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Abstract
We introduce two appearance-based methods for clustering
a set of images of 3-D objects, acquired under varying il-
lumination conditions, into disjoint subsets corresponding
to individual objects. The first algorithm is based on the
concept of illumination cones. According to the theory, the
clustering problem is equivalent to finding convex polyhe-
dral cones in the high-dimensional image space. To effi-
ciently determine the conic structures hidden in the image
data, we introduce the concept of conic affinity which mea-
sures the likelihood of a pair of images belonging to the
same underlying polyhedral cone. For the second method,
we introduce another affinity measure based on image gra-
dient comparisons. The algorithm operates directly on the
image gradients by comparing the magnitudes and orienta-
tions of the image gradient at each pixel. Both methods have
clear geometric motivations, and they operate directly on
the images without the need for feature extraction or com-
putation of pixel statistics. We demonstrate experimentally
that both algorithms are surprisingly effective in clustering
images acquired under varying illumination conditions with
two large, well-known image data sets.

1 Introduction
Clustering images of 3-D objects has long been an active
field of research in computer vision (See literature review
in [3, 7, 10]). The problem is difficult because images of
the same object under different viewing conditions can be
drastically different. Conversely, images with similar ap-
pearance may originate from two very different objects. In
computer vision, viewing conditions typically refer to the
relative orientation between the camera and the object (i.e.,
pose), and the external illumination under which the images
are acquired. In this paper we tackle the clustering problem
for images taken under varying illumination conditions with
the object in fixed pose. Recent studies on illumination have
shown that images of the same object may look drastically
different under different lighting conditions [1] while differ-
ent objects may appear similar under different illumination
conditions [12].

Consider the images shown in Figure 1. These are im-
ages of five persons taken under various illumination con-

Figure 1: Images under varying illumination conditions: Is it pos-
sible to cluster these images according to their identities?

ditions. For this collection of images, there are two natural
clustering problems to be considered: we can cluster them
by external illumination condition or by identity. Since the
shapes of human faces are very similar, the shadow forma-
tions in images taken under the same lighting condition are
more or less the same for different individuals. This can
be exploited directly by computing some statistical corre-
lations among pixels. Numerous algorithms for estimating
lighting direction have been proposed in the literature, e.g.,
[18, 25, 27], and undoubtedly many of these algorithm can
be applied with few modifications to clustering according to
lighting. On the other hand, clustering by identity is consid-
erably more challenging. In face recognition for instance,
the appearance variation of the same person under different
lighting condition is almost always larger than the appear-
ance variation of different people under the same lighting
condition [1].

A first glance at the images from the CMU PIE database
[23] (See sample images in Figure 1) or the Yale Face
Database B [11] (See sample images in Figure 6) may sug-
gest that it is a daunting task to develop an unsupervised



clustering algorithm to group these images based on iden-
tity. However, the main contribution of this paper is to show
that such pessimism is unwarranted. We propose two sim-
ple algorithms for clustering unlabeled images of 3-D ob-
jects acquired at fixed pose under varying illumination con-
ditions.

Given a collection of unlabeled images, our clustering
algorithms proceed by first evaluating a measure of similar-
ity or affinity between every pair of images in the collection;
this is similar to many previous clustering and segmentation
algorithms e.g., [13, 22]. The affinity measures between all
pairs of images form the entries in an affinity matrix, and
spectral clustering techniques [6, 17, 26] can be applied to
yield clusters. The novelty of this paper is in the two dif-
ferent affinity measures that form the basis of two different
algorithms.

For a Lambertian object, it has been proven that the set of
all images taken under all lighting conditions forms a con-
vex polyhedral cone in the image space [4], and this polyhe-
dral cone can be approximated well by a low-dimensional
linear subspace [2, 8, 20]. Recall that a polyhedral cone
in IRs is defined by a finite set of generators (or extreme
rays) {x1, · · · , xn} such that any point x in the cone can be
written as a linear combination of {x1, · · · , xn} with non-
negative coefficients. With these observations, the k-class
clustering problem for a collection of images {I1, · · · , In}
can be cast as finding k polyhedral cones that best fit the
data.

