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A B S T R A C T

Human pose estimation is a challenging task due to significant appearance variations. An ensemble of models,
each of which is optimized for a limited variety of poses, is capable of modeling a large variety of human body
configurations.However, ensembling models is not a straightforward task due to the complex interdependence
among noisy and ambiguous pose estimation predictions acquired by each model.We propose to capture this
complex interdependence using a convolutional neural network. Our network achieves this interdependence
representation using a combination of deep convolution and deconvolution layers for robust and accurate pose
estimation. We evaluate the proposed ensemble model on publicly available datasets and show that our model
compares favorably against baseline models and state-of-the-art methods.

1. Introduction

Human pose estimation is challenging due to the wide variety of
appearances that can result from pose variations. One way to alleviate
the complexity is to cluster a training dataset so that a set of expert
models can be learned. Reducing the variation within each subset fa-
cilitates learning the expert model to accurately estimate the joint lo-
cations under a particular pose configuration. By combining each of the
expert models from one of the heterogeneous variations (i.e., different
types of pose variations), the ensemble of the expert models can capture
complicated appearance variation. We call these heterogeneous expert
models pose-modality (PM) models. For example, given an input image,
the configurations of different body parts may be correctly localized
using different PM models, e.g., PM models 1 and N correctly localize
the right and left lower arms, respectively (see (b) Testing stage of
Fig. 1).

In using the ensemble of PM models, it remains unclear how to
determine a final estimation from diverse responses of PM models.
Existing approaches combine the responses either by simply selecting
the most confident response (Moghimi et al., 2016) or averaging over
all the responses (Agostinelli et al., 2013; Ciresan et al., 2012;
Krizhevsky et al., 2012). Such heuristics, however, do not capture the
interdependency among the responses of PM models.

In this paper, we present a PM-ensemble (PME) model to infer body
configurations by modeling the interdependence among the responses

of PM models. As shown in Fig. 1(a), the model training process consists
of three stages. At stage 1, the training samples are partitioned into
subsets based on their similarity in a pose space. At stage 2, each PM
model is trained using training samples from each cluster. At stage 3,
we learn the PME model to incorporate all the responses to make the
final estimation. Fig. 1(b) shows an example of the inference proce-
dures. Given an input image, we use the learned PM models to localize
body joint positions independently. As the PM models are trained with
disjoint sets of training samples, the resultant joint heatmaps are typi-
cally diverse. Our PME model can selectively combine the correct pose
predictions and merges them to the final estimation.

We note while it may be feasible to train a large network in an end-
to-end fashion without pre-clustering, in practice it is rather challen-
ging as it requires a large amount of manually annotated images, highly
computational load and memory. The separated PM models can be
trained in an efficient distributed manner which is better in terms of
computational cost and memory capacity. In addition, it facilitates
analyzing the network modules for pose estimation.

The main contributions of this work are as follows. First, we propose
the PME model for human pose estimation that is capable of merging
diverse responses from heterogeneous PM models (Section 3). We de-
sign the PME model so that (i) it can better model the interdependence
among the diverse responses than previous clustering-based methods
(Bourdev and Malik, 2009; Johnson and Everingham, 2010, 2011;
Pfister et al., 2015; Sapp and Taskar, 2013) and (ii) it provides high-
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precision joint localization without reducing its spatial resolution
(Section 3.2). Second, we propose PM-dependent clustering of training
images for individual PM modeling (Section 3.1). The clustering
strategy is essential for making PM models heterogeneous, while other
CNNs for ensembling (Agostinelli et al., 2013; Ciresan et al., 2012;
Pfister et al., 2015; Sun et al., 2013) apply the same set of training data
(i.e., with no clustering) to expert model(s). Third, we propose a two-
stage training scheme to fine-tune each PM model for capturing a
limited pose variety while avoiding overfitting (Section 3.1).

The novelty of this work lies also in a practical and efficient design
for pose clusters using the ensemble network. While some components
are known, it requires the proposed algorithmic design to integrate the
modules. While it is feasible to train a large network without pre-
clustering in the end-to-end fashion, in practice it is very challenging as
it requires a large set of manually annotated images, considerable
memory and computational costs and getting stuck in bad local minima.
More importantly, we show the advantages of the proposed models over
the end-to-end approaches.

• The proposed method can represent the interdependency among
complex poses by a huge network consisting of multiple PM models
and the ensemble model. Such a huge network cannot be im-
plemented in the end-to-end fashion on limited memory on the GPU.
But, the separated PM models and the ensemble model can be
trained in an efficient, distributed manner in terms of computational

cost and memory capacity. In fact, memory capacity on the GPU at
our disposal (NVIDIA Titan X 12 GB) is fully occupied for training
only the ensemble model for 10 PM models.

• Through analyzing the intermediate heatmaps of the PM models
(e.g., how are they different? how is each one useful? how are they
merged?), we can better understand each model and improve the
overall performance.

• We also validate whether the performance can be improved by
updating the weights of PM models with the ensemble model. Our
results show that the performance remains the same or decreased in
some cases. We attribute this due to the difficulty in end-to-end
training by the current training scheme.

