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a b s t r a c t 

The past decade has witnessed significant progress in object detection and tracking in videos. In this 

paper, we present a collaborative model between a pre-trained object detector and a number of single- 

object online trackers within the particle filtering framework. For each frame, we construct an associa- 

tion between detections and trackers, and treat each detected image region as a key sample, for online 

update, if it is associated to a tracker. We present a motion model that incorporates the associated detec- 

tions with object dynamics. Furthermore, we propose an effective sample selection scheme to update the 

appearance model of each tracker. We use discriminative and generative appearance models for the like- 

lihood function and data association, respectively. Experimental results show that the proposed scheme 

generally outperforms state-of-the-art methods. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Multi-object tracking (MOT) is one challenging vision problem

with numerous applications in automatic visual surveillance, be-

havior analysis, and intelligent transportation systems, to name a

few. In the past decade, more attention has been paid on detecting

and tracking one or more objects in videos. Recent advancement

in object detection facilitates collaboration between the detection

and tracking modules for multi-object tracking ( Breitenstein et al.,

2009 ). 

Robust multi-object tracking entails solving many challenging

problems such as occlusion, appearance variation, and illumination

change. A pre-trained object detector robust to appearance varia-

tion of one specific class is often used as a critical module of most

multi-object tracking methods. Specifically, one detector encodes

the generic pattern information about a certain object class (e.g.,

cars, pedestrians and faces), and one tracker models the appear-

ance of the specific target to maintain the target identity in an

image sequence. However, an object detector is likely to generate

false positives and negatives, thereby affecting the performance of

a tracker in terms of data association and online model update. 
∗ Corresponding author. 
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In multi-object tracking, offline methods based on global op-

imization of all object trajectories usually perform better than

nline counterparts ( Andriyenko and Schindler, 2011; Andriyenko

t al., 2012; Brendel et al., 2011; Butt and Collins, 2012; Izadinia

t al., 2012; Leal-Taixé et al., 2011; Shitrit et al., 2011; Wu et al.,

012; Zamir et al., 2012 ), and an experimental evaluation of re-

ent methods can be found in Leal-Taixé et al. (2015) . For instance,

rendel et al. proposed the maximum-weight independent set of

 graph for data association ( Brendel et al., 2011 ), and Zamir et al.

sed the generalized minimum clique graph to solve the data as-

ociation ( Zamir et al., 2012 ). In Butt and Collins (2012) , the data

ssociation problem is solved by using a sliding window of three

rames to generate short tracklets, and in case of inconsistencies,

he algorithm uses larger tracklet optimization. The minimum-cost

etwork flow is then used to optimize the overall object trajecto-

ies. For real-time applications, online methods ( Breitenstein et al.,

009; Okuma et al., 2004; Shu et al., 2012; Wu et al., 2008 ) have

een developed within the tracking-by-detection framework where

ata association between detections and trackers are carried out in

n online manner. 

Table 1 summarizes the multi-object tracking methods that are

ost related to this work. Online multi-object tracking can be car-

ied out by using joint state-space model for multi-targets ( Duffner

nd Odobez, 2013; Eiselein et al., 2012; Jin and Mokhtarian, 2007;

aggio et al., 2008; Okuma et al., 2004; Vermaak et al., 2003 ).
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Table 1 

Representative online multi-object tracking algorithms. AM: appearance model, J/I: joint/independent, MU: model update, PF: particle filter, KF: Kalman filter, CVM: con- 

stant velocity motion model, MCMC: Markov Chain Monte Carlo, CH: color histogram, LBP: local binary patterns, BOW: bag of words, DCD: detection confidence density, 

SS: sample selection, PGF: probabilistic gating function, q (.): proposal distribution, SGM: sparsity-based generative model, PGM: 2DPCA-based generative model, SDC: 

sparsity-based discriminative classifier. 