For each pair of images Ii, Ij , we define a non-negative
number aij , their conic affinity. Intuitively, aij measures
how likely Ii and Ij come from the same polyhedral cone.
The major difference between the conic affinity we intro-
duce here and other affinity measures commonly defined in
other clustering and segmentation problems, e.g., [13, 22],
is that the conic affinity has a global characteristic while
other affinity measures are purely local (e.g., affinity be-
tween neighboring pixels). The algorithm operates directly
on the underlying geometric structures, i.e., the illumination
cones. Therefore, potentially complicated and unreliable
procedures such as image features extraction or computa-
tion of pixel statistics can be completely avoided.

While the algorithm outlined above exploits the hidden
geometric structures (the convex polyhedral cones) in the
image space, the second algorithm exploits the effect of the
3-D geometric structure of a Lambertian object on its ap-
pearances under varying illumination. In [5], it has been
shown that there is no such notion of illumination invariants
that can be extracted from an image. However, [5] demon-
strated that image gradients can be utilized in a probabilistic
framework to determine the likelihood of two images orig-
inating from the same object. The important conclusion of
[5] is that while the lighting direction can be random, the
direction of the image gradient is not. The second algo-

rithm utilizes directly this illumination insensitive property
of the image gradient vector. For a pair of images, we de-
fine another affinity measure, the gradient affinity. The im-
age gradient vectors at each pixel are first computed. The
magnitude and orientation of the image gradient vectors at
the corresponding pixels are compared, and the results are
aggregated over the entire image to form the gradient affin-
ity.

The first algorithm computes the affinity measures glob-
ally in the sense that the affinity between any pair of images
is actually determined by the entire collection. The second
algorithm, more akin to the usual approach in the literature,
computes the affinity between a pair of images using just
two images. Both methods are straightforward to imple-
ment. We will demonstrate experimentally that these two
simple algorithms are surprisingly effective when applied to
cluster large collections of unlabeled images. Unlike some
clustering problems [13] studied earlier, the clustering prob-
lem studied in this paper benefits greatly from many struc-
tural results concerning illumination effects that emerged in
the past few years, e.g., [2, 4, 20]. It is clear from Figure
1 that a direct approach using the usual L2-distance metric
coupled with standard clustering techniques will not yield
promising results. However, this paper shows that it is pre-
cisely the use of these subtle structural results which is the
gist of the problem; simple and effective solutions can be
designed by appealing directly to these structural results.

This paper is organized as follows. In Section 2, we
present the two clustering algorithms. Two large image data
sets developed for studying illumination variation effects,
the CMU PIE database and the Yale database B, are used for
the experiments. The results and comparisons with other al-
gorithms are reported in Section 3. We conclude this paper
in Section 4 with remarks on this work and future research
plans.

2 Clustering Algorithms
In this section, we detail the two proposed clustering al-
gorithms. Schematically, they are similar to other cluster-
ing algorithms previously proposed, e.g., [3, 22]. That is,
we define similarity measures between all pairs of images.
These similarity or affinity measures are represented in a
symmetric N by N matrix A = (aij), i.e., the affinity ma-
trix. The second step is a straightforward application of any
standard spectral clustering method [17, 26]. The theoreti-
cal foundation of these methods has been studied quite in-
tensively in combinatorial graph theory [6]. The novelty
of our clustering algorithms lay in the definition of the two
affinity measures described below.

This section is organized as follows. In the first subsec-
tion, we give the definition of conic affinity and the moti-
vation behind the definition. In the second subsection, we
describe an affinity measure based on image gradients. For
completeness, we include a brief description of the spectral



clustering method used in this paper. The final subsection
presents the K-subspaces clustering algorithm, which is a
generalization of the usual K-means algorithm. According
to [2, 20], we know that images from each cluster should
be well approximated by some low dimensional linear sub-
space. The K-subspace algorithm is designed specifically
to ensure that the resulting clusters have this property.

Let {I1, · · · , In} be a collection of unlabeled images.
We assume:

1. The images were taken from N different objects with
Lambertian reflectance. That is, there is an assignment
function ρ : {I1, · · · , In} → {1, · · · , N}.

2. For each cluster of images, {Ii|ρ(Ii) = z, 1 ≤ z ≤
N}, all images were taken with the same viewing con-
ditions (i.e., relative position and orientation between
the object and the camera). However, the external il-
lumination conditions under which the images were
taken may vary widely.

