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A B S T R A C T

Estimating six degrees of freedom poses of a planar object from images is an important problem with numerous
applications ranging from robotics to augmented reality. While the state-of-the-art Perspective-n-Point algo-
rithms perform well in pose estimation, the success hinges on whether feature points can be extracted and
matched correctly on target objects with rich texture. In this work, we propose a two-step robust direct method
for six-dimensional pose estimation that performs accurately on both textured and textureless planar target
objects. First, the pose of a planar target object with respect to a calibrated camera is approximately estimated by
posing it as a template matching problem. Second, each object pose is refined and disambiguated using a dense
alignment scheme. Extensive experiments on both synthetic and real datasets demonstrate that the proposed
direct pose estimation algorithm performs favorably against state-of-the-art feature-based approaches in terms of
robustness and accuracy under varying conditions. Furthermore, we show that the proposed dense alignment
scheme can also be used for accurate pose tracking in video sequences.

1. Introduction

Determining the six degrees of freedom (6-DoF) pose of a target
object from a calibrated camera is a classical problem in computer vi-
sion that finds numerous applications such as robotics and augmented
reality (AR). While much progress has been made in the past decade, it
remains a challenging task to develop a fast and accurate pose esti-
mation algorithm, especially for planar target objects lacking textured
surfaces.

Existing pose estimation methods can be broadly categorized into
two groups. The approaches in the first category are based on features
extracted from target objects with rich textures. The core idea behind
feature-based methods is to compute a set of n correspondences be-
tween 3D points and their 2D projections from where the relative po-
sitions and orientations between the camera and target can be esti-
mated. In recent years, numerous feature detection and tracking
schemes (Alahi et al., 2012; Bay et al., 2008; Leutenegger et al., 2011;
Lowe, 2004; Rublee et al., 2011) have been developed and applied to a
wide range of applications including simultaneous localization and
mapping applications (SLAM) (Klein and Murray, 2007; Lim et al.,
2012; Mur-Artal and Tardós, 2014). In order to match features robustly,
variants of RANSAC algorithms (Chum and Matas, 2005; Fischler and
Bolles, 1981) have been used to eliminate outliers before object pose is
estimated from a set of feature correspondences. After this step,

typically the perspective-n-point (PnP) algorithms (Lepetit et al., 2009;
Schweighofer and Pinz, 2006; Zheng et al., 2013) are applied to the
feature correspondences for estimating the 6-DoF object pose. We note
that feature-based methods are less effective in pose estimation when
the tilt angle between the camera and the planar target is large. While
the affine-SIFT (ASIFT) (Yu and Morel, 2011) approach matches feature
points well when there are large viewpoint changes, it is computa-
tionally more expensive than others. Since the performance of feature-
based pose estimation methods hinges on whether or not point corre-
spondences can be correctly established, these approaches are less ef-
fective when the target images contain less textured surfaces or motion
blurs.

The second category consists of direct methods that do not depend
heavily on features or textures. Since the seminal work by Lucas and
Kanade (1981), numerous algorithms for template matching based on
global, iterative, nonlinear optimization have been proposed (Baker
and Matthews, 2001; Hager and Belhumeur, 1998; Lin and Lucey, 2017;
Malis, 2004; Shum and Szeliski, 2001; Xiong and De la Torre, 2015). As
the pose estimation problem can be formulated as the template
matching problem with the reference frame, poses can be estimated
through optimizing the parameters to account for rigid transformations
of observed target images (Crivellaro and Lepetit, 2014; Engel et al.,
2014). However, these methods rely on initial reference parameters and
may be trapped in a local minimum. To alleviate the limitations of
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nonlinear optimization problems, non-iterative approaches (Chi et al.,
2011; Henriques et al., 2014; Korman et al., 2017) have recently been
proposed. Nonetheless, these template matching approaches are limited
by the misalignment problem between affine or homography transfor-
mation in the pose space. It may result in the additional pose error from
transformation matrix decomposition while estimating the 6-DoF pose.

In this paper, we propose a direct method to estimate the 6-DoF
poses of a planar target from a calibrated camera by measuring the
similarity between the projected planar target object image and ob-
served 2D frame based on appearance. As the proposed method is based
on a planar object rather than a 3D model, the pose ambiguity problem
as discussed in prior arts (Li and Xu, 2011; Oberkampf et al., 1993;
Schweighofer and Pinz, 2006; Wu et al., 2014), is inevitably bound to
occur. Pose ambiguity is related to situations where the error function
has several local minima for a given configuration, which is the main
cause of flipping estimated poses in an image sequence. Based on image
observations, one of the ambiguous poses with local minima, according
to an error function, is the correct pose. Therefore, after obtaining an
initial rough pose using an approximated pose estimation scheme, we
determine all ambiguous poses and refine the estimates until they
converge to local minima. The final pose is chosen as the one with the
lowest error among these refined ambiguous poses. We show some pose
estimation results by the proposed method in Fig. 1. Extensive experi-
ments are conducted to validate the proposed algorithm in this work. In
particular, we evaluate the proposed algorithm on different types of
templates with different levels of degraded images caused by blur, in-
tensity, tilt angle, and compression noise. Furthermore, we evaluate the
proposed algorithm on the datasets by Gauglitz et al. (2011)
and Wu et al. (2017) against the state-of-the-art pose estimation
methods.

The main contributions of this work are summarized as follows.
First, we propose an efficient direct pose estimation algorithm for
planar targets undergoing arbitrary 3D perspective transformations.
Second, we show the proposed pose estimation algorithm performs
favorably against the state-of-the-art feature-based approaches in terms
of robustness and accuracy. Third, we demonstrate the proposed pose
refinement method not only improves the accuracy of estimated results
but also alleviates the pose ambiguity problem effectively.

