zhou et al. [25]. There, the “Am:Rm = a[gg"”z Y (yi, Fm—r(xi) + h(xi3 A, R))
regression maps are linear combinations of binary functions ot 3)
of Haar features, with the additional constraint that all re-
gressors have the same coefficients. Restricting the learned Since the basic learner is a piecewise-constant function,
maps to such a simple function class allows the authors tosolving (3) by gradient descent on the parameters is infea-
derive a boosting-type gradient descent algorithm that mini- sible - it is easy to see that the partial derivatives ofith
mizes the least-squares approximation error in closed-form.respect taR;,,, are Dirac deltas.

However, such a representation is not suited to fit multi-  We apply Gradient Treeboost [6], an efficient ap-
dimensional maps having components at different scalesproximate minimization scheme solving (1) with a two-
it cannot be easily extended to include more complex ba-step approach. At each stage it uses the previ-

sic functions such as regression trees, and most importantlyous estimateF;,,_; to compute the “pseudo-residuals”
there is no sharing of features between regressors. We prog. - _ _ [6‘P(yi,F(xi)>}

pose an approach that overcomes these limitations and can’" OF) | p()=Fn1(x)

successfully learn maps from image patches to 3D body First it finds the input space partitioR,, (a L-node
pose. regression tree) by least-squares fitting the basic learner

x; A, R) to the pseudo residuals:

N

In the next section we review the basic gradient boost- h

ing algorithm, then we derive our extension to multidimen- _ R )

sional mappings. Am, R = argmlnz |Gim — h(xi; A, R)| 4)
A, i=1

4.1. Gradient Treeboost When the basic learners are decision stumps con-

Given a training sefy;, x; }, with inputsx; € R” and structed from a pool ofX features, the solution t64) is
outputsy; € R independent samples from some underlying foUnd by estimating for each featufé~ the threshold,,
joint distribution, the goal of regression is to find a function @nd approximating values,.,,, as,, minimizing (4), and
F*(x) that mapsx to y, such that the expected value of picking the one with the !owest error. This step is equiv-
a loss functionf , [¥(y, F(x))] is minimized. Typically, alent to solving(3) assuming least-squares loBgy, z) =
the expected loss is approximated by its empirical estimate, 1jjere we denote () the function that isl if condition ¢ is true, 0
thus the regression problem can be written as: otherwise.




ly — x|2. Then it computes the regression tree valugs 4.2. Multidimensional Gradient TreeBoost

by optimizing the original loss functiod (y, F(x)) within In this section we propose an extension to the Gradient
each partition??,,,, i.e. by finding the constant offset,, TreeBoost algorithm in order to efficiently handle multidi-
to the previous approximatiof,,—; that best fits the mea-  mensional maps.

surements: Given a training se{y;, x; }1 with vector inputsx; €

R™ and outputsy; € RP, our goal is to find the map'(x) :

N R™ — RP minimizing the loss? (y, F(x)).
Al = argminz U(y;, Fro—1(xi) +a)1(x3 € Ryp). (5) As in the previous section, Multidimensional Treeboost
a =1 is derived by assuming that the mBjfx) can be expressed

. . as a sum of basic piecewise constant (vector) functions:
The pseudo res_ldua%;s and the tree predictions,,, de-
pend on the choice of the loss criterign

M 1
In the case of Least Squares (L8)y, F'(x)) = |y — N ) B m=0 "0 A, Rim)
F(x)|2, the pseudo residuals are just the current residuals: ()= 3 B0 {Am, o AR} Rn) =

m=0 f\;{:o h(x; AN, Rom)
(10)
Uim = Yi — Fn1(x) (6)
and by minimizingEy ¥ (y,F(x)) using the Gradient
and both input partitiorR and function valuest are com-  Treeboost scheme described in the previous section.
puted in the first stef4). In this case the Gradient Tree- Notice that (10) differs from applying the expansion (2)
Boost algorithm reduces 13). to each element of the vector m&}jx) in that we restrict
Using Least-Absolute-Deviation (LAD of; error) all the basic functiong;(x) = h(x;. A%, R?) to share the
U(y, F(x)) = |y — F(x)|, we have: same input space partitiorR? = R. For our application,
this translates into requiring all the joint angle regressors to
Gim sign(y; — Frn_1(x3)) fsha:re]z the;cf same setf (:rf] features, tr;e:_eby substantially improv-
wo = mediancn, {4 — For(x0)). @) ing the efficiency of the representation.