2. Related work

Pictorial structure models (PSMs). PSMs have been applied to human
pose estimation (Andriluka et al., 2009; Bourdev et al., 2010; Dantone
et al., 2013; Eichner et al., 2009, 2012; Ferrari et al., 2009; Puwein
et al., 2014; Ramakrishna et al., 2014; Sapp et al., 2011) because of
their ability for efficient and global optimization. Many extensions have
been proposed to improve PSMs, e.g., discriminative training
(Felzenszwalb et al., 2010; Yang and Ramanan, 2013), graphical
models with loops (Bergtholdt et al., 2010; Tran and Forsyth, 2010),
coarse-to-fine and hierarchical modeling (Sapp et al., 2010; Sun and
Savarese, 2011; Tian et al., 2012), appearance learning between parts

Fig. 1. Overview of the proposed ensemble model. (a)
Training stage. At stages 1, 2, and 3, (1) dataset clustering
based on pose similarity, (2) PM model training using each
pose cluster, and (3) PM-ensemble ConvNet training for in-
tegrating the responses of the PM models are performed, re-
spectively. (b) Testing stage. Given an input image, we first
use the trained PM models to estimate the joint heatmaps. The
PM-ensemble model then integrates the responses from all
models to localize the joint positions.
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(Chen and Yuille, 2014; Ukita, 2012), and a conditional random field
with a dense graph representation in Kiefel and Gehler (2014). While
global optimality of the PSM is attractive, its ability to represent com-
plex relations among parts is limited compared to deep neural net-
works.

ConvNet-based pose estimation. ConvNets have recently been applied
to pose estimation. Chen and Yuille (2014) use a ConvNet to learn the
appearance of parts within a PSM framework. In addition to appearance
modeling, a ConvNet can also model the distribution of joint locations.
For example, a ConvNet can directly estimate the joint
locations (Toshev and Szegedy, 2014) or estimate the pixel-wise like-
lihood of each joint location as a heatmap (Tompson et al., 2015; 2014).
Recent approaches explore sequential structured estimation to itera-
tively improve the joint locations (Carreira et al., 2016; Ramakrishna
et al., 2014; Singh et al., 2015; Wei et al., 2016). Pfister et al. (2015)
extend the ConvNet for pose estimation in still images to video by
combining warped responses across multiple frames using optical flow.
Our approach builds upon such state-of-the-art models. Specifically, we
use Pfister et al. (2015) and Wei et al. (2016) as our PM model for
upper-body and full-body pose models, respectively. In contrast to ex-
isting work that focuses on improving the performance of one single
model, our goal is to develop an ensemble method that can merge re-
sponses from multiple PM models.

Multi-modality of human poses. In Ouyang et al. (2014), different
types of visual cues such as part appearance and geometric deformation
between parts are integrated into a neural network for human pose
estimation. Non-maxima suppression is extended in order to integrate
multiple pose hypotheses in Burgos-Artizzu et al. (2013). However,
only one single model is trained using all the training data. On the other
hand, Johnson and Everingham (2010, 2011) and Sapp and
Taskar (2013) train multiple models with clustered training data. Si-
milar to Johnson and Everingham (2010, 2011); Sapp and
Taskar (2013), we also cluster the training dataset for learning PM
models. The main difference lies in that our approach integrates the
outputs of all PM models based on the interdependency among the
models, while Johnson and Everingham (2010, 2011); Sapp and
Taskar (2013) select only the model with the highest confidence.
Poselets (Bourdev and Malik, 2009) also adopt pose clustering to lo-
calize multiple target body configurations. While our PM models are
trained in a similar way, our primary focus is on how to effectively
combine the model responses rather than localization of each body part
using one single model.

Ensemble of neural networks. Model ensembling is widely used in ma-
chine learning and recently in the context of ConvNets. Ciresan et al. (2012)
apply ConvNets multiple times and average over their estimations for image
classification. Agostinelli et al. (2013) address image denoising by weighted-
average over the estimations from multiple ConvNets, each of which is

trained to remove a particular type of images noise (e.g., Gaussian, speckle).
In the context of face verification, Sun et al. (2013) show that using addi-
tional neural network layers to combine multiple ConvNets can further
improve the recognition accuracy.

The ensemble of neural networks has also been used for human pose
estimation. Pfister et al. (2015) merge the estimated body configura-
tions from adjacent video frames using a convolutional layer. In each
frame, the body configuration is estimated by the same model. Here,
using a single convolution layer as an ensemble model may be sufficient
for merging similar pose estimations (as the pose configurations in the
adjacent video frames are estimated by the same model). However, our
PM models may generate diverse pose estimations as the PM models are
trained with disjoint sets of training samples. The simple ensemble
method in Pfister et al. (2015) may fail to capture this diversity.

3. Ensemble model for human pose estimation

3.1. PM models

The main idea in PM modeling is to estimate a particular body
configuration with high accuracy (even at the expense of false locali-
zation for other types of body configurations). We show in Fig. 2 several
examples of such pose configurations clustered based on the arms. Each
PM model is fine-tuned over the respective clustered training samples.

With each trained PM model, we obtain the heatmap of each joint
location given an input image. As demonstrated in Pfister et al. (2015),
the multi-modality (i.e., high confidence at multiple spatial locations)
in the heatmap allows us to better capture the ambiguity of the esti-
mated joint locations compared to directly regressing the 2D joint co-
ordinates. In our PME model, therefore, heatmaps are fed into the PME2

because the interdependence among joint locations estimated by mul-
tiple PM models is complex and ambiguous.

For effective PM modeling, we discuss two important aspects: (1)
data clustering strategy and (2) model fine-tuning.