Based on our prior work in Tseng et al. (2016), in this paper, we
extend and construct an image pyramid for the APE method as de-
scribed in Section 4.1, and we apply a new PR approach based on the
Lucas & Kanade (LK) algorithm as described in Section 4.2. We show
experimental results with significant improvements regarding accuracy
and efficiency compared to the previous work in Section 5. The re-
mainder of this paper is organized as follows. In Section 2, we discuss
related work on object pose estimation. We formulate the pose

estimation problem in Section 3, and then describe the proposed
method, including the approximated pose estimation (APE) and pose
refinement (PR) approaches, thoroughly in Section 4. Extensive ex-
perimental results are presented in Section 5. We conclude this paper
with discussions on future work in Section 6.

2. Related work

In this section, we first discuss methods for planar object 6-DoF pose
estimation in two categories, i.e., feature-based as well as direct ap-
proaches, and then introduce techniques for pose disambiguation.

2.1. Feature-based methods

Establishing feature correspondences across different images typi-
cally involves three distinct steps. First, features with rich visual in-
formation are detected in both images. The SIFT detector (Lowe, 2004)
leverages difference of Gaussians (DoG) to accelerate the detection
process in different scales, while the SURF (Bay et al., 2008) detector
uses a Haar wavelet approximation of the determinant of the Hessian
matrix. As these detectors are computationally expensive, several
methods including FAST (Rosten and Drummond, 2006) and
AGAST (Mair et al., 2010) have been developed for improvement of
execution speed. Second, a feature representation based on a local
patch centered at a detected feature is constructed. Although the SIFT
descriptor (Lowe, 2004) have been shown to perform robustly in nu-
merous tasks, the incurred computational cost is high as the feature
dimensionality is high. Subsequently, binary descriptors, such as
BRIEF (Calonder et al., 2010), BRISK (Leutenegger et al., 2011),
ORB (Rublee et al., 2011), and FREAK (Alahi et al., 2012), are designed
for improvement of execution speed. Third, a feature point is associated
with another in the other image. While a method is expected to detect
plenty of distinct features accurately in one image and match most of
them across different views of the same object, some correspondences
are incorrectly determined in practice and most PnP methods do not
handle these outliers well. Outliers are typically rejected at a pre-
liminary stage using projective transformation models or P3P
algorithms (Gao et al., 2003; Ke and Roumeliotis, 2017; Kneip et al.,
2011) in combination with RANSAC-based schemes (Chum and Matas,
2005; Fischler and Bolles, 1981; Fragoso et al., 2013).

After removing outliers, PnP algorithms, e.g., LM (Lu et al., 2000b)
and RPP (Schweighofer and Pinz, 2006), can be applied to all the re-
maining inlier matches by minimizing an appropriate objective func-
tion. These methods perform well when reliable initial estimates are
provided although at the expense of execution time. Recently, several
non-iterative methods without requiring good initial estimates have

Fig. 1. Pose estimation results on synthetic images. The pose ambiguity problem occurs when the objective function has several local minima for a given config-
uration, which is the primary cause of flipping estimated poses. First row: original images. Second row: images rendered with a box model according to the
ambiguous pose obtained from proposed algorithm without refinement approach. Third row: pose estimation results from the proposed algorithm, which can
disambiguate plausible poses effectively.
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been proposed. The EPnP method (Lepetit et al., 2009) uses four virtual
control points to represent the 3D reference points and performs at the
linear computational complexity. This problem formulation and use of
linearization strategies facilitate the PnP methods perform efficiently.
Numerous approaches have since been developed to improve the ac-
curacy by replacing the linear formulation with polynomial sol-
vers, e.g., , DLS (Hesch and Roumeliotis, 2011), RPnP (Li et al., 2012),
UPnP (Kneip et al., 2014), OPnP (Zheng et al., 2013),
REPPnP (Ferraz et al., 2014b), CEPPnP (Ferraz et al., 2014a), and
IPPE (Collins and Bartoli, 2014).

2.2. Direct methods

The template matching problem has been widely studied in com-
puter vision, and one critical issue for pose estimation is how to effi-
ciently obtain accurate results while evaluating only a subset of the
possible transformations. Since the appearance distances between a
template and two sliding windows shifted by a few pixels (e.g., one or
two pixels) are usually close due to the nature of image
smoothness, Pele and Werman (2007) exploit this property to reduce
the time complexity of pattern matching. Alexe et al. (2011) derive an
upper bound of the Euclidean distance (based on pixel values) ac-
cording to the spatial overlap of two windows in an image, and use it
for efficient pattern matching. Korman et al. (2017) show that 2D affine
transformations of a template can be approximated by samples of a
density function based on smoothness of a given image, and propose a
fast matching method.

To refine pose estimates, a dense image alignment approach based
on the LK algorithm (Lucas and Kanade, 1981) is proposed in this work
to improve accuracy. In general, direct image alignment methods esti-
mate the transformation parameters to align a given target image to a
camera image. The parameter set which minimizes an objective func-
tion (i.e., appearance difference between a transformed target image
and a camera image) is regarded as the final estimated pose. The crux of
the LK-based algorithm is that an approximately linear relationship
exists between object appearance and geometric displacement. As such
a relationship is seldom exactly linear, a linearization process is typi-
cally repeated until convergence. However, as this process does not
always converge within a fixed step size, a line search method is per-
formed every time when we find a descent direction. Among existing

methods, the backtracking line search algorithm has been demonstrated
to be effective for efficient convergence with the presence of image
noise (Orozco et al., 2013).

2.3. Pose disambiguation

The pose ambiguity problem occurs not only under orthographic
projection but also for perspective transformation, especially when the
target planar object is significantly tilted with respect to camera views.
A typical approach for pose disambiguation is first to find all possible
poses which are stationary points with local minima of a designed ob-
jective function, and then the one with smallest objective values is
considered as the estimated pose. Empirically, the number of ambig-
uous poses is two in general. In Schweighofer and Pinz (2006), it has
been shown that two local minima exist for cases with images of a
planar target object viewed by a perspective camera, and a method is
developed to determine a unique solution based on iterative pose
estimation (Lu et al., 2000a). The PnP problem can be posed as a
minimization problem (Zheng et al., 2013) and all the stationary points
can be determined by using the Gröbner basis method (Kukelova et al.,
2008). In addition, given a pose solution, the other ambiguous pose can
also be generated by reflecting the first pose with respect to a plane
whose normal vector is the line-of-sight from the camera image center
to the planar target center (Collins and Bartoli, 2014).