3. All images have the same number of pixels, s.

In the subsequent discussion, n and N will always de-
note the number of sample images and the number of clus-
ters, respectively.

2.1 Conic Affinity
Let C = {x1, · · · , xn} be points in the image space (i.e.,
the non-negative orthant of IRs) obtained by raster scan-
ning the images. We assume that there is no non-trivial
linear dependency among elements of C. This condition
is usual satisfied when 1) the dimension of the image space
s is greater than the number of samples n and 2) there are
no duplicate images in C. As mentioned in Section 1, the
clustering problem is equivalent to determining a set of k
polyhedral cones that best fit the input data based on the
theory in [4]. However, it is rather ineffective and ineffi-
cient to search for such a set of k polyhedral cones directly
in the high-dimensional image space.

The first step of our algorithm is to define a good met-
ric of the likelihood that a pair of points come from the
same cone. In other words, we want a numerical mea-
sure that can detect the conic structure underlying in the
high-dimensional image space. Recall that at a fixed pose,
the set of images of any object under all possible illumi-
nation conditions forms a polyhedral cone, and any im-
age in the cone can be represented as a non-negative lin-
ear combination of the cone’s generators (extreme rays).
For each point xi, we seek a non-negative linear com-
bination of all the other input samples that approximates
xi. In other words, we find non-negative coefficients
{bi1, · · · , bi(i−1), bi(i+1), · · · , bin} such that

xi =
n∑

j,j �=i

bijxj (1)

in the least square sense, and bii = 0 for all i.
Let {y1, · · · , yk} be a subset of the collection C, i.e., for

each j, yj = xk for some k. If xi actually belongs to the
cone generated by this subset, this will imply that b ij = 0
for any xj not in the subset. If xi does not belong to the
cone yet lies close to it, xi can be decomposed as the sum of
two vectors xi = xc

i + ri with xc
i the projection of xi on the

cone and ri, the residue of the projection. Clearly, xc
i can be

written as a linear combination of {y1, · · · , yk} with non-
negative coefficients. For ri, because of the non-negative
constraint, the non-negative coefficients in the expansion

ri =
n∑

j,j �=i

br
ijxj . (2)

will be dominated by the magnitude of r i. This follows
from the following simple proposition. The proof of the
proposition is omitted since it is straightforward. Note that
this proposition is false without non-negative constraint on
the coefficients. In addition, the proposition holds only for
image vectors, vectors in image space IRs with non-negative
components.

Proposition 2.1 Let I and {I1, · · · , In} be a collection of
images. Considered as vectors in the image space IRs, their
components are all non-negative. If I can be written as a
linear combinations of {I1, · · · , In} with non-negative co-
efficients:

I = α1I1 + · · · + αkIn (3)

where αi ≥ 0 for 1 ≤ i ≤ n, then αi ≤ I · Ii and αi ≤
‖I‖/‖Ii‖.

Therefore, we expect the coefficients in the expansion
of xi to reflect the fact that if xi were well-approximated
by a cone generated by {y1, · · · , yk}, then the correspond-
ing coefficients bij would be large (relatively) while others
would be small or zero. That is, the coefficients in the ex-
pansion should serve as good indicators of the hidden conic
structures.

Figure 2: Non-zero matrix entries for Left: A matrix using non-
negative linear least square approximations. Right: A matrix
using the usual linear least square approximation without non-
negativity constraints.



Another important characteristic of the non-negative
combinations is that there are only a few coefficients hav-
ing significant magnitude. Typically there are only a few
nonzero bij in Equation 3. This is indeed what has been
observed in our experiments as well as in prior work on
non-negative matrix factorization [14]. Figure 2 shows co-
efficients of the affinity matrix A (defined below) computed
with and without non-negative constraints using a set of 450
images of the Yale B database.

We form a matrix B by taking the coefficients in the ex-
pansion in Equation 1 as the entries of B = (b ij). We nor-
malize each column of B to so that the sum is 1. This step
ensures that the overall contribution of each input image is
the same. By construction, bij �= bji in general, i.e., the B
matrix is not symmetric. So we symmetrize B to obtain the
affinity matrix A = (B + BT )/2.