Clustering of training data. Clustering pose samples using a full-body
configuration (as done in (Johnson and Everingham, 2010, 2011))
produces a larger variation in each pose cluster. The large variation in
the cluster prevents the PM model from learning particular body con-
figurations. To facilitate the PM model learning, our strategy for pose
clustering is to use a partial body region as a pose feature. In our im-
plementation, the pose feature is computed from the configuration of
arms, i.e., shoulder, elbow, and wrist. This is because the pose

Fig. 2. Visualization of the mean poses and the scatter plots of the arm poses from each cluster. Each column represents each cluster. The first five columns show clusters obtained by
clustering pose based on right arm positions. The rest five columns are for the left arm. While the configurations of the upper arm are similar within each cluster, the lower arm
configurations are significantly different. The PM models trained using the training samples in the respective cluster may thus have diverse estimations for a given image.

2 While pose estimation models used in our experiments (i.e., (Pfister et al., 2015) and
(Wei et al., 2016)) produce the heatmap of each joint location, many other models di-
rectly infer the joint (x, y) locations. A heatmap can be produced from the joint location
with the Gaussian distribution centered on the location.
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configuration of the arms is larger than that of other body parts and so
appropriate for making PM models more heterogeneous. To obtain
tighter clusters, we apply pose clustering to all training data in-
dependently using each of the left and right arms. Given K clusters in
each arm, we obtain 2K clusters in total. Our experiments suggest that
pose clustering using each of the left and right arms achieves improved
accuracy than pose clustering using the both arms. We attribute this to
the smaller variation of human poses in a partial body region.

We use the K-means clustering algorithm with a feature vector fp of
the form:

= …θ θ θ θf (sin , cos , , sin , cos ),p N N1 1 (1)

where N is the number of joints in a feature vector (i.e., =N 2 in our
experiments) and θ denotes an angle between adjacent body parts. For
example, θ1 is an angle between two line segments defined by a neck, a
shoulder, and an elbow, and θ2 defined by a shoulder, an elbow, and a
wrist.

The mean poses and scatter plots of the lower and upper arms in
each cluster for both arms with =K 5 are shown in Fig. 2. It can be seen
that tight clusters can be obtained in the lower arms as well as in the
upper arms.

While this pose clustering is required to make PM models with
tighter pose clusters, human poses near the boundaries of neighboring
clusters are similar to each other. By distributing these pose data to the
neighboring clusters with overlapped samples, the PME can represent
more complex interdependency among the PM models. The amount of
overlap is determined based on the tradeoff between the tightness of
clusters and the number of training samples in each cluster. The effect
of overlapped samples is discussed in Section 4.6.

Training PM models. The PM model training procedure at stage 2 is
shown in Fig. 1. As the number of training images for each PM model is
reduced through clustering, the model training may be prone to over-
fitting compared with the one with all training images. Although we do
expect that a PM model overfits to its pose cluster, a small number of
training images often result in excessive overfitting in deep neural
networks. Even when sufficient training images are given, the training
images that are not in the pose cluster can still provide useful in-
formation for the PM model (e.g., the local appearance of each body
joint).

As a result, we use two approaches in training each PM model: fine-
tuning and dropout. We first pre-train a generic pose estimation model

using the entire training dataset. We then fine-tune the PM model from
the initial pre-trained model using training images in each cluster. To
further alleviate overfitting, we apply a variant of dropout (Huang
et al., 2015; Tompson et al., 2015) for regularizing the training. We find
that this is essential to prevent excessive overfitting and boost the
generalization performance of a PM model trained on a small number of
images in each cluster.

3.2. PM-ensemble convnet

PM ensembling. We now present the PM-ensemble model to merge
the responses from multiple PM models, as shown in Fig. 1. In the
training stage (stage 3 in Fig. 1), we train the PME model to minimize
the loss between an estimated heatmap and a ground-truth heatmap for
each joint k over training data N. Denote a set of training images and its
ground-truth joint locations as X y{ , }. We minimize the network
weights W by

∑ ∑ − ′
∈

H X W H ymin ( , ) ( ) .
W X y N i j k

ijk ijk
( , ) , ,

2

(2)

Here, Hijk(X, W) denotes a likelihood on image coordinates (i, j) of kth
channel in the estimated heatmap given the network parameters, W, of
the PME. The heatmap ′H y( )ijk is the ground-truth joint location like-
lihood as in Pfister et al. (2015).

Fig. 3 shows the architecture used in the proposed PME. Unlike the
simple parametric pooling (Pfister et al., 2015) (Fig. 3 (a)), we use a
deeper model to encode the complex relationships among the diverse
responses of the PM models. Compared to the model in
Pfister et al. (2015) that uses a convolutional filter with kernel size
1×1, we use larger spatial kernels of 7× 7, 9×9, 13×13 and
17× 17 to capture spatial relation among PM models. We show three
variants of the PMEs s1, s2, and s3 in Fig. 3(b), (c), and (d), respec-
tively.

Similar to other heatmap-based methods, we obtain the human pose
from the fused heatmaps by finding x-y coordinates with the max va-
lues.