3. Problem formulation

Given a target image tI and an observed camera image cI with pixel
values normalized in the range [0,1], the task is to determine the object
pose of tI in six degrees of freedom parameterized based on the or-
ientation and position of the target object with respect to a calibrated
camera. With a set of reference points = = … ≥⊤x y i n nx [ , , 0] , 1, , , 3i i i
in the object-space coordinate of ,tI and a set of camera-image co-
ordinates = ⊤u vu [ , ]i i i in ,cI the transformation between them can be
formulated as:
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are the rotation matrix and translation vector, respectively. In (1), (fx,
fy) and (x0, y0) are the focal length and the principal point of the
camera, respectively, and h is the scale factor representing the depth
value in the camera coordinate system.

Given the observed camera-image points ̂ ̂= ⊤u vu [ , ] ,i i i the pose

Fig. 2. Illustration of rotation angle: θx indicates the tilt angle between the
camera and the target image when the rotation is factored as

= θ θ θR R R R( ) ( ) ( )z zc x x z zt .

Table 1
Bounded step size on each dimension in the pose domain for con-
structing the ε-covering pose set.

Dimension Step size
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estimation algorithm needs to determine values for pose p≡ (R, t) that
minimize an appropriate error function. The rotation of the pose p can
be parameterized in numerous ways (Grassia, 1998) including Euler
angles (see Section 4.1) and axis-angle representation (see Section 4.2).

There are two types of error functions commonly used for pose es-
timation. The first one is based on projection error and used in the PnP
algorithms:

̂ ̂∑= − + −
=

E
n

u u v vp( ) 1 (( ) ( ) ).r
i

n

i i i i
1

2 2

(3)

The second type of error function is based on appearance distance and
used in direct methods including this work:

∑= −
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The error functions in (4) and (5) are the normalized Sum-of-Absolute-
Differences (SAD) and Sum-of-Squared-Difference (SSD) errors, re-
spectively.

4. Proposed algorithm

The proposed algorithm consists of two steps. First, the 6-DoF pose
of a planar target object with respect to a calibrated camera is esti-
mated. Second, the object pose is refined and disambiguated.

4.1. Approximate pose estimation

Let Tp be the transformation at pose p in (1). Assume a reference
point xi in a target image is transformed separately to ui1 and ui2 in a
camera image with two different poses p1 and p2. It has been

Input: Target image It, camera image Ic, intrinsic parameters, and parameters ε∗, εΔp;
Output: Estimated pose result p∗;

1: Build image pyramids for It and Ic;
2: Start from images with lowest resolution;
3: Create an ε-covering pose set S;
4: Find pb from S with E′a1

according to (15);
5: while ε > ε∗ do
6: Obtain the set SL according to (13);
7: Diminish ε;
8: if d < 1 according to (6) then
9: Change to the next image resolution;

10: end if
11: Replace S according to (14);
12: Find pb from S with E′a1

according to (15);
13: end while
14: Determine the candidate poses p1 and p2 with pb;
15: for i = 1→ 2 do
16: Let pc = pi;
17: repeat
18: Compute Jc according to (19);
19: Compute Δp according to (25);
20: while Condition according to (26) is not met do
21: Δp← αΔp
22: end while
23: pc ← pc + Δp
24: until Δp < εΔp

25: Let pi = pc;
26: end for
27: Return the pose p∗ with smaller Ea2 from p1 and p2;

Algorithm 1. Direct 6-DoF pose estimation.

Table 2
Average runtime (measured in seconds) for approaches on different datasets. Although SIFT-based Approach is the fastest method among these three different
schemes, its performance is quite limited. Numbers in parentheses denote the average runtime of the CUDA implementation of the proposed method, which can be
executed more efficiently on a GPGPU platform as it can be easily parallelized.

Dataset SIFT-based approach ASIFT-based approach DPE

SIFT RANSAC IPPE/OPnP Total ASIFT RANSAC IPPE/OPnP Total APE PR Total

Synthetic 7.431 0.010 0.001/0.009 7.446 10.903 0.004 0.001/0.009 10.912 10.549 (1.505) 0.571 (0.117) 11.120 (1.622)
VT 3.608 0.005 0.001/0.008 3.618 15.806 0.003 0.001/0.008 15.814 17.920 (1.217) 0.694 (0.180) 18.615 (1.397)
OPT 11.261 0.098 0.001/0.008 11.364 38.884 0.055 0.001/0.008 38.944 18.545 (0.994) 0.214 (0.088) 18.759 (1.082)
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shown (Korman et al., 2017) that if any distance between ui1 and ui2 is
smaller than a positive value ε, with upper bound in the Big-O
notation (Cormen et al., 2009),

∀ ∈ =d T T Ox x x: ( ( ), ( )) (ɛ),i t i ip p1 2I (6)

then the following equation holds

− =E E Op p( ) ( ) (ɛ ),a a1 21 1 V (7)

whereV denotes the mean variation of ,tI which represents the mean
value over the entire target image of the maximal difference between
each pixel and any of its neighbors. The mean variation V can be
constrained by filtering tI . The main result is that the difference be-
tween E p( )a 11 and E p( )a 21 is bounded in terms of ε. In the proposed
direct method, we only need to consider a limited number of poses by
constructing a ε-covering pose set S (Wikipedia, 2018) based on (6)
and (7).