Algorithm Search and proposal distribution J/I Sample descriptor Data association MU Likelihood function 

Okuma et al. (2004) Mixture particle filters, q (.) ∝ new 

observation and propagated 

particles 

J HSV CH NA No Bhattacharyya similarity 

Breitenstein et al. (2009) PF with CVM I RGI, LBP Boosted classifier, 

PGF and position 

Yes Distance between each 

particle and the associated 

detection, DCD, and 

Boosted classifier 

Yang et al. (2009) Bayesian filtering I RGB, shape, BOW CVM, position and 

scale 

Yes Joint likelihood of AM 

features 

Shu et al. (2012) Detector based or KF I CH, LBP SVM classifier, 

position, size 

Yes + SS KF (if no associated detection 

to the tracker) 

Zhang et al. (2012) Mean shift tracker or KF I CH, shift vector Size, search area, 

tracker re-detection 

Yes Combination of Mean-shift 

and KF 

Schumann et al. (2013) PF with random walk or CVM I RGB CH Overlap ratio Yes Detector confidence 

Duffner and Odobez (2013) MCMC with random walk, q (.) ∝ 

new detections and sampled 

particles 

J HSV CH Overlap ratio and 

position, tracker 

re-detection 

Yes The product of the visible 

individual targets 

likelihoods 

Proposed method PF with detection based CVM, q (.) ∝ 

new associated detections and 

propagated particles 

I Grayscale Overlap ratio, SGM 

and PGM, tracker 

re-detection 

Yes + SS SDC, different weights for 

newly created and 

propagated particles 
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or instance, a mixture particle filter has been proposed ( Okuma

t al., 2004 ) to compute the posterior probability via the collabo-

ation between an object detector and the proposal distribution of

he particle filter. However, the joint state-space tracking methods

equire high computational complexity. The probability hypothesis

ensity filter ( Mahler, 2003 ) has been incorporated in visual multi-

arget tracking ( Maggio et al., 2007; Maggio et al., 2008 ) since

he time complexity is linear with respect to the number of tar-

ets. However, it does not maintain the target identity, and conse-

uently, requires an online clustering method to detect the peaks

f the particle weights and applies data association to each cluster.

Numerous online multi-object tracking methods deal with each

racker independently ( Breitenstein et al., 2009; Schumann et al.,

013; Shu et al., 2012; Yang et al., 2009; Zhang et al., 2012 ). In

reitenstein et al. (2009) , a method based on a particle filter and

wo human detectors with different features was developed, where

he observation model depends on the associated detection, the

etector confidence density and the likelihood of appearance. In

ddition, Shu et al. (2012) introduced a part-based pedestrian de-

ector for online multi-person tracking. This method combines the

etection results with the Kalman filter, where data association is

erformed every frame, and the filter is used when occlusion oc-

urs. Recently, Zhang et al. (2012) used the mean-shift trackers and

he Kalman filter for multi-person tracking, where trackers are ei-

her weakly or strongly trained. We note that these methods are

ikely to have low recall as the detector and tracker are not inte-

rated within the same framework. 

The degeneracy problem of particle filters ( Gordon et al., 1993 )

as been addressed in several methods ( Huang and Djuric, 2004;

inxia et al., 2012; Rui and Chen, 2001; Santhoshkumar et al., 2013 )

ith more effective proposal distributions and re-sampling steps.

ui and Chen (2001) used the unscented Kalman filter for gen-

rating the proposal distribution, and Han et al. (2011) used a

enetic algorithm to increase the diversity of the particles. Re-

ently, the Metropolis Hastings algorithm has been used to sample

articles from associated detections in the tracking-by-detection

ramework ( Santhoshkumar et al., 2013 ). We note that the above-

entioned methods do not exploit the collaboration between de-

ectors and trackers ( Han et al., 2011; Rui and Chen, 2001 ), or do

ot consider the effect of false positive detections on the track-

rs ( Santhoshkumar et al., 2013 ). 

t  
An adaptive appearance model is one of the important factors

or effective object tracking as it accounts for appearance change

 Salti et al., 2012; Wu et al., 2013 ). In Okuma et al. (2004) , the

ppearance model is fixed during the tracking process and thus,

ay result in tracking failure. On the other hand, the trackers

re updated with positive samples ( Zhang et al., 2012 ) straightfor-

ardly without differentiating whether they contain noise or not.

s multiple objects are likely to be occluded, it is necessary to

nalyze the samples and reduce the likelihood of including noisy

amples for model update. Recently, the appearance models ( Shu

t al., 2012 ) have been updated by the detected non-occluded ob-

ect parts rather than the holistic samples. 