Deconvolution for improved localization. While the PME model is
capable of integrating the diverse responses from PM models, its per-
formance depends on the spatial resolution of the heatmaps of the PM
models. For example, the spatial resolution of each heatmap is lower
than an input image due to the cascade of pooling layers in pose

Fig. 3. (a) The parametric pooling by Pfister et al. (2015) for upper-body pose estimation. (b) PME s1, (c) PME s2, and (d) PME s3. (e) PME ConvNet + DeconvNet (PME-D). K denotes the
number of PM models. Here, “conv” and “deconv” in each box represents convolutional and deconvolutional layers, respectively. In the box of the convolutional and deconvolutional
layers, the first two numbers in the second row of the box represents height and width of the filter size and the third number the size of the output feature map. The last row shows the
stride of the filter.
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estimation by ConvNets (e.g., (Pfister et al., 2015) and (Wei et al.,
2016), which are used in our experiments). Such a low-resolution
heatmap does not allow accurate pose estimation in the original re-
solution.

To address this issue, we add deconvolutional layers to the PME, as
shown in Fig. 3(e). The effect of the deconvolution layers has been
demonstrated in other problems such as image
segmentation (Noh et al., 2015) and image synthesis (Dosovitskiy et al.,
2015; Goodfellow et al., 2014). We alternate the convolution and de-
convolution layers in the proposed model and find that this design
generates a smoother heatmap. We call the PME model with deconvo-
lution layers the PME-D.

4. Experiments

4.1. Implementation details

We use the models in Pfister et al. (2015) and Wei et al. (2016) as
our upper-body and full-body PM models, respectively. In all experi-
ments, the entire training dataset is partitioned into =K 5 clusters for
the pose configuration of each arm. The total number of clusters (i.e.,
the number of PM models) is 10; 5 for the right arm and 5 for the left
arm.

The ConvNet of the PME model consists of 13 convolution, 12 ac-
tivation, and 2 pooling layers. After independently fine-tuning each PM
model, we fixed the weights of the PM models and only update the
weights of the PME. We avoided end-to-end learning with all PM
models and the PME model because it is practically difficult to optimize
a huge network consisting of all the models due to difficulty in avoiding
local minima as well as due to a memory issue. Actually, the deep PME
models (i.e., PME s3 and PME-D) for the full body could be trained only
if the batch size was eight even in Titan X 12 GB. The proposed method
was implemented with Jia et al., 2014 in accordance with two baselines
(Pfister et al., 2015; Wei et al., 2016), but its current version has no
function for a distributed memory usage. However, we consider the
modularity of the models to be one of advantages for independent and
efficient learning of a huge network. While we investigated the effect of
end-to-end learning with the shallowest PME model (i.e., PME s1) with

fewer clusters (i.e., =K 3 clusters)3, further investigation for complex
models should be important future work.

4.2. Datasets

We validate the performance of the proposed ensemble method
using publicly available datasets: FLIC (Sapp and Taskar, 2013), BBC
pose (Charles et al., 2014), LSP (Johnson and Everingham, 2011), MPII
(Andriluka et al., 2014) datasets.

In the FLIC-full dataset (Sapp and Taskar, 2013), images are col-
lected from 30 Hollywood movies. The upper-body joint positions are
annotated. For training, we use the FLIC-plus dataset (Tompson et al.,
2014) which is a subset of the FLIC-full dataset with around 17 K
training images. For testing, we use a standard test set of 1000 images.
As there are multiple people in several images of the FLIC dataset, we
use the ground-truth torso box to crop out an image of a target person
for evaluation.

In the BBC pose dataset (Charles et al., 2014), images are collected
from 20 videos from the BBC. The training frames are annotated in a
semi-automatic manner using the pose estimator of
Buehler et al. (2011). In our experiments, we use about 600 K frames
for training and 1000 images for testing.

While the FLIC and BBC datasets include upper-body human pose
data, the LSP and MPII datasets provide data for the full-body human
pose. The LSP dataset (Johnson and Everingham, 2011) consists of
1000 training and 1000 testing images collected from the Internet. In
addition, extra 10,000 images are also given for a training purpose in
the LSP extended dataset. The MPII human pose dataset
(Andriluka et al., 2014) contains around 40 K human poses observed in
25 K images.

4.3. Evaluation protocols

We adopt three metrics for evaluation: (1) Percentage of Correct
Parts (PCP), (2) Probability of Correct Keypoint (PCK), and (3)
Percentage of Detected Joints (PDJ).

For PCP Ferrari et al. (2008), each body part is represented as a line
segment between its two joints. The estimated location of a body part is
considered as correct when both of the two joints locate within a certain
fraction α of the length of the limb from their ground-truth locations.
We set =α 0.5 in all the experiments. We evaluate the PMEs using the
strict PCP metric (Ferrari et al., 2008; Pishchulin et al., 2012) with
person-centric annotations (Eichner and Ferrari, 2012).

In PCK (Yang and Ramanan, 2013), the detection is correct if the
distance between the estimated and the ground-truth joints is less than
a certain fraction =β 0.5 of the full-body size.

The PDJ metric (Sapp and Taskar, 2013) aims to evaluate the per-
formance of the model under different precision through normalizing
the location precision by the diagonal length of the torso.

4.4. Comparison to the state-of-the-art methods

Upper-body pose estimation. Tables 1 and 2 show the quantitative
comparisons against several state-of-the-art pose estimation algorithms
on the FLIC and BBC pose datasets, respectively. In both tables, the
baseline model Pfister et al. (2015) has the same ConvNet architecture
as our PM model and is trained using all the training data.

The proposed PME s3 outperforms all existing methods in FLIC
dataset in terms of the mean PCP. Our results compare favorably
against the state-of-the-art algorithms, particularly on the lower arm.