Constructing the ε-covering set.By factoring the rotation as
= θ θ θR R R R( ) ( ) ( )z z x x z zc t (Eberly, 2008) as shown in Fig. 2, the pose

then can be parameterized as = ⊤θ θ θ t t tp [ , , , , , ]z x z x y zc t . These Euler
angles θ ,zc θx, and θzt are in the range − ∘ ∘[ 180 , 180 ], [0°, 90°], and
− ∘ ∘[ 180 , 180 ], respectively. In addition, the translation parameters tx, ty,
and tz are bounded such that the whole target image would be within
the camera image, and the bounds depend on the camera intrinsic

Fig. 3. Cumulative percentage of poses whose rotation or translation errors are
under values specified in the x-axis over experiments. The vertical dashed lines
correspond to the thresholds used to detect unsuccessfully estimated poses.
There is a total of 36,277 poses estimated by each pose estimation approach.

Fig. 4. Cumulative percentage of poses whose rotation or translation errors are
under thresholds specified in the x-axis over experiments on the same datasets
used by (Tseng et al., 2016) (i.e., the synthetic dataset and the visual tracking
dataset Gauglitz et al., 2011).

Fig. 5. A synthetic test image was generated from a warping template image
according to a randomly generated pose on a randomly chosen background
image.
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parameters. Furthermore, we set an upper bound for tz since it is not
practical to detect an extreme tiny target image in the camera image. A
pose set S is constructed such that any two consecutive poses, pk and

+p pΔk k on each dimension satisfy (6) in S . To construct the set, the

coordinates of ∈xi tI are normalized to the range −[ 1, 1]. Starting with
tz, we derive the following equation by using (1) for each xi:

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟

= ⎡
⎣
⎢

⎛
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− ⎛
⎝ +

⎞
⎠

⎤
⎦
⎥ + ⎡
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t t
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t t

O
t t t
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Δ Δ

1 1
Δ

.

i i

x i

z

x i

z z

y i

z

y i

z z

z z z

p p

2 2

tz tz tzΔ

(8)

To satisfy the constraint in (6), we use the step size with tight bound in
the Big-Theta notation (Cormen et al., 2009):

⎜ ⎟= ⎛
⎝ −

⎞
⎠

t
t

t
Δ Θ

ɛ
1 ɛ

,z
z

z

2

(9)

which means that (8) can be bounded if we construct S using (9) on
dimension tz.

Since θx describes the tilt angle between camera and target image as
shown in Fig. 2, we obtain the following equation based on tz:

⎜

⎟

= + = ⎛
⎝ − +

−
−

⎞
⎠

+( )d T T d d O
t θ θ

t θ

x x( ), ( ) 1
sin( Δ )

1
sin( )

,

i i
z x x

z x

p p u v
2 2

θx θx θx i iΔ

(10)

for each xi, where

⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟= ⎛
⎝ +

⎞
⎠

− ⎛
⎝ + +

⎞
⎠

= ⎛
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⎞
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+
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d
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y θ t
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,
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x i

i x z
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i x x z

y i x

i x z

y i x x

i x x z

u vi i

(11)

Fig. 6. Experimental results on synthetic data under varying conditions.

Fig. 7. Cumulative percentage of poses whose rotation or translation errors are
under thresholds specified in the x-axis over experiments on the proposed
synthetic image dataset. There is a total of 8400 poses estimated by each pose
estimation approach.

Fig. 8. Pose estimation results with refinement approach (DPE) and without
refinement approach (APE). The average value of rotation and translation er-
rors are both reduced by the proposed refinement approach.
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In addition, to satisfy the constraint in (6), we set the step size when
using (10):

=
⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

−
+

⎞

⎠
⎟⎟

−
⎞

⎠
⎟⎟

−

−

θ t θΔ Θ sin 1
ɛ

.x z

t θ

x
1

1
sin( )z x (12)

Similarly, we derive the steps for the other dimensions based on tz and
θx. Table 1 summarizes the bounded step size on each dimension for the
ε-covering pose set, and the derivation details are presented
in Appendix A.

Finally, the pose set is constructed recursively starting from tz based
on the bounded step shown in Table 1. We then determine values of θx
based on its bounded step which is influenced by tz. The remaining pose
parameters θ ,zc θ ,zt tx, and ty are determined based on each of their
bounded steps, which are afftected only by tz and θx and independent of
each other.

Coarse-to-fine estimation. As the parameter space is large, the
computational and memory costs are prohibitively high if the ε-cov-
ering set is used straightforwardly for pose estimation. In this work, we
develop a coarse-to-fine approach for fast and accurate pose estimation.
The pose set S is first constructed with a coarse ε. After obtaining the
best pose pb and the associated error measure E p( ),a b1 we select the
poses within a threshold:

= < +E E Lp p p{ ( ) ( ) },L L a L a b1 1S (13)

to be considered in the next step. Here the constant L is a threshold
empirically determined. Based on ,LS we create sets with finer ε′:

′ = ′ ∃ ∈ ′ ′p p p p{ : (6) holds for , and ɛ },L L LS S (14)

and repeat this process until we obtain the desired precision parameter
ε*. In our implementation, the initial ε is set to be 0.25 and is dimin-
ished by multiplying a scale factor of 0.662 in each iteration. The
precision parameter ε* is set to meet the condition that for each point in
the target image, the maximum distance between neighboring points in
the camera image transformed by poses in the ε-covering pose set is less
than 1 pixel. Empirically, ε* would be around 0.01. The best pose in the
last set is considered as the approximated estimate.

Approximate error measure. If we approximate the error measure
′Ea1 with random sampling only a portion of pixels instead of computing

Ea1 with sampling all pixels in ,tI according to Hoeffding’s

inequality (Abu-Mostafa et al., 2012), ′Ea1 is close to Ea1 within a pre-
cision parameter δ if the number of sampling pixels m is sufficiently
large:

′ − > ≤ −P E E δ e( ) 2 ,a a
δ m2

1 1
2

(15)

where P( · ) represents the probability measure. This inequality suggests
that if m is properly selected, the approximation error between ′Ea1 and
Ea1 can be bounded with high probability. In other words, ′Ea1 is a close
approximation of Ea1 within the probably approximately correct (PAC)
framework (Kearns and Vazirani, 1994). With this approximation, the
runtime of estimating the error measure can be significantly reduced by
inspecting only a small fraction of pixels in a target image. We nor-
malize the intensity term and add the chroma components to the ap-
pearance distance measure to account for lighting variation.