The time complexity of the algorithm is dominated by
the computation of the non-negative least square approxi-
mation for each point in the collection. For a collection with
a large number of images, solving the least square approx-
imation for every single image is time-consuming. There-
fore, we introduce a parameter m which gives the maxi-
mum number of images used in non-negative linear least
squares estimation. That is, we only consider the m closest
neighbors of xi in computing Equation 1. Here, the distance
involved in defining neighbors can be taken to be any sim-
ilarity measure. We have found that the usual L2-distance
metric is sufficient for the clustering task considered in this
paper.

The proposed algorithm, summarized in Figure 3, is very
easy to implement and the clustering portion of the algo-
rithm takes less than twenty lines of code in Matlab. The
last step involves an optional K-subspace clustering algo-
rithm which will be discussed in Section 2.4.

One previous clustering algorithm that shares some sim-
ilarities with ours is the work by Basri et. al. [3]. Both
methods exploit the underlying geometric structures in the
image space: appearance manifolds [16] vs. illumination
cones [4]. However, our approach differs fundamentally
from theirs in one crucial aspect: their method is based on
local geometry while ours is based on global characteristics.
This is because the geometric structures on which the two
algorithms operate are different. The algorithm proposed in
[3] deals mainly with clustering problems with pose varia-
tion but under fixed illumination conditions. The affinity is
computed based on local linear structures represented by the
tangent planes of the appearance manifold. The non-linear
nature of the appearance manifold is reflected by the local
affinity measures in the absence of a global linear structure.
However, it is clear that one is likely to obtain clustering re-
sults based on lighting directions instead of identity by ap-
plying such method to the images shown in Figure 1. Note
that under similar lighting conditions, the shadow forma-

1. Non-negative Least Square Approximation
Let {x1, · · · , xN} be the collection of input samples.
For each input sample xi, compute a non-negative lin-
ear least square approximation of xi by all the samples
in the collection except xi

xi ≈
∑

j,j �=i

bijxj

with bij ≥ 0 ∀j �= i, and set bii = 0. Normalize
{bi1, · · · , bik}:

bij =
bij∑
l bil

.

(If N is too large, use only m closest neighbors of x i

for the approximation.)

2. Compute the Affinity Matrix
(a) Form the B matrix B = (bij).
(b) Let A = (B + BT )/2

3. Spectral Clustering
Using A as the affinity matrix, apply any standard
spectral method for clustering.

4. (Optional) K-subspace Clustering
Apply K-subspace clustering to further exploit the lin-
ear geometric structures hidden among the images.

Figure 3: Clustering algorithm based on conic affinity.

tions on different faces are roughly the same. This implies
that the tangential estimation in [3] would produce tangent
planes with tangent vectors equal to zeros in the shadowed
region. This is, put in the terminology of [3], images taken
under the same lighting conditions are more likely to have
tangent planes that are nearly parallel.

To cluster these images according to identity, the under-
lying linear structure is actually a global one, and the prob-
lem becomes finding polyhedral cones for each person in
which an image of that person can be reconstructed by a
non-negative linear combination of basis images (genera-
tors of the cone). Given an image I , our algorithm considers
all the other images in order to find the set of images (i.e.,
the ones in the same illumination cone) that best reconstruct
I . However, this cannot be realized by the approach in [3]
which operates only on a pairwise basis.

2.2 Gradient Affinity
In the previous two subsections, we have explored the possi-
bilities of defining affinities by exploiting the hidden conic
structures in the image space. In this section, we explore
the possibilities of defining affinities using the object’s 3-D
geometry. The effect of the object’s geometry on its images
taken under different illumination conditions has been an-
alyzed in great detail in [5]. There, it has been shown that
the important quantity to compute for studying illumination



variation is the image gradient. For a Lambertian surface,
the image gradient∇I depends on the object geometry (sur-
face normal n) and the albedo α as:

∇I = (ûκuSu + v̂κvSv) + (∇α)S · n. (4)

Here, the û and v̂ are local tangential directions defined
by the principal directions, κu and κv are the two principal
curvatures, and S is the lighting direction. Further analysis
based on this equation has shown that the magnitudes and
orientations of the image gradient vectors form a joint dis-
tribution which can be utilized to compute the likelihood of
two images originating from the same object.