Let us also point out the main difference with respect

An important feature of the Gradient TreeBoost algorithm {0 the multidimensional boosting regression of Zhou et al.
is that, before updating the current approximation, the es-[2°]- There, correlation between regressors is enforced
timated regression tree is scaled by a shrinkage parametePy restricting the basic functions to have the same ab-

0 < v < 1, wherev controls the learning rate (smaller SOlute value at each step, L, | = lab,| = am,i €
values lead to better generalization): {1,---,p}. Such modeling assumption allows us to solve
(3) for least-squares loss with an efficient gradient based ap-

proach. However, it is clear that such a representation can
effectively describe only multidimensional processes with

equally scaled components, so a whitening preprocessing
step is required. Also, using a least-squares loss does not

In our setting, Ehe regions are defined by threshélds provide robustness to outliers. Most importantly, we obtain
filter responseg”(x), wheref" is thek-th Haar filter com- 3 different set of features for each output comporigand

L
Fr(X) = Fp1(X) + v Y aim1(x € Riy).  (8)
=1

puted on the appearance and motion patohes {I, A}. for high-dimensional output spaces this yields inefficiency
For the case of degenerate regression trees with a singlgn the learned maps.
node (decision stumps), we have: Using decision stumps on Haar feature responses as ba-
sic learners and assuming Least Squares or Least Absolute
; K Deviation loss functions we obtain the simple versions of
aim if f (X) < Om . . . K .
hs (%3 a1m, a2m, km, Om) = om0 5 (%) > O Multidimensional Gradient Treeboost shown in Algorithm
(9) 1. Here we give a brief outline of the main steps of the
algorithm.

Notice that these basic learners are more general than the The approximation is initialized in line 1 with the con-
ones proposed in [25], since we do not have the constraintstant function minimizing the loss function, i.e. either the
thatas, = —a1,. Additionally, while [25] is restricted to ~ mean or the median of the training outpytsdepending on
decision stumps as basic functions, our boosting frameworkthe loss function. At line 3 the pseudo-residual vectors are
supports general regression trees. As we show in the expercomputed, as either the current training residyais F(x; )
iments (Figured), boosting Classification and Regression Or their signs. Line 4 computes the regiofis, by finding
Trees yields regressors clearly having higher accuracy tharpptimal feature and associated threshold value: For every
boosted decision stumps. featuref*, we compute the least-squares approximation er-



Algorithm 1 Multidimensional Gradient TreeBoost for Least-Squares (LS) and Least-Absolute-Deviation (LAD) loss.
. _ mear{yi}i:l,...,N LS
L Fo(x) _{ media{y;i}i—1,....n LAD
2: for m = 1to M do (xi)
i ~ _ (1 .. D _ yi—Fm,lxi 5 ’L:L,N LS
B Yim = G Bim) = { Fim = sign(y; — Fom_1(xi)) LAD
4 K, 0, = argming,g Zle Ming, ay Zf\;l (gjfm — hs(xi; a1, a2, k, 19))2
5 By, fgm — mear(y; — Frn1(xi)}ipkeyco > Meayi — o1 (Xi)}ipheyzo LS
' e mediafy: — Frm—1(xi)}iipk(x)<o - Medialyi — Fr—1(xi) }ipk(x,)<0 LAD
6: Fn (X) = Fm—l(x) + vh, (X; Aalm,a2m, knu am)