Pyramidal implementation. To constrain the mean variation V

in (7), it is common to blur tI (and cI ) before carrying out the proposed
approximated pose estimation method. Since a blurry image has a
texture similar to that of a lower resolution image, we construct an
image pyramid instead of directly blurring images. It is worth using a
lower resolution image for pose estimation from some perspectives.
First, when we sample pixels on a smaller image, the cache miss rate
will be lower and thus reduce memory traffic. Second, we can also
sample a smaller amount of pixels in (15) when using low-resolution
images. Starting from the lowest resolution image, we proceed to the
next level (i.e., higher resolution image) when the distance in (6) is
smaller than one pixel for all transformations. Empirically, the pyramid
implementation can increase the runtime performance significantly
while achieving similar or even higher accuracy and robustness for pose
estimation.

4.2. Pose refinement

We obtain a coarse pose p′≡ (R′, t′) using the proposed approx-
imate pose estimation scheme. However, this estimate is bounded based
on the distance in the appearance space rather than the pose space.
Thus the estimated and actual poses may be significantly different even
when the appearance distance is small, particularly when the tilt angle
of a target image is large. In the meanwhile, the pose ambiguity pro-
blem is likely to occur as illustrated in Fig. 1. As such, we propose a
pose refinement method to improve accuracy and address the ambi-
guity problem of estimates.

Determining candidate poses. In order to address the pose am-
biguity problem, we first transform four corner points xc1, xc2, xc3, and
xc4 in the target image tI to uc1, uc2, uc3, and uc4 in the observed
camera image cI with p′, respectively. We then compute all stationary
points of the error function (3) based on the Gröbner basis
method (Kukelova et al., 2008). Only the stationary points with the two
smallest objective values in (3) are plausible poses, and these two
ambiguous poses ′p1 and ′p2 are both chosen as the candidate poses.

Refining candidate poses. After obtaining the two candidate

Fig. 9. Results of the proposed method without refinement (w/o), refinement with one candidate (w/ 1), and refinement with two candidates (w/ 2). (a) The rotation
errors are reduced significantly in the ambiguous cases, but the translation errors are relatively not because the translation terms of ambiguous poses are quite similar
in most cases. (b) The difference of pose errors before and after applying two kinds of refinement approaches. While the proposed refinement approach can
disambiguate the object pose effectively, approach with only one candidate pose suffers from the risk of getting trapped into a local minimum.

Table 4
Evaluation results for different pose refinement approaches on the synthetic
image dataset in the refinement analysis experiment.

Approach Er(°) Et(%) SR(%)

Without refinement 2.235 1.369 66.82
Refinement with 1 candidate pose 0.734 0.461 65.49
Refinement with 2 candidate poses 0.558 0.416 92.05
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poses, we further refine the estimates using a dense image alignment
method which minimizes the SSD error in (5) (instead of the SAD error
in (4) as it is not continuously differentiable) by the LK-based approach.
For each candidate pose pc, we solve the nonlinear least squares pro-
blem using the Gauss–Newton iteration method. To approximate how
the image changes with respect to pose, we use the first-order Taylor
series as follows:

= ∑ + −

≈ ∑ + −
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∂
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p u p p x
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(16)

Different from the method described in Section 4.1, here the pose p is
parameterized as a 6D vector consisting of the 3D axis angles of the
rotation matrix and the 3D translation vector:
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To compute Δp in each iteration, we set the first derivative of (16) to
zero and solve the resulting system of linear equations:

= −J p I IΔ ,c t c (18)

where It and Ic are vector forms of x( )t iI and u( ),c iI respectively.
In (18), Jc is the Jacobian matrix of Ic with respect to p at the pose

=p pc and computed by the chain rule (in the numerator-layout no-
tation):
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where = ⊤R R R R R RR [ , , , , , ]11 12 21 22 31 32 denotes the vector with elements
in the left two columns of the rotation matrix R, and
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is the camera-space coordinate transformed from the object-space co-
ordinate = ⊤x yx [ , , 0] .

In addition, the derivative of R with respect to r can be obtained
using the following formula (Gallego and Yezzi, 2015):

∂
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= + × −× ×

r
rR r r I R e
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i i
2 (23)

where I and ei are the identity matrix and the ith vector of the standard
basis in  ,3 respectively. In (23), [r]× is defined by:
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which represents the cross product (skew-symmetric) matrix for the
vector r.

A closed form solution of (18) is:

= −⊤ − ⊤p J J J I IΔ ( ) ( ).c c c t c
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As the least squares problem is nonlinear, the Gauss–Newton iteration
method does not always converge with a fixed step size. We thus

perform a backtracking line search to scale the step size after each
iteration of computing (25). We shrink Δp by Δp← αΔp until it meets
the Armijo-Goldstein condition:

+ ≤ + ∇ ⊤E E c Ep p p p p( Δ ) ( ) ( ) Δ ,a c a c a c2 2 2 (26)

where ∇E p( )a c2 is the local function gradient. We set =α 0.5 and
= −c 10 4 empirically in this work. The candidate pose pc is refined by
← +p p pΔc c until the vector norm ‖Δp‖ is less than a predefined

threshold εΔp.
Finally, the pose corresponding to the smaller Ea2 is selected from

the two refined candidate poses. The main steps of the proposed pose
estimation method are summarized in Algorithm 1. It should be noted
that we also perform the pyramid implementation for the refinement
process to increase both the accuracy and efficiency.

Fig. 10. Experimental results on the visual tracking dataset (Gauglitz et al., 2011) under varying motion blur levels, where level 9 stands for the strongest motion
blur.