We take a simpler approach using direct comparison be-
tween image gradients. That is, we sum over the image
plane the differences in the magnitude of the image gradi-
ent and the relative orientation (i.e., angular difference be-
tween the two corresponding image gradients). Given a pair
of images Ii and Ij . Let ∇Ii and ∇Ij denote their image
gradients. First, we define Mij as the sum over all pixels of
the squared-differences between the magnitudes of ∇I i and
∇Ij .

Mij =
s∑

w=1

(‖∇Ii(w)‖ − ‖∇Ij(w)‖)2 (5)

Next, we calculate the difference in orientation. O ij is de-
fined as the sum over all pixels of the squared-angular dif-
ferences

Oij =
s∑

w=1

(� (∇Ii(w),∇Ij(w))2 (6)

Prior to computing the gradients, the image intensities
are normalized to {0, 1}, and the angular difference be-
tween the two image gradients are also normalized from the
range of {−π, π} to {0, 1}. The algorithm, summarized in
Figure 4, is again very easy to implement.

2.3 Spectral Clustering
For completeness, we briefly summarize the spectral
method [17] that we use in this paper though other spec-
tral clustering methods could have been incorporated. Let
A be the affinity matrix, and D be a diagonal matrix where
Dii is the sum of i-th row of A. First, we normalize A
by computing M

′
= D−1/2AD−1/2. Second, we com-

pute the N largest eigenvectors w1, . . . , wk of M
′

and form
a matrix W = [w1w2 . . . wN ] ∈ IRn×N by stacking the
column eigenvectors. We then form the matrix Y from
W by re-normalizing each row of W to have unit length,
i.e., Yij = Wij/(

∑
j W 2

ij)
1/2. Each row of Y can now be

viewed as a point on a unit sphere in IRN . The main point of
[17] is that after this transformation, the projected points on
the unit sphere should form N tight clusters. These clusters
on the unit sphere can then be detected easily by an appli-
cation of the usual K-means clustering algorithm. We let
ρ(xi) = z (i.e., cluster z) if and only if row i of the matrix
Y is assigned to cluster z.

1. Compute Image Gradients
Let {I1, · · · , IN} be the collection of input images
with s pixels. Let ∇Ii denote the image gradient of
Ii. For 1 ≤ i, j,≤ N , define

Mij =
s∑

w=1

(‖∇Ii(w)‖ − ‖∇Ij(w)‖)2

and
Oij =

s∑

w=1

(� (∇Ii(w),∇Ij(w))2

2. Compute Affinity Matrix
Set the entries of the affinity matrix A as

Aij = exp(− 1
2σ2

(Mij + Oij))

for some real number σ.
3. Spectral Clustering

Using A as the affinity matrix and apply any standard
spectral method for clustering.

4. (Optional) K-subspace Clustering
Apply K-subspace clustering to further exploit the lin-
ear geometric structures hidden among the images.

Figure 4: Clustering algorithm based on gradient affinity.

2.4 K-Subspace Clustering
A typical spectral clustering method analyzes the eigenvec-
tors of an affinity matrix of data points where the last step
often involves thresholding, grouping or normalized cuts
[26]. For the clustering problem considered in this paper,
we know that the data points come from a collection of con-
vex cones which can be approximated well by low dimen-
sional linear subspaces. Therefore, each cluster should also
be well-approximated by some low-dimensional subspace.
We therefore exploit this particular aspect of the problem
and supplement with one more clustering step on top of the
results obtained from spectral analysis. The algorithm we
are using is a variant of the usual K-means clustering al-
gorithm. While the K-means algorithm basically finds K
cluster centers using point to point distance metric, the task
here is to find k linear subspaces using point to plane dis-
tance metric.

The K-subspace clustering algorithm, summarized in
Figure 5, iteratively assigns points to a nearest subspace
(cluster assignment) and, for a given cluster, it computes
a subspace that minimizes the sum of the squares of dis-
tance to all points of that cluster (cluster update). Similar to
the K-means algorithm, the K-subspace clustering method
terminates after a finite number of iterations. This is the
consequence of the following two simple observations:

1. There are only finitely many ways that the input data
points can be assigned to k clusters.

2. Define an objective function (of a cluster assignment)



1. Initialization
Starting with a collection {S1, · · · , SK} of K sub-
spaces of dimension d, where Si ⊂ IRs. Each sub-
space Si is represented by one of its orthonormal
bases, Ui (represented as a s-by-d matrix).