In this paper, we propose an online multi-object track-

ng scheme by using a robust collaborative model for interac-

ion between a number of single-object trackers with sparse

epresentation-based discriminative classifiers ( Wright et al., 2009;

hong et al., 2012 ), and a pre-trained object detector in the parti-

le filter framework, where every target is tracked independently

o avoid the high computational complexity of the joint probabil-

ty with increasing number of targets. A novel sample selection

cheme is used to update each tracker by using key samples with

igh confidence from the trajectory of an object, where the key

ample represents the association between the tracker and a detec-

ion at time, t . In addition, we present a data association method

ith partial occlusion handling by using diverse generative models

omposed of sparsity-based generative model ( Zhong et al., 2012 ),

nd two-dimensional principal component analysis (2DPCA) ( Yang

t al., 2004 ) generative model. Finally, we introduce a 2DPCA gen-

rative model to re-identify lost targets. Experimental results on

enchmark datasets demonstrate that the proposed scheme gener-

lly outperforms state-of-the-art methods. 

. Overview of the proposed scheme 

The proposed multi-object tracking scheme consists of three

ain components: a pre-trained object detector, a data association

odule and a number of single-object trackers. Fig. 1 shows the

lock diagram of the proposed scheme, wherein only one single-

bject tracker is shown. The object detector is applied on every

rame and supports the data association module with a set of de-

ections D 

t at time t . The object tracker adopts a hybrid motion
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Fig. 1. Block diagram of the proposed multi-object tracking scheme, where IN, TRM, OH, pos, and neg denote initialization, termination, on-hold, positive, and negative, 

respectively (see text for details). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

A  

d  

s  

l

 

w

w  

a  

m  

w  

f  

s  

p  

d

w  

w  

d  

v  

f  

s

 

w  

g  

p

q  

B  

t  

p

w  

B  

r  

m  

c

 

0  

s  

c  

m  

a  

w

model, and a particle filter with a robust collaborative model is

used to estimate the target location. The appearance model con-

sists of a sparsity-based discriminative classifier (SDC) with holis-

tic features, a sparsity-based generative model (SGM) with local

features, and a 2DPCA-based generative model (PGM) with holistic

features. The SDC is used to compute each sample confidence score

of the particle filter, while the SGM and PGM are used to solve the

data association problem. Each tracker also contains a sample se-

lection scheme to update the appearance model with high confi-

dence key samples. Finally, the data association module is used to

construct the similarity matrix S to match detections, d t ∈ D 

t , with

existing trackers, b t ∈ B 

t 
e , at time t . Furthermore, it determines ini-

tialization, termination and on-hold states of the trackers, and sup-

ports the tracker with key samples from the target trajectory. 

In this paper, we used the fast pedestrian detector (FPD) ( Dollár

et al., 2010 ) for multi-person tracking. In Section 4 , we used other

pre-trained detectors, such as the on-road vehicle detector pro-

posed in Naiel et al. (2014) , and the method in Dollár et al.

(2014) to measure the tracking performance on several detection

conditions and different types of objects. 

3. Tracking scheme 

Each object tracker is based on the particle filter tracking

framework that uses the sparse representations and 2DPCA as the

appearance model. We incorporate two measurements from the

detector and tracker into the particle filter, and propose a novel

collaborative model that directly affects the likelihood function to

obtain the posterior estimate of the target location. We construct

the appearance model of the target by using discriminative and

generative appearance models, for the likelihood function and the

data association. In the following, we use a gate function I b t to

represent the state of the tracker b t when associated to the detec-

tion d t at time t . The gate function is defined as 

I b t = 

{
1 , if b t is associated with d t at time t 
0 , otherwise 

(1)

3.1. Particle filter 

In the Bayesian tracking framework, the posterior at time t is

approximated by a weighted sample set { x i t , w 

i 
t } N s i =1 

, where w 

i 
t is

the weight of particle, x i t , and N s is the total number of particles.