Fig. 11. Estimation results by the proposed DPE method on the visual tracking dataset (Gauglitz et al., 2011) under different conditions. The success cases are
represented with rendered cyan boxes, and the failure cases are represented with rendered magenta boxes.

Fig. 12. Cumulative percentage of poses whose rotation or translation errors
are under thresholds specified in the x-axis over experiments on the visual
tracking dataset (Gauglitz et al., 2011). There is a total of 6889 poses estimated
by each pose estimation approach.
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5. Experimental results

We evaluate the proposed algorithm for the 6-DoF pose estimation
problem using a synthetic image dataset that we develop and two real
image benchmark datasets (Gauglitz et al., 2011; Wu et al., 2017). As
the color of each template in the real image benchmark datasets is
slightly changed after being generated by a printer and then viewed by
a camera, we calibrate each template in the two real image benchmark
datasets before carrying out performance evaluation.

We compare the proposed algorithm with feature-based pose esti-
mation methods. The proposed direct pose estimation (DPE) algorithm
is constructed with the approximated pose estimation (APE) and pose
refinement (PR) approaches. Based on preliminary experiments, we
determine the SIFT (Lowe, 2004) representation performs better than
other alternative features in terms of repeatability and accuracy. Si-
milar observations have also be reported in the
literature (Gauglitz et al., 2011). As the ASIFT (Yu and Morel, 2011)
method is considered the state-of-the-art affine-invariant method to
determine correspondences under large view changes, we use both the
SIFT and ASIFT representations in the evaluation against feature-based
schemes. The RANSAC-based method (Fischler and Bolles, 1981) is then
used to eliminate outliers before object pose is estimated by the PnP
algorithm. It has been shown that, among the PnP algorithms (Collins
and Bartoli, 2014; Kneip et al., 2014; Lepetit et al., 2009; Schweighofer
and Pinz, 2006; Zheng et al., 2013), the OPnP (Zheng et al., 2013) and
IPPE (Collins and Bartoli, 2014) algorithms achieve the state-of-the-art
results in terms of efficiency and precision for planar targets. Thus, we
use these two algorithms as the pose estimator in the feature-based
methods.

All the experiments are carried out using MATLAB on a machine
with an Intel Core i7-6700K 4.0 GHz processor and 32GB RAM. In ad-
dition, we implement the proposed direct method on an NVIDIA GTX
970 GPU using CUDA based on Tseng et al. (2017). Table 2 shows
average runtime for different algorithms. The source code and datasets
are available on our project website at media.ee.ntu.edu.tw/research/
DPE.

Given the true rotation matrix ∼R and translation vector t,͠ we
compute the rotation error of the estimated rotation matrix R by

= −∼⊤E degree R R( ) arccos((Tr( · ) 1)/2),r where arccos(·) represents the
inverse cosine operation in degrees and Tr( · ) is the trace of a matrix.
The translation error of the estimated translation vector t is measured

by the relative difference between t͠ and t defined by
= − ×E t t t(%) / 100͠ ͠t . We define a pose to be successfully estimated

if its both errors are under predefined thresholds. We use = ∘δ 20r and
=δ 10%t as the thresholds on rotation error and translation error em-

pirically, as shown in Fig. 3. The success rate (SR) is defined as the
percentage of the successfully estimated poses within each test condi-
tion. In the following sections, the average rotation and translation
errors are computed only for successfully estimated poses.

We compare the DPE algorithm proposed in this work with the al-
gorithm proposed in the previous work (i.e., DPE16) (Tseng et al.,
2016) on the same datasets (Tseng et al., 2016). Fig. 4 shows that the
proposed DPE algorithm performs accurately and robustly against the
DPE16 method. For presentation clarify, we do not show the evaluation
results of the DPE16 method in the following sections.

5.1. Synthetic image dataset

For our experiments we use a set of synthetic images consisting of
8400 test images covering 21 different test conditions. Each test image
is generated from warping a template image according to the randomly
generated pose with the tilt angle in the range [0°, 75°] with a randomly
chosen background image as shown in Fig. 5. The template image size is
640 × 480 pixels. These templates are classified into four different
classes, namely “Low Texture”, “Repetitive Texture”, “Normal Tex-
ture”, and “High Texture” (Lieberknecht et al., 2009) as shown from top
to bottom in Fig. 5. Each class is represented by two targets. The
background images are from the database (Jegou et al., 2008) and re-
sized to 800 × 600 pixels.

Undistorted images. The pose estimation results of the SIFT-based,
ASIFT-based, and proposed direct methods on the undistorted test
images are shown in Table 3. For each image, the average rotation error
Er, translation error Et, and success rate are presented. The evaluation
results show that the proposed DPE method performs accurately and
robustly against feature-based approaches on various template images.
In addition, the proposed refinement approach can effectively improve
accuracy that is first estimated by the APE method.

In most cases, the feature-based approaches do not estimate pose
accurately on textureless template images or template images with
feature points that are similar to each other. Although the IPPE algo-
rithm is designed for pose estimation of planar objects, it does not
perform as well as the OPnP algorithm that is able to estimate pose

Fig. 13. Estimation results by the proposed DPE method on the object pose tracking dataset (Wu et al., 2017) under different conditions. The success cases are
represented with rendered cyan boxes, and the failure cases are represented with rendered magenta boxes.
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more accurately in general scenarios.
Degraded images. We evaluate these approaches using all tem-

plates with different types of image degradation: 1) Gaussian blur with
kernel width of {1, 2, 3, 4, 5} pixels, 2) JPEG compression with the
quality parameter set to {90, 80, 70, 60, 50}, 3) intensity change with
pixel intensity scale factor set to {0.9,0.8,0.7,0.6,0.5}, and 4) tilt angle
in the range of {[0°, 15°), [15°, 30°), [30°, 45°), [45°, 60°), and [60°,
75°)}. Fig. 6 shows the evaluation results. The proposed DPE algorithm
performs favorably against the other feature-based methods on blurry
images. Although the translation errors of the proposed method appear
to be larger than those of feature-based methods, these errors are
computed only on successfully estimated poses. As the proposed
method can estimate template poses successfully even under blur con-
ditions, the errors are larger due to slightly inaccurate pose estimates in
blurry images.