2. Cluster Assignment
We define an operator Pi = Is×s −UiU

T
i for each sub-

space Si. Each sample xi is assigned a new label ρ(xi)
such that

ρ(xi) = argmin
q

‖Pq(xi)‖ (7)

3. Cluster Update
Let Σi be the scatter matrix of the sampled labeled as
i. We take the eigenvectors corresponding to the top d
eigenvalues of Σi to form an orthonormal basis Ui of
S

′
i . Stop when S

′
i = Si for all i. Otherwise, go to Step

2.

Figure 5: K-subspace clustering algorithm.

as the sum of the square of the distance between all
points in a cluster and the cluster subspace. It is obvi-
ous that the objective function decreases during each
iteration.

The result of the K-subspace clustering algorithm de-
pends very much on the initial collection of k subspaces.
Typically, as for the case with K-means clustering, the al-
gorithm only converges to some local minimum which may
be far from optimal. However, after applying the clustering
algorithm using either the conic or gradient affinity, we have
a new assignment function ρ′, which is expected to be close
to the true assignment function ρ. We will use ρ ′ to initi-
ate the K-subspace algorithm by replacing the assignment
function ρ in the Cluster Assignment (see Figure 5) with ρ ′.

3 Experiments and Results
We performed numerous experiments using the Yale Face
Database and the CMU PIE database, and compared the
results with those obtained by other clustering algorithms.
From the Yale Face Database B, we drew two subsets;
in one subset all images are in frontal pose while in the
other (nonfrontal), the viewing direction is 22 degrees from
frontal. Each of these two subsets consists of 450 images
with 45 images of each person acquired under varying light
source directions ranging from frontal illumination to 70
degrees from frontal (See [11] for more details). Figure 6
shows sample images of two persons from these subsets.
Each image is then manually cropped and downsampled to
21 × 24 pixels for computational efficiency.

From the CMU PIE database, we used a subset (PIE 66)
of 21 frontal images of 66 individuals which were taken un-
der different illumination conditions but without an ambient

light. See Figure 1 for sample images from the PIE 66 sub-
set. Note that this is a more difficult subset than the subset
of the PIE database containing images taken with ambient
background light. Similar to pre-processing with the Yale
dataset, each image is manually cropped and downsampled
to 21 × 24 pixels. Clearly the large appearance variation of
the same person in these data sets makes the face recogni-
tion problem rather difficult [11, 24], and thus the clustering
problem extremely difficult. Nevertheless we will show that
our methods achieve very good clustering results, and out-
perform numerous alternative algorithms.

Figure 6: Sample images acquired at frontal view (Top) and a non-
frontal view (Bottom) in the Yale database B.

We tested several clustering algorithms with different se-
tups and parameters, where we further assume the number
of clusters, i.e., k, is known. Recent results on spectral clus-
tering algorithms show that it is feasible to select an appro-
priate k value by analyzing the eigenvalues [6, 17, 26, 19].
The distance metric for experiments with the K-means and
K-subspace algorithms are the L2-distance in the image
space, and the parameters were empirically selected. We re-
peated experiments several times to get average results since
they are sensitive to initialization and parameter selections,
especially in the high-dimensional space.

Table 1 summarizes the experimental results achieved
by each method: the proposed conic affinity method with
K-subspace method (conic+non-neg+spec+K-sub), vari-
ant of our method where K-means algorithm is used
after spectral clustering (conic+non-neg+spec+K-means),
method using conic affinity and spectral clustering with
K-subspace method but without non-negative constraints
(conic+no-constraint+spec+K-sub), the proposed gradient
affinity method (gradient aff.), straightforward application
of spectral clustering where K-means algorithm is utilized
as the last step (spectral clust.), straightforward application



COMPARISON OF CLUSTERING METHODS

Method
Error Rate (%) vs. Data Set

Yale B Yale B PIE 66
(Frontal) (Non-frontal) (Frontal)

Conic+non-neg 0.44 4.22 4.18
+spec+K-sub

Conic+non-neg 0.89 6.67 4.04
+spec+K-means

Conic+no-constraint 62.44 58.00 69.19
+spec+K-sub
Gradient aff. 1.78 2.22 3.97

Spectral clust. 65.33 47.78 32.03
K-subspace 61.13 59.00 72.42
K-means 83.33 78.44 86.44

Table 1: Clustering results using various methods.

of K-subspace clustering method (K-subspace), and the K-
means algorithm. The error rate is computed based on the
number of images that are assigned to the wrong cluster as
we have the ground truth of each image in these data sets.