The state x consists of translation ( x, y ), average velocity ( v x , v y ),

scale ˆ s , rotation angle θ , aspect ratio η, and skew direction φ. 

The measurement model of the proposed particle filter con-

sists of two types. The first measurement is available every time

t from the propagated particles z 1: t . The second measurement is

from the newly created particles that are available at time t when
 detection window, d t , is associated to a tracker, b t (i.e., I b t = 1 ).

ssume that at time t, the tracker b t is associated to a detection

 t , then we sample candidate particles from the importance den-

ity, q ( x i t | x i 1: t−1 
, z 1: t , d t ) . The posterior probability of the candidate

ocation given the available measurements, p( x t | z 1: t , d t ) , is 

p( x t | z 1: t , d t ) ≈
N s ∑ 

i =1 

w 

i 
t δ( x 1: t − x 

i 
1: t ) (2)

here 

 

i 
t ∝ w 

i 
t−1 

p( z 1: t , d t | x 

i 
t ) p( x 

i 
t | x 

i 
t−1 ) 

q ( x 

i 
t | x 

i 
1: t−1 

, z 1: t , d t ) 
(3)

nd p( x i t | x i t−1 
) is the transition probability. In the proposed

ethod, the particles are resampled every time t , and we have

 

i 
t−1 

= 1 /N s , ∀ i, and then we ignore w 

i 
t−1 

term. In the current

rame, since the propagated particles sampled at time t corre-

ponding to the tracker position in the previous frame and the

articles sampled at time t from the associated detection are in-

ependent, the particle weights are computed by 

 

i 
t ∝ 

p( z 1: t | x 

i 
t ) p(d t | x 

i 
t ) p( x 

i 
t | x 

i 
t−1 ) 

q ( x 

i 
t | x 

i 
1: t−1 

, z 1: t , d t ) 
(4)

here p(d t | x i t ) is the likelihood of detection d t given the candi-

ate location x i t . To determine the term , p(d t | x i t ) the confidence

alue of the object detector is required at every candidate location

rom each tracker, which is computationally expensive. Thus, we

implify this detection likelihood term using the Bayes rule as 

p(d t | x 

i 
t ) = p( x 

i 
t | d t ) p(d t ) /p( x 

i 
t ) ∝ p( x 

i 
t | d t ) (5)

here p( x i t | d t ) represents the probability of the candidate location

iven that the tracker is associated to a detection, d t . Let the pro-

osal distribution be defined as 

 ( x 

i 
t | x 

i 
1: t−1 , z 1: t , d t ) ∝ p( x 

i 
t | d t ) p( x 

i 
t | x 

i 
t−1 ) (6)

y substituting into (4) with the simplification from (5) and (6) ,

he simplified particle weights with Markovian model can be com-

uted by 

 

i 
t ∝ p( z t | x 

i 
t ) (7)

y normalizing the particle weights, the resulting state estimate is

epresented as a weighted average of the candidate locations. This

akes the proposed scheme more robust to noisy detection results

ompared to maximum a posteriori methods. 