We also compare the PME model with the state-of-the-art ap-
proaches in BBC pose dataset, as shown in Table 2. Similar to the results
of the FLIC dataset, our method compares favorably against the state-of-

Table 1
Comparison to the state-of-the-art pose estimation algorithms in terms of PCP on the FLIC
dataset (Sapp and Taskar, 2013). Bold: the best, underline: second best performance. See
Fig. 11 also for more detailed comparison with more state-of-the-art methods (Newell
et al., 2016; Wei et al., 2016).

Method U. Arms L. Arms Mean

Baseline Pfister et al. (2015) 96.9 85.7 91.3
Yang et al. (2016) 98.1 89.5 93.8
Chen and Yuille (2014) 97.0 86.8 91.9
Tompson et al. (2014) 93.7 80.9 87.3
Tompson et al. (2015) 90.0 78.5 84.3
Sapp and Taskar (2013) 84.4 52.1 68.3
PME s3 (Ours) 97.8 90.2 94.0

Table 2
Comparison to the state-of-the-art pose estimation algorithms in terms of PCP on the BBC
pose dataset (Charles et al., 2014). Note here we only use still images as inputs. Bold: the
best, underline: second best performance.

Method U. Arms L. Arms Mean

Baseline Pfister et al. (2015) 75.4 75.1 75.3
Charles et al. (2014) 89.1 75.8 82.5
Yang and Ramanan (2013) 88.7 73.9 81.3
Buehler et al. (2011) 87.2 74.4 80.8
PME s3 (Ours) 89.3 77.2 83.3

3 See Effect of End-to-end Learning in Section 4.6.
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the-art methods.
Full-body pose estimation. Table 3 shows the comparative evaluation

results using PCK on the LSP. Unlike the results shown in Tables 1 and
2, each result is obtained with a different training dataset in Table 3.
Comparing with other methods that use the same set of training data,
our PME model demonstrates competitive performance. In particular,
our PME outperforms its baseline (Wei et al., 2016) in the mean score
for both sets of training data.

We also evaluates the proposed method on a larger full-body pose
dataset, the MPII human pose dataset. Table 4 shows the comparative
evaluation results using PCKh. While very recent models (Chen et al.,
2017; Chou et al., 2017; Chu et al., 2017) are better than our PME, it
outperforms the baseline (Wei et al., 2016), which was trained with
more data.

4.5. Comparison to other ensemble approaches

We investigate the importance of ensembling approach on both FLIC
and BBC pose datasets in Table 5. Compared to the simple ensemble
approach such as averaging over multiple outputs (average pooling in
Table 5) and parametric pooling using a single convolution layer used
in the baseline (Pfister et al., 2015), we can see that the PME model
outperforms these conventional ensemble approaches by a large
margin. This suggests that a deeper ConvNet architecture with a cas-
cade of convolutional layers with large kernels is critical to merge di-
verse estimations from PM models and represent the spatial contexts of
body joints.

For the FLIC dataset, PME s3 outperforms the baseline (Pfister et al.,
2015) by 2.8% in PCP4 The improvement over Pfister et al. (2015) on
the lower arm is particularly significant, with 4.5% improvement in
PCP. In BBC pose dataset, PME s3 improves the baseline by 14.5% in

PCP (upper arm).
Improvement cases. We show several qualitative examples in Fig. 4.

Fig. 4 (a) and (d) are the results of the average pooling, and results
shown in (b) and (e) are obtained from PME s3. While the same set of
heatmaps is provided to the average pooling and the PME s3, the
average pooling fails to correctly localize the right wrist in (a) due to
the self-occlusion (occluded by the left arm). In (d), the average pooling
confused the left elbow with the right one possibly because the self-
occlusion of the left wrist gives a negative impact on localizing the left
elbow. On the other hand, our method successfully localizes the right
wrist in (b) and the left elbow in (e). Fig. 4 (c) and (f) visualize the five
heatmaps of the joints mislocalized by the average pooling. It is clear
that several peaks are observed in the heatmaps for both images. The
distributions of the peaks differ between the heatmaps, which demon-
strate the heterogeneous properties of the PM models. It can also be
seen that erroneous peaks are observed; strong peaks at the right elbow
in (c) and (f). These erroneous peaks resulted in mislocalization in the
average pooling. The correctly-localized joints are suggested by the

Table 3
PCK-0.2 evaluation on the LSP dataset. Each result is obtained on different training datasets specified in the brackets. The best score obtained on each dataset is colored by bold in each
column. Methods marked with (*) and (**) were trained on “MPII, LSP, and LSP-extended datasets” and “LSP and LSP-extended datasets”, respectively. In the former case, the score of
PME s3 (Outs) is colored by underline if it is greater than or equal to the baseline (Wei et al., 2016).

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Pishchulin et al. (2016) (*) 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al. (2016) (*) 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Chu et al. (2017) (*) 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Chou et al. (2017) (*) 98.2 94.9 92.2 89.5 94.2 95.0 94.1 94.0
Chen et al. (2017) (*) 98.5 94.0 89.8 87.5 93.9 94.1 93.0 93.1
Baseline Wei et al. (2016) (*) 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
PME s3 (Ours) (*) 97.6 95.3 87.9 81.2 97.8 90.8 87.8 91.2
Yu et al. (2016) (**) 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Baseline Wei et al. (2016) (**) 96.9 97.1 80.4 75.1 86.5 83.2 81.0 84.3
PME s3 (Ours) (**) 92.0 92.0 87.3 77.8 97.4 87.4 77.1 87.3

Table 4
PCKh-0.5 evaluation on the MPII dataset. Methods marked with (*) were trained on “MPII, LSP, and LSP-extended datasets”, while others were trained with only “MPII”. Bold scores mean
the best ones in each column. The score of PME s3 (Outs) is colored by underline if it is greater than the baseline (Wei et al., 2016).