Our experimental results suggest a number of conclu-
sions. First, the results clearly show that our methods us-
ing conic or gradient affinity outperform other alternatives
by a large margin. Comparing the results on rows 1 and 3,
they show that the non-negative constraints play an impor-
tant role in achieving good clustering results. Second, the
proposed conic and gradient affinity metric facilitates spec-
tral clustering method in achieving very good results. The
use of K-subspace further improves the clustering results
after applying conic affinity with spectral methods (See also
Figure 7). Finally, a straightforward application of the K-
subspace or K-means algorithm fails miserably.

COMPARISON OF CLUSTERING METHODS

Method
Error Rate (%) vs. Data Set

Yale B (Non-frontal) Yale B (Non-frontal)
Subjects 1-5 Subjects 6-10

Conic+non-neg 0 0
+spec+K-sub
Gradient+spec 8.90 6.67

K-sub

Table 2: Clustering results with high-resolution images.

To further analyze the strength of the conic and gradi-
ent affinities, we applied the proposed metrics to cluster
high-resolution images (i.e, the original 168× 184 cropped
images). Table 2 shows the experimental results using the
non-frontal images of the Yale database B. For computa-
tional efficiency, we further divided the Yale database B

into two sets. The results demonstrate that the method using
conic affinity metric and spectral clustering renders perfect
results. The experiments also show that applying the gra-
dient affinity metric to low-resolution images gives better
clustering results than that in high-resolution images. This
suggests that computation of gradient metric is more reli-
able in low-resolution images, and surprisingly such infor-
mation is sufficient for the clustering task considered in this
paper.
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Figure 7: Effects of parameter selection on clustering results with
the Yale database B.

For the conic affinity, the main computational load lies
in the non-negative least square approximation. When the
number of sample images is large, it is not efficient to use
all the other images in the data set for approximation. In-
stead, the non-negative least square are only computed for
m nearest neighbors of each image. Figures 7 and 8 show
the effects of m on the clustering results for the proposed
method with or without K-subspace clustering using the
Yale database B and the PIE database. The results show
that our method with conic affinity is robust within a wide
range of parameter selection (i.e., number of non-negative
coefficients in linear approximation).
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Figure 8: Effects of parameter selection on clustering results with
the PIE 66 (frontal) database.



4 Conclusion and Future Work
We have proposed two appearance-based algorithms for
clustering images of 3-D objects under varying illumina-
tion conditions. Unlike previous image clustering problems,
the clustering problem studied in this paper is highly struc-
tured. We have demonstrated experimentally that the algo-
rithms are very effective with two large data sets. The most
striking aspect of the algorithms is that the usual computer
vision techniques such as the image feature extraction and
computation of pixel statistics are completely unnecessary.

Our clustering algorithms and experimental results com-
plement the earlier results on face recognition [11, 24, 15].
Invariably, these algorithms aim to determine the underly-
ing linear structures using only a few training images. The
difficulty is how to effectively use the limited training re-
source so that the computed linear structures is close to the
real one. In our case, the linear structures are hidden among
the input images, and the task is to detect them for cluster-
ing.

The holy grail in image clustering is an efficient and
robust algorithm that can group images according to their
identity with both pose and illumination variation. While
illumination variation produces a global linear structure,
only local linear structures are meaningful for pose varia-
tion [3, 9]. Clustering with local linear structures has been
proposed in [19] based on the work of [21]. A clustering
method based on these algorithms and our work may there-
fore be able to handle both pose and illumination variation.
On the other hand, the algorithm we proposed can be ap-
plied to other problem domains where the data points are
known to originate from some linear or conic structures. We
will address these issues from combinatorial and computa-
tional geometry perspectives in our future work.
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