When there is no detection associated to a tracker (i.e., I b t =
 ) the proposed particle filter can be simplified to the boot-

trap particle filter ( Gordon et al., 1993 ). In the bootstrap parti-

le filter, the measurement model consists of the tracker measure-

ents z 1: t and the importance density at time t can be defined

s q ( x i t | x i 1: t−1 
, z 1: t ) ∝ p( x i t | x i t−1 

) . It can be shown that the particle

eights can be represented by (7) . 
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Fig. 2. Effect of changing the collaborative factor γ . 
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.1.1. Motion model 

In the proposed method, we adopt a hybrid motion model

ased on the first-order Markov chain and the associated detec-

ion. The new candidate state x d t at time t is provided to the mo-

ion model if a detection is successfully associated to the tracker

i.e., I b t = 1 ) and the initial velocity is set to be the average veloc-

ty of the tracker particles. The candidate state at time t , x t , relates

o the set of propagated particles X b t and the set of associated de-

ection X b t ,d t , by 

 t = 

{
F x t−1 + Q if x t ∈ X 

b t 

x 

d 
t + P if x t ∈ X 

b t ,d t 
(8) 

here Q and P are the Gaussian noise vectors, N s = N 

P 
s + N 

�
s , and

 

P 
s and N 

�
s are the cardinality of X b t and X b t ,d t , respectively. In

he above equation, F denotes the transition matrix of size 8 × 8,

hich is defined as 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 1 0 0 0 0 0 

0 1 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(9) 

.1.2. Robust collaborative model 

The object detector applies computationally expensive space-

cale search to the entire image to localize specific class of objects,

nd proposes candidate locations that have high probability of ex-

stence. To exploit high confidence associated detections, we incor-

orate a set of new particles, X b t ,d t , in the likelihood function to

llow the object detector to guide the trackers. Let H( x i t ) denote

DC tracker confidence score of candidate x i t . The likelihood of the

easurement, z t , can be computed by 

p( z t | x 

i 
t ) = π i H( x 

i 
t ) (10)

here 

i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − γ if I b t = 1 , x 

i 
t ∈ X 

b t 

γ if I b t = 1 , x 

i 
t ∈ X 

b t ,d t 

1 otherwise, i.e., I b t = 0 

(11) 

nd γ ∈ [0, 1] is the collaborative factor. In (10) , the particles from

he associated detections and previously propagated particles are

eighted differently. Fig. 2 shows the effect of changing the col-

aborative factor value. Fig. 3 (a) and (b) shows an example of par-

icle weights for the detector particles and the propagated parti-

les using γ = 0 . 54 . If I b t = 1 and γ > 0.5, the weight π i allows

he detector to guide the tracker by giving more weights to the

ewly associated particles than the propagated particles. However,

 detector may have false positives, and thus, the tracker should

ot depend completely on the detector. From our experiments, we

nd that the proposed scheme with the value of γ between 0.5

nd 0.85 performs best. If the detector suffers from missing detec-

ions (i.e., I b t = 0 ), the likelihood function in (10) will only depend
n the previously propagated particles x i t ∈ X b t , which represent

he bootstrap particle filter ( Gordon et al., 1993 ). Our collaborative

odel is based on the hybrid motion model that incorporates as-

ociated detections with object dynamics. In contrast, the motion

odel adopted in Breitenstein et al. (2009) depends only on propa-

ated particles, and the likelihood function depends on tracker ap-

earance model and the detector confidence density. The collab-

rative model in Okuma et al. (2004) only exists in the proposal

istribution and the likelihood is without weighting collaborative

actor. 

.1.3. Resampling 

In each frame, the set of candidate particles { x i t , w 

i 
t } N s i =1 

are re-

ampled to avoid the degeneracy problem. The resampling process

lso allows the detector to guide the tracker effectively. As each

racker resamples particles based on particle weights computed

rom the proposed collaborative model (10) , the propagated par-

icles with low weights are replaced with newly created particles

rom the associated detections. 

.2. Appearance model 

In the proposed method, the SGM and SDC are used in a way

ifferent from that in Zhong et al. (2012) . First, we do not use the

ollaboration between SGM and SDC ( Zhong et al., 2012 ), instead

e use SGM with PGM to compute the similarity matrix of the

ata association module for occlusion handling (23) , and the mod-

fied SDC model is used to compute the likelihood of the particle

lter (10) . The number of particles in the filter is usually larger

han the number of detections and trackers at time t , and the com-

utational complexity of SDC is lower than SGM. Therefore, the re-

ulting tracker is more efficient. Second, our SDC uses the down-

ampled grayscale image without the feature selection method

sed in Zhong et al. (2012) . Third, our SDC confidence measure

epends on the sparsity concentration index ( Wright et al., 2009 ).

inally, we propose the key sample selection scheme to update the

ppearance models with high confidence samples. 