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Pishchulin et al. (2016) (*) 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al. (2016) 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxari et al. (2016) 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Insafutdinov et al. (2016) 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Bulat and Tzimiropoulos (2016) 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. (2016) 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu et al. (2017) 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al. (2017) 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen et al. (2017) 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Baseline Wei et al. (2016) (*) 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
PME s3 (Ours) 97.7 95.8 90.1 85.6 88.8 84.8 81.7 89.6

Table 5
PCP for different ensemble approaches on the FLIC dataset and the BBC pose dataset. PCP
on upper and lower arms, which are difficult to be localized, are shown. Bold: the best,
underline: second best performance.

FLIC BBC pose

Method U. Arms L. Arms Mean U. Arms L. Arms Mean

Baseline
Pfister et al. (2015)

96.6 85.7 91.2 75.4 75.1 75.3

Average Pooling 96.7 86.7 91.7 75.6 73.6 74.6
Parametric Pooling

Pfister et al. (2015)
96.9 87.2 92.1 74.6 73.8 74.2

PME s1 97.0 87.5 92.3 74.5 72.5 73.0
PME s2 97.7 89.8 93.8 83.1 76.6 79.9
PME s3 97.8 90.2 94.0 89.3 77.2 83.3

4 See Section 4.6 for comparisons among the variants.
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PME model where each PM model focuses on a specific pose config-
uration such as the joint locations shown in Fig. 4 (b) and (e).

More qualitative results on the FLIC (Sapp and Taskar, 2013), BBC
(Charles et al., 2014), and LSP (Johnson and Everingham, 2011) da-
tasets are shown in Figs. 6, 7, and 8, respectively. These figures show
the ground-truth of a human pose, the pose estimation results of the
proposed methods, and the heatmaps of one joint. The joint whose lo-
calization is failed in several methods is selected for heatmap visuali-
zation. It can be seen that peak distributions vary among the heatmaps.
This variation results in difficulty in pose estimation by the pose-
modality-ensemble (PME) model. The results of PME s3 and PME-D are
better than PMEs s2 and s1 with shallow layers. In comparison between
results for the upper-body and full bodies, further difficulty arises due
to complex nature of a human pose in sports (e.g., self occlusion) in the
full body estimation (i.e., LSP). Due to this difficulty, the heatmap
variation in the LSP is larger than in the FLIC and the BBC pose. In
samples shown in Fig. 8, our deeper models (i.e., PME s3 and PME-D)
can cope with these difficulties and localize all joints well.

Failure cases. Two typical failure cases by the PME model are shown
in Fig. 5. As shown in Fig. 5(a) and (d), the average pooling correctly
localizes the right elbow and wrist, respectively, while PME s3 shown in
(b) and (e) does not perform well. While the mislocalization in (b) is not

severe, the estimated right elbow is far from its ground truth in (e). This
significant error may be caused by the larger distributions of the
heatmaps as the distributions are significantly larger than other heat-
maps shown in Fig. 4. Such a set of large distributions of the heatmaps
cannot be captured by the PME model and causes mislocalization, while
several strong peaks around the right elbow may result in its correct
localization the simple average pooling.

4.6. Detailed analysis

Computational cost. For full-body pose estimation, the computational
time of the proposed method is slightly more than the baseline
(Wei et al., 2016). Let T be the training time of the baseline. In our
experiments, the training times for fine-tuning each PM model and the
ensemble model were at most less than 0.05 T and 0.1 T. Since all PM
models can be fine-tuned in parallel, our method needs additional 15%
computational time in total for training. We believe this subtle increase
in computational cost is acceptable to get 0.7% and 1.1% accuracy
gains on the LSP and MPII datasets, respectively.

Effect of network depth and kernel size. We examine the effect of
different depth and kernel size using three variants of PME: (1) PME s1
(two convolutional layers with 9× 9 kernel), (2) PME s2 (five

Fig. 4. Two improvement cases by the PME model. The positions of the estimated wrist, elbow, and shoulder are indicated by red, blue, and yellow circles, respectively. For presentation
clarity, only one arm is visualized. The ground truth of joints mislocated by the average pooling (i.e., the right wrist and the left elbow in upper and lower examples, respectively) are
indicated by stars and the heatmaps of these joints are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Two failure cases by the PME model. The average pooling is able to localize the right wrist and elbow as shown in (a) and (d), respectively, whose heatmaps are shown in the
figure, while the PME model in (b) and (e) does not perform well.
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convolutional layers with 7× 7 and 13×13 kernels), and (3) PME s3
(seven convolutional layers with 7×7, 13×13, 17× 17 kernels). As
shown in Table 5, a deeper architecture with larger kernels have better
performance. These results suggest that the network capacity is the

essential to explicitly model interdependency among the responses of
each PM model.