7: end for
rors to the pseudo-residugys,, usingp vector stumps, we trained the model using 5-fold cross-validation.
whose inputs are the filter responsg¥x;), and pick the Motion information for this data consists in the 3D trans-

one with the lowest error. This is the most computationally formations from a global reference frame to the body part
expensive part of the algorithm, since we need to evaluatelocal coordinates. We have a total If parts (head, torso,
all featurest = 1, --- , K on the entire training set. Notice upper and lower arms, upper and lower legs). We represent
that the least-squares criterion allows us to efficiently find motion as the relative orientation of adjacent body parts ex-
the values;, since we only need to incrementally compute pressed in the exponential map coordinates. By discarding
the mean of the outputs sorted by feature value while we coordinates that have constant value in the performed mo-
search for the optimal threshold. Line 5 finds the two vec- tions we reduce t@6 degrees of freedom.
tor parametera, a» of the basic stump learnér,, which The first step of our approach is to extract the human
are the constant predictions of the residuals in the two re-body patches and scale them to the default resolution of
gions found in the previous step. For least-squares they ar&4 x 64 pixels and normalized in intensity. It may be help-
the valuesa; computed in step 4, fof; lossa; they are ful to mask out the background pixels from the patches us-
the medians of the sample residuals. Line 6 adds the stumpng binary silhouettes extracted by background subtraction.
classifierh, to the current vector function approximation However, in our experiments such a preprocessing step ac-
F,., scaled by the learning rate tually degrades performance, the reason may be the low
As the name suggests, this algorithm is not limited to quality of the silhouettes employed. We then extract motion
stumps but can be formulated for arbitrary decision trees. patches as the differences between adjacent frames, scaled
For the sake of clarity, we presented here only the simplestand normalized as just described. Although eventually in
case. However, in the experiments we also show resultsreal applications the patches will be provided by a detector,
from applying Classification and Regression Trees (CART) we used the calibration information available in the datasets
[10] as basic functionk(x). These are decision trees mod- to draw the patches. Some sample output of this preprocess-
eling a piecewise constant function, where each node of theing stage are reported in Figure 3.

tree uses a featurg® and a threshold to recursively split To facilitate comparison with Zhou et al. [25], we nor-
the current region of the input space in two, and the terminal malize the joint angle trajectories, so thais a zero-mean
leaves define the input space partitigp, . unit-variance process. In this way each joint angle con-
. tributes equally to the cost function (1), while better visual
5. Experiments results could be obtained by scaling the joint angles accord-

In our experiments we used the synchronized video anding to their contribution to the final image.
human motion dataset for human tracking and pose estima- Given a set of motion and appearance patehegith as-
tion recently made publicly available by the Brown Group sociated normalized joint anglgs, we use our approach to
[17]. The dataset consists of 4 views of people with motion train a multidimensional boosting regressor for both least-
capture makers attached to their body walking in a circle, squares and least-absolute-deviation loss function, using ei-
see Figure2 for some sample frames. In our experiments ther decision stumps (Algorithm 1) or CART as basic learn-
we use only the walking sequences for which both video ers, and compare with the results from our implementation
and motion data are available, having a total of three sub-of [25]. At each iteration, for each patch we evaluatéd
jects and2950 frames (first trial of subjects S1, S2, S3). Our features randomly sampled from the pool of oriented filters
goal is pose estimation from a single view, therefore we usedescribed in section 3.2. We experimentally found the opti-
only the images taken from a single camera (C1). In order mal learning rater = 0.5, and run the boosting process until
to assess the performance of our pose estimator and comthe improvement on the training residual is negligible. We
pare it with alternative approaches to boosting regressionalso experimented with different basic functions, and ob-



! =
i el
[N =
\4 % /

Figure 2. Sample frames from the dataset, and extracted appearance and motion patches. Itaigeate (S1, S2, S3), each performing
a pair of cycles in a circular walking motion, for a total2s50 frames (180, 875 and895 respectively for each subject). In the first row
we show a sample frame for each subject. In the second row, we display appearance and motion patches, scaled to the default resolution
64 x 64 and normalized in intensity.
Ground Truth Estimated Pose Ground Truth Estimated Pose Ground Truth Estimated Pose