All approaches are able to deal with certain levels of distortion with
JPEG compression noise.

For images with intensity changes, the SIFT-based methods perform
worse than other approaches as fewer features are detected in low contrast
images by the SIFT detector. We note that the SIFT-based methods can still
perform well under low-intensity conditions when we adjust the feature
detection threshold to extract more features.

Although the SIFT-based approaches can detect and match features
accurately under small tilt angles, these methods frequently fail when the
tilt angles are larger. In contrast, the proposed algorithm and the ASIFT-
based methods are able to estimate 6-DoF poses relatively well even the
template images are perspectively distorted in the camera images.

We show the overall evaluation results on the proposed synthetic
image dataset in Fig. 7. Overall, the proposed direct method performs
favorably against the feature-based approaches with the success rate of
98.90%. The success rate of the SIFT-based and ASIFT-based ap-
proaches are 49.65% and 74.26%, respectively.

Refinement analysis. To improve pose estimation accuracy, we
propose a refinement method that minimizes the appearance distance
between the template and camera images using an LK-based scheme as
described in Section 4.2. Fig. 8 shows pose estimation results with and
without the refinement approach on the synthetic dataset. The rotation
and translation errors of estimated poses are smaller after the proposed
refinement process. The rotation and translation errors can be reduced
by 1.951° and 0.670% respectively with proposed refinement scheme.
Sample images rendered with poses estimated by the proposed algo-
rithm with and without the refinement scheme on the synthetic image
dataset are shown in Fig. 1.

We design another experiment to demonstrate the proposed algo-
rithm is able to disambiguate plausible poses. A template image from
the synthetic dataset is warped according to pose pt. Two ambiguous
pose, pa1 and p ,a2 can be obtained from pt using the functional mini-
mization method (Zheng et al., 2013). One of the two plausible poses ′pa
is randomly chosen and added with some Gaussian noise. The refine-
ment approach is then applied to ′pa for estimating the pose of the
warped template image. Finally, we compute Er and Et of both the in-
itial noisy pose ′pa and the refined pose pr according to pt. Thus, if the
proposed refinement approach can disambiguate the plausible pose ′p ,a
the rotation error can be reduced significantly. All images in the syn-
thetic dataset are used for the experiment.

We compare the proposed refinement method with the refinement
approach with only one candidate pose in Algorithm 1, and present the
results in Fig. 9. While the rotation errors of ambiguous poses are
usually large (which causes the pose flipping), the proposed refinement
approach can disambiguate the object pose effectively and reduce the
rotation errors significantly (which result in smoother pose estimations
throughout an image sequence). Table 4 shows that the proposed re-
finement method can help improve estimation accuracy in terms of
rotation and translation and address the pose ambiguity problem ef-
fectively.

5.2. Visual tracking dataset

We analyze the performance of the proposed algorithm and state-of-
the-art methods on the visual tracking (VT) dataset (Gauglitz et al.,
2011) which contains 96 videos and 6889 frames with 6 templates.
These videos are recorded under different moving and lighting condi-
tions with motion-blurs. The camera image size in this dataset is
640 × 480 pixels. And since the templates have different primary re-
solutions, we resize each template to 570 × 420 pixels uniformly. It is
a challenging database for pose estimation due to significant viewpoint
changes, drastic illumination differences, and noisy camera images.

The evaluation results of the proposed and feature-based methods
on six templates under different conditions are shown in Table 5. Dif-
ferent from synthetic images, the color appearance of a template image
may change significantly within a video sequence in this real image
dataset. The DPE algorithm performs favorably against the feature-
based methods under most conditions, especially when distinguishable
features cannot be found on a template image.

While PnP algorithms perform well in pose estimation, the success
hinges on whether the feature can be well matched. As shown
in Fig. 10, feature-based approaches do not perform well when motion
blurs occur. Similarly, feature-based methods do not estimate pose well
on videos listed in Table 5 due to motion blurs. On the other hand, the
proposed algorithm can estimate poses well under blur conditions. As
motion blurs are likely to occur in AR applications, the proposed al-
gorithm can be better applied to estimate 6-DoF pose than feature-
based approaches. However, if the target object appears an extremely
flat color in a camera image, the proposed method is likely to fail be-
cause the appearance between the template and its local patches are
almost indistinguishable.

Sample pose estimation results from the proposed DPE method are
shown in Fig. 11. The cumulative percentage of estimated poses ac-
cording to different translation and rotation errors are shown in Fig. 12.
Overall, the proposed direct method performs favorably against the
feature-based approaches within the success rate of 77.76%. The suc-
cess rate of the SIFT-based and ASIFT-based approaches are 29.98% and
48.52% respectively.

Note that the proposed pose refinement approach can also be re-
garded as a direct pose tracking (DPT) algorithm. The evaluation results
of the DPT method on the VT dataset are shown in Table 5, Fig. 10,
and Fig. 12. If the DPT method loses track of the object pose (i.e., the
rotation or translation error is larger than the pre-defined threshold,
i.e., δr and δt), we reset the initial object pose in the current frame as the
object pose in the previous frame. Overall, the proposed DPT method
can track object poses well. The DPT algorithm can be integrated with
the DPE method for more robust performance with certain re-in-
itialization schemes (e.g., periodic restarts).

5.3. Object pose tracking dataset

We evaluate the proposed algorithm and feature-based methods on
the object pose tracking (OPT) benchmark dataset (Wu et al., 2017). For
2D objects, it contains 138 videos with 20,988 frames. These videos are
recorded under four designed motion patterns and five camera speeds
controlled by a programmable robotic arm. Furthermore, these videos
contain two different lighting conditions and a free-motion case. The
frame size in this dataset is 1920 × 1080 pixels, and we resize each
template to 300 × 300 pixels. Sample images rendered according to
the pose estimated by the proposed DPE method on this OPT dataset are
shown in Fig. 13.