Effect of the number of PM models. In Fig. 9, we investigate the effect
of the number of PM models in the ensemble using FLIC dataset. We

Ground-truth PME-D PME s3 PME s2 PME s1

Heatmaps of left wrist

Ground-truth PME-D PME s3 PME s2 PME s1

Heatmaps of left wrist

Ground-truth PME-D PME s3 PME s2 PME s1

Heatmaps of right wrist
Fig. 6. Sample results on FLIC dataset. Heatmaps for each test image show those of a joint, in which the heterogeneous properties of different PM models can be observed, whose
localization is failed in several methods.
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plot the performance in PCP under different numbers of clusters
=K [1, 2, 3, 4, 5, 6], which is the number of PM models for one arm. As

shown in Fig. 9, increasing the number of PM models improves the
results. However, the improvement saturates when we use more than

=K 4 models. We attribute this to the decreasing number of training

samples in each cluster when we use more clusters. Based on the results,
we use K = 5 in our experiments (10 models in total).

While the effect of pose clusters is also empirically analyzed in
Rogez et al. (2017), their results show that the optimum number of
clusters is around 100 in the Human3.6M dataset. The difference

Ground-truth PME-D PME s3 PME s2 PME s1

Heatmaps of left wrist

Ground-truth PME-D PME s3 PME s2 PME s1

Heatmaps of left shoulder

Ground-truth PME-D PME s3 PME s2 PME s1

Heatmaps of right shoulder
Fig. 7. Sample results on BBC pose dataset. Heatmaps in each row show those of a joint whose localization is failed in several methods.
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Heatmaps of left knee
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truth

PME
s3

PME
s2

PME
s1

Heatmaps of left ankle

Ground-
truth

PME
s3

PME
s2

PME
s1

Heatmaps of left knee

Ground-
truth

PME
s3

PME
s2

PME
s1

Heatmaps of right wrist

Ground-
truth

PME
s3

PME
s2

PME
s1

Heatmaps of right elbow

Fig. 8. Sample results on the LSP dataset. Heatmaps in each row show those of a joint whose localization is failed in several methods.

Fig. 9. Effect of the number of PM models. Increasing the number of the PM models
improves the PCP performance. Fig. 10. PCK-0.2 results obtained from PM models trained by pose clusters having dif-

ferent overlaps. We evaluate L, which determines the overlap between neighboring pose
clusters, between 1.0 and 1.5 with an interval of 0.05.
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between Rogez et al. (2017) and our case may be caused by the com-
plexity in 3D pose estimation as well as the large number of data in the
Human3.6M dataset. For a greater number of training images, in par-
ticular for complex full-body poses, more pose clusters (i.e., greater
than K=5) may work better also in 2D human pose estimation.

Effect of overlaps among pose clusters. The proposed PME model is
evaluated using pose clusters with different overlaps. Fig. 10 shows the
results of PCK-0.2 evaluation with different overlaps among pose
clusters on the LSP dataset. The overlaps are adjusted so that cluster c
includes a pose sample d in another cluster if the distance between the
centroid of c and d is less than Ldmax . In Fig. 10, L is a parameter on the
x-axis, and dmax is the distance between the centroid of c and the most
distant pose data within c. Since we can see a peak around =L 1.2,

=L 1.2 is used in all experiments for full-body pose estimation. Overall,
the proposed algorithm performs better when a small amount of over-
lapped samples are included, and performs robustly within a reasonable
range of overlaps.

Effect of deconvolution for improved localization. To show the effect of
deconvolution layers, we evaluate the PME (PME s3), the PME-D, the
baseline, and several state-of-the-art methods (Newell et al., 2016; Sapp
and Taskar, 2013; Tompson et al., 2015; Wei et al., 2016; Yang et al.,
2016) using the PDJ scores (Fig. 11). While the state-of-the-art methods
deliver equal performance under a larger threshold (e.g., above 0.2),
the proposed methods outperform others under a lower threshold (e.g.,
below 0.1). The PDJ scores at the threshold of 0.05 for wrist (a strict
criterion for a challenging body part) are 75.4% (PME-D), 71.5%
(Newell et al., 2016), 66.8% (Wei et al., 2016), and 18.2% (baseline).
The proposed algorithms achieve 3.9% and 8.6% relative improve-
ments over the best (Newell et al., 2016) and the second best (Wei et al.,
2016) methods. For the elbow and shoulder, PME-D outperforms the
(Newell et al., 2016) by 7.2% and 8.8%, respectively. The increase of
spatial resolution by PME-D effectively reduces inaccurate estimates.

Table 6 shows the results for mean PDJ@0.05 as well as mean PDJ@
2.0 as the advantage of our PME-D appears in strict thresholds. The
results show that we should select PME-D or PME s3 depending on the
application; if strict/loose joint detection is needed, PME-D/PMEs3
should be used.

To validate the effect of PME-D, typical examples of improvement
are shown in Fig. 12 in which the local patches of the left shoulder are
visualized. As can be seen in the figure, the joint locations inferred by
PME-D (indicated by green stars in Fig. 12(b) and (d)) are closer to the

ground-truth positions indicated by red stars than the baseline (in-
dicated by green stars in Fig. 12(a) and (c)). While such a small im-
provement gives only a small impact on PCP and PCK with standard
thresholds, its effect can be demonstrated by PDJ.

While PME-D works favorably against other methods in all thresh-
olds as shown in Fig. 11 and Table 6, PME s3 is outperformed in lower
thresholds (e.g., PDJ@0.05) by other methods including the baseline.
This might be caused because of ambiguous features represented in
only heatmaps given by PM models. As demonstrated in our experi-
ments (e.g., Fig. 4), the PME model becomes relatively robust against
the ambiguity of joints, which are occluded or have similar appearances
with other objects, by integrating high confidence at multiple spatial
locations in multiple PM models. This robustness might be obtained
because not only of the data integration but also of rough localization
given by the heatmaps, which have no image features. That is, PME is
robust in higher thresholds at the sacrifice of localization precision in
lower thresholds, while PME-D avoids this performance degradation by
using deconvolution layers.