.2.1. Sparsity-based discriminative classifier 

We construct a discriminative sparse appearance model to com-

ute the confidence score as used in (10) . The initial training sam-

les are collected in a similar way to Zhong et al. (2012) , where

ach SDC tracker is initialized using N p positive samples drawn

rom the object center with a small variation from the center of

he detection state x d t , and N n negative samples are taken from

he annular region surrounding the target center without overlap

ith a detection window d t . Next, each sample is normalized to

 canonical size of ( m × n ), and vectorized to be one column

f the matrix A ∈ R 

r×N t , where r = mn and N 

t = N p + N n + N 

t 
p,u +

 

t 
n,u , such that N 

t 
p,u and N 

t 
n,u denote the buffer size of the selected

ey samples up to time t . Let the measurement corresponding to

he candidate location x i t be denoted by z i t ∈ R 

r . We obtain the

parse coefficients αi for the i th candidate by solving the follow-

ng optimization problem, 

in 

αi 

∥∥z i t − Aαi 
∥∥2 

2 
+ λSDC ‖ αi ‖ 1 (12) 

e compute the classifier confidence score by 

( x 

i 
t ) = exp 

(
− (ε i + − ε i −) 

σ

)

(αi ) (13) 

here ε i + = ‖ z i t − A + αi + ‖ 2 2 is the reconstruction error of the candi-

ate z i t with respect to the template set of the positive class A + ,
nd the sparse coefficient vector of the i th candidate that corre-

ponds to the positive class, αi + . Similarly, ε i − = ‖ z i t − A −αi −‖ 2 2 is

he reconstruction error of the same candidate z i with respect to
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Fig. 3. Effect of the proposed collaborative model on the tracker particles. (a) Illustrates the candidate particles proposed by the object detector (masked as gray) and 

propagated particles (colored). (b) Particles weights for new (masked as gray) and propagated particles (colored). 
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m  
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f  
the template set of the negative class A −, and the corresponding

sparse coefficient vector αi −. The parameter σ adjusts the confi-

dence measure, and 
( αi ) represents the sparsity concentration in-

dex (SCI) ( Wright et al., 2009 ) defined as 


(αi ) = 

J · max j ‖ δ
′ 
j 
(αi ) ‖ 1 / ‖ αi ‖ 1 − 1 

J − 1 

∈ [0 , 1] (14)

where δ
′ 
j 

is a function that selects the coefficients corresponding

to the j th class and suppresses the rest, and J is the number of

classes ( J = 2 in this work). The SCI checks the validity of a candi-

date such that it can be represented by a linear combination of the

training samples in one class. When the sparse coefficients concen-

trate in a certain class, the SCI value is high. This index allows each

tracker to assign high weights to candidates resembling the posi-

tive training samples, and rejects others related to other targets or

background structures. 

The SDC tracker is updated every R u frames using the selected

key samples, K 

t 
u ( Section 3.3 ). At each key sample location, we

collect positive and negative samples as part of the initialization

process. To leverage between computational load and memory re-

quirement, we set the maximum number of positive and negative

samples. If the number of positive, N 

t 
p,u or negative, N 

t 
n,u samples

exceeds the limit, we replace the old samples (other than those

collected in the first frame) with the new selected key samples. 