The pose tracking results of all evaluated algorithms under Flashing Light,
Moving Light, and Free Motion conditions with six templates and different
texture levels are shown in Table 6. Similar to the results in Section 5.1
and Section 5.2, feature-based methods do not perform well on the template
images with less texture or structure. In contrast, the proposed DPE method
is able to track object poses well except the Wing image. When a template
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image does not contain sufficient structural information, the proposed direct
method may estimate erroneous poses which cover only parts of the tem-
plate image, as shown in the failure cases in Fig. 13. The proposed method
does not perform well on images when drastic color distortion occurs, e.g.,
under Moving Light condition, as the appearance distance metric is less ef-
fective in such scenarios.

The pose tracking results of the template images in different motion
patterns and speed are shown in Fig. 14. Since the images in the Translation
condition are more blurry than those in other motion patterns at higher
speed, the plot trends of the evaluation results under this condition are si-
milar as those under the Gaussian Blur conditions in Fig. 6. In contrast, the
other three motion patterns do not result in blurry images at the highest
speed, the performance of all approaches under conditions at different
speeds are similar. As all the evaluated approaches are scale and rotation
invariant, they all perform favorably on template images with the Zoom and
In-plane Rotation patterns. However, the success rates of SIFT-based methods
are lower in the Out-of-plane Rotation motion pattern as they are not in-
variant under perspective distortion.

We evaluate the proposed DPT algorithm on the OPT dataset to
analyze the tracking performance using the same experimental setting
as that described in Section 5.2, Fig. 14 and Table 6 show that the DPT
algorithm can track object poses well on most template images except
one. As discussed above, the proposed DPT method does not work well
on images, e.g., Wing, without sufficient structure for pose estimation
based on appearance. The curves of cumulative percentages of poses
estimated by the evaluated algorithms on the OPT dataset are shown
in Fig. 15. Overall, the proposed direct method performs favorably
against feature-based approaches with a success rate of 91.27%. The
success rates of the SIFT-based and ASIFT-based approaches are 79.46%
and 82.74%, respectively.

6. Conclusions

In this paper, we propose a robust direct method for 6-DoF pose
estimation based on two main steps. First, the pose of a planar target
with respect to a calibrated camera is approximately estimated using an
efficient coarse-to-fine scheme. Next, we use the LK-based method to
further refine and disambiguate the object pose. Extensive experimental
evaluations on both synthetic image and real image datasets demon-
strate the proposed algorithm performs favorably against two state-of-
the-art feature-based pose estimation approaches in terms of robustness
and accuracy under several varying conditions. We have also im-
plemented the proposed algorithm on a GPGPU platform as the algo-
rithm can be easily parallelized.
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Fig. 14. Experimental results of the object pose tracking dataset (Wu et al., 2017) in four designed motion patterns with different speeds.

Fig. 15. Cumulative percentage of poses whose rotation or translation errors
are under thresholds specified in the x-axis over experiments on the object pose
tracking dataset (Wu et al., 2017). There is a total of 20,988 poses estimated by
each pose estimation approach.
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Appendix A. Derivation details of bounded steps

For presentation clarity, we use the notation ca for cos (θa) and sa for sin (θa), where a stands for zc, x, or zt. As discussed in Section 4.1, the
rotation can be factorized as:

= =
⎡
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⎢
⎢

− − −
+ − −

⎤

⎦
⎥
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θ θ θ
c c c s s c c s c s s s
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t c c t c t c t c

t t (A.1)

Our objective is to construct an ε-covering pose set S based on (6) and (7). In this work, we construct S by first determining bounded steps for
horizontal distance tz and tilt angle θx. Next, the bounded steps for the other dimensions θ ,zc θ ,zt tx, and ty can be determined based on tz and θx. Let

= +′θ θ θΔ ,z z zt t t we obtain the following equation based on the current tz and θx,
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where k denotes any constant in the range of −[ 2 , 2 ]. An illustrative example of (A.2) is shown in Fig. A.16. To make (A.2) satisfy the constraint
in (6), we set the step size,

= +θ t k θΔ Θ(ɛ( sin( ))),z z xt (A.5)

where larger k means larger bounded steps for constructing S . We set k to be 0 for θΔ zt in the proposed method.
As θzt denotes 2D image rotation of the planar target, it does not influence the bounded steps for θzc. Let = +′θ θ θΔ ,z z zc c c we obtain the following

equation depending on the current tz and θx:
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We can realize (A.6) in a similar way to (A.2). To make (A.6) satisfy the constraint in (6), we set the step size:

= + =θ t k θ tΔ Θ(ɛ( sin( ))) Θ(ɛ( )),z z x zc (A.9)

which k is set to 0.
As the bounded steps for tx and ty are also influenced by horizontal distance tz and tilt angle θx only, we have
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and:

⎜ ⎟= + = ⎛
⎝ +

⎞
⎠

+( )d T T f α f β O
t

t k θ
x, ( )

Δ
sin( )

,i x t y t
y

z x
p x p( )

2 2 2 2
ty i ty ty y yΔ (A.13)

Fig. A1. (a) 2D illustration of rotation around Zt-axis. The linear distance (orange solid line) between points before and after applying rotation is bounded by the arc
length (brown dotted line). (b) 3D illustration of rotation around Zt-axis. The linear distance between points is a function of tilt angle θx.
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To make (A.10) and (A.13) satisfy the constraint in (6), we set these step sizes,

= + = −t t k θ t θΔ Θ(ɛ( sin( ))) Θ(ɛ( 2 sin( ))),x z x z x (A.16)

= + = −t t k θ t θΔ Θ(ɛ( sin( ))) Θ(ɛ( 2 sin( ))).y z x z x (A.17)

as k is set to − 2 for practical consideration.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cviu.2018.03.006.
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