Figure 3. Sample estimation results. First, third and fifth columns show the provided ground truth, while second, forth and last column
show the estimated pose. Samples in the last column show that, as we could expect, large estimation errors occur for poses characterized
by prominent self-occlusions.

tained best results usirignode Classification and Regres- our multidimensional approach in selecting a smaller num-
sion Trees. We believe that decision stumps do not performber of features over alternative approaches [25]. Besides
as well for this kind of problem because body part config- computational speed (abouf milliseconds per patch for
urations for articulated objects such as humans are highlyour Least-Squares CART regressor), notice the memory ef-
dependent, and an approximation of the pose map (10) adiciency of our approach, given that each basic functions is
a sum of functions of single features cannot capture theserepresented with the descriptions of the Haar features (ori-
dependencies. On the other hand, CART trees nbdes entation and location of the rectangles), thresholds and out-
can model functions having arbitrary interactions between put values. Compare this with approaches based on exem-
n — 1 variables. Figure 4 shows mean and standard devia-plar matching or kernel machines [2, 20], which often need
tion of theL; and L, pose error norms on the entire dataset to retain a large part of the training examples. In Figure 3
during validation, together with a plot of the errors on the we show some sample motion and appearance patches to-
individual joint angles. Our approach outperforf@§] in gether with the estimated pose represented as the outline of
estimation accuracy. Rather surprisingly, the least-squaresa cylinder-based human model superimposed onto the orig-
approach outperforms the least-absolute-deviation in all setinal images. Here we use a regressor trained using least-
tings. Since we noticed similar results with other motion absolute-deviation and 5-node CARTSs as basic functions.
representations (i.e. 2D marker positions), we believe thatFrom these results it is clear that the lack of prior informa-
this is due to the approximated nature of the algorithm for tion adversely affects the estimations of occluded parts.
non-squared loss, and for a dataset with few outliers the .
benefits of thel, criterion are overcome by the error in  ©- Conclusions
the approximation. We also report the number of features In this work we proposed a novel approach to estimate
used by the trained regressor, that shows the advantage d8D human poses from images. We derived an efficient al-
gorithm which can run in real time and extract full 3D body



Joint Angle Estimation Errors

Algorithm Mean Standard | Number of | Time
Deviation Features (s)
Zhouetal. [25]| 0-3031 0.0750 52000 | 40.55
(0.3026) | (0.0703) g
LS stump 0.2818 | 0.0931 2000 422 |2
(0.2777) | (0.0885) £
LAD stump 0.2922 | 0.1020 8000 16.14 | ©
(0.2757) | (0.0909)
- 0.2736 | 0.1158 .
LS 5-CART ©.2701) | (01067) | 2850 3.28
i 0.2996 0.0972 .
LADS-CART | 588 | (0r00%6) 6000 5.94

I I
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Figure 4. Pose Estimation Errors. (Left) Table showing mean and standard deviation of the felaiver norm (i.e.||y; — y:||/||y:l])
for the entire dataset during validation phase. In brackets are the mean and standard deviation of redatarenorm. We report results

for the multidimensional boosting [25] and our Multidimensional Tree

Boost with both Least Squares (LS) and Least Absolute Deviation

(LAD) loss, using stumps and Classification and Regression Trees [105wiitternal nodes as basic functions. We see that the best
performer (in bold) is the CART regressor with Least-Squares loss, while the approaches using LAD criterion do not score as well. For

each classifier we also report the number of features used (for CART

regressors the * denotes an upper bound, for each evaluation only a

subset of features are computed) and the evaluation time on the entire d29a8&trgmes): The efficiency of our approach is evident.

(Right) Plot of mean values and standard deviations of the joint angle
freedom of the parts. From the plot we see that the highest of the erro

pose estimates from image patches containing humans. Wej9]
introduced a set of oriented Haar features to extract low-

level motion and appearance information from images. We [10]
proposed a multidimensional boosting regression algorithm[ll]
which can handle efficiently the high dimensionality of the
output space. We tested our approach on calibrated vided12]
and motion capture walking sequences, and showed how

it outperforms alternative approaches to multidimensional [13]
boosting regression. 4]
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