Effect of additional image features. To investigate the trade-off be-
tween robustness and precision described above, we fed image features
also into our PME model. However, image features cannot be used in
PME s3 due to a limited memory on a GPU (i.e., Titan X 12 GB in our
experiments). This memory problem was avoided by evaluating our
method in the shallowest PME model, PME s1, with fewer pose clusters
(i.e., =K 3). This model is called PME s1*.

For experiments with the full-body model on the LSP, we used
image features extracted by a sub-network for image-feature extraction
in a PM model (i.e., the base model (Wei et al., 2016)). This sub-net-
work consists of four convolution layers and three pooling layers. We
call PME s1* using the image features PME s1* .

The results of PME s1* are shown in Table 7. It can be seen that PME
s1* is better than PME s1* in the mean score as well as in many joints.
This fact suggests the potential of the joint usage of the image features
and heatmaps, while this too simple PME model, PME s1*, is not ap-
propriate for evaluating the complete performance of our proposed
scheme. We consider this issue to be an important research direction in
order to explore further improvement with a larger computational re-
source.

Effect of end-to-end learning. While the PM and PME models were
trained independently in all experiments shown before, we investigate
the effect of end-to-end learning with the PME model and all PM
models. Note again that this end-to-end learning is evaluated by the
shallowest PME model, PME s1, with =K 3 clusters due to a memory
issue, as described in Section 4.1. On the LSP dataset, mean PCK-0.2
scores of independent and end-to-end-learning schemes are 84.8 and
85.4, respectively, as shown in Table 7. Further analysis of improve-
ment by this end-to-end learning scheme is also considered to be an
important research direction.

Effect of pose clustering criteria. We have conducted additional ex-
periments on the LSP, where a pose feature vector is represented by the
configurations of legs as well as arms. That is, in addition to θ1 and θ2
for the upper body, θ3 and θ4 are used in the pose feature vector (i.e.,

Fig. 11. PDJ curves comparison among PME s3, the PME-D, the baseline, and several state-of-the-art methods on the FLIC dataset.

Table 6
PDJ scores on the FLIC dataset. Each score is the mean of three joints, a shoulder, an
elbow, and a wrist. See Fig. 11 for the whole results.

PDJ@0.05 PDJ@0.2

PME s3 48.7 97.6
PME-D 78.0 96.4
Baseline Pfister et al. (2015) 18.3 81.2
Newell et al. (2016) 68.8 98.4
Wei et al. (2016) 71.3 97.2
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Eq. (1)). In our experiments, θ3 is an angle between two line segments
defined by the mid point of two hips, a hip, and a knee, and θ4 defined
by a hip, a knee, and an ankle. PME s3 that uses this arm-and-leg pose
feature, which is called PME s3’, is expected to be able to represent the
variation of full-body poses better than PME s3 using the pose feature
with only arms. The experimental results show that the arm-and-leg
pose feature cannot improve the performance when compared with the
pose feature with only arms; mean accuracy: 86.6 (arms and legs) vs
87.3 (arms), as shown in Table 8. While the arm-and-leg pose feature
may be better essentially, the pose variety in each of 10 PM models
becomes large in contrast to the one with only arms. This variety makes

it difficult to optimize the ensemble model.
For more rigid alignment of 2D pose annotations, it is known that

the Procrustes analysis provides a more effective metric (Bourdev et al.,
2010). PME s3’ and PME s3́’ respectively use the Euclid distance and the
Procrustes distance for clustering, while both of them employ the arm-
and-leg pose features. It can be seen that the Procrustes distance im-
proves pose estimation accuracy in most joints: 86.6 (Euclid distance)
vs 87.5 (Procrustes distance) on average. As a result, the model using
the arm-and-leg pose feature becomes better than the one using the arm
pose feature: 87.3 (arm) vs 87.5 (arms and legs).

All experiments shown above were conducted with our pose clus-
tering using a partial body part, which is proposed in Section 3.1. In
order to validate its effectiveness, we also conducted experiments with
pose clustering using all body parts in the full body. While the proposed
partial-part clustering uses each of the left and right arms/legs (i.e.,

=N 4 in Eq. (1) for the arm-and-leg pose feature), PME s3” and PME
s3́” employ both left and right arms and legs (i.e., =N 8). PME s3”
differs from PME s3́” so that PME s3́” uses the Procrustes distance. As
shown in Table 8, the full-body pose feature is outperformed by the
proposed partial-part clustering even though the Procrustes distance
improves the performance.

5. Conclusions

In this paper, we propose the pose-modality-ensemble model for
human pose estimation. Through training PM models with clustered
training samples, we obtain heterogeneous PM models that are spe-
cialized to particular body configurations. The PME model is capable of
merging diverse responses from the PM models. We demonstrate the
effectiveness of PME model on public pose estimation datasets and
show that the proposed method performs favorably against state-of-the-
art methods and alternative model ensemble approaches.

Important future work includes (1) integration of heatmaps ob-
tained from PM models and image features by the PME model and (2)
an efficient end-to-end learning scheme with the PME model and all PM
models.
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