3.2.2. Sparsity-based generative model 

We use a sparsity-based generative model to measure similarity

in the data association module. Fig. 4 illustrates the block diagram

of the proposed SGM in the training and test modes. The train-

ing template consists of M local patches, { y i } M 

i =1 
and each patch of

size ˆ m × ˆ n . These M patches are vectorized 

1 and quantized into N k 

centroids using the k -means algorithm to construct the dictionary

D ∈ R ̂

 r ×N k ( ̂ r = ˆ m ̂  n ). For the i th patch, y i , the sparse-coefficients,

βi ∈ R 

N k ×1 , is computed by 

min 

βi 

‖ 

y i − Dβi ‖ 

2 
2 + λSGM 

‖ 

βi ‖ 1 (15)

The adopted SGM is concerned with representing the appearance

of the positive class of the tracker by using the sparse coefficients

of M local patches of the object and candidate location c , where
1 The vectorization function is defined as Mat2Vec: R m ×n → R 
r , where r = mn is 

the dimension of the vector, and ( m × n ) is the order of the input matrix. The 

inverse of the vectorization function is defined as Vec2Mat: R r → R 
m ×n . 

s  

t  

p  

V  
ach location is represented by a sparse histogram feature vector

= [ β1 , β2 , . . . , βM 

] T , and ρc = [ βc 
1 
, βc 

2 
, . . . , βc 

M 

] T , corresponding to

he initial object and the candidate location, respectively. To handle

cclusion, the patch reconstruction error, { ε i = ‖ y c 
i 
− Dβc 

i 
‖ 2 

2 
} M 

i =1 
, is

sed to suppress the coefficients of occluded patches. Let ψ i be

he non-occlusion indicator for the i th patch and is computed by

 i = 

{
1 N k , 1 if ε i < ε 0 
0 N k , 1 otherwise 

(16)

here 1 N k , 1 and 0 N k , 1 denote the vector of size N k of ones and

eros. The final histogram can be represented by ϕ = ψ � ρ, and

 

c = ψ � ρc , corresponding to the training template, and the can-

idate location, where � denotes the element-wise multiplication.

y taking the spatial representation into consideration, the result-

ng histogram, ϕ can handle occlusion effectively. Fig. 5 illustrates

he effect of the partial occlusion handling scheme. If the recon-

truction error is greater than the threshold, ε 0 , then the non-

cclusion indicator, ψ , suppresses these patches. The generative

odel similarity, G SGM 

( b t , c ), between the candidate ϕ c and the

odel ϕ is measured by using the intersection kernel. 

As in Zhong et al. (2012) , the dictionary, D , is fixed during the

racking process, while the sparse histogram of the initial template,

initial , is updated every update rate, R u . The sparse histogram is

pdated by 

new 

= μρinitial + (1 − μ) ρK (17)

here μ is the learning rate, and ρK represents the sparse his-

ogram corresponding to the selected key sample from the set K 

t 
u 

hat provides the maximum similarity to the training templates

see Section 3.3 for the sample selection scheme). This conser-

ative update scheme by using the confidence key samples and

aintaining the initial template provide effective tracking. 

.2.3. 2DPCA-based generative model 

In addition to part-based SGM, we use a holistic generative

odel based on the 2DPCA scheme ( Yang et al., 2004 ), referred

o as PGM, to solve the data association problem. The reason being

hat a combination of PGM and SGM increases the tracking per-

ormance (see Section 4 ). For each tracker b t , we use N positive

amples, { Y j } N j=1 
each of size m × n , where samples are taken from

he positive class of the initial target location, or selected key sam-

les, K 

t 
u . Each j th sample Y j is projected by the orthonormal matrix

 ∈ R 

n ×r 1 , r 1 ≤ n and form F j = Y j V, of size m × r 1 . The image
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Fig. 4. Block diagram of the sparsity-based generative model. 

Fig. 5. Sample results for SGM partial occlusion handling scheme, where the 

marked patches with the same tracker color are the patches at which SGM recon- 

struction error is greater than the SGM error threshold. 
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Fig. 6. (Top) Reconstructed nearest neighbor training samples by PGM. (Middle) Re- 

constructed patches at candidate locations. (Bottom) Absolute reconstruction error, 

where the pixel with brighter color means high error value. 
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ovariance matrix � is defined by 

= 

1 

N 

N ∑ 

j=1 

(Y j − Ȳ ) � (Y j − Ȳ ) (18)

here Ȳ is the average image of all training samples, and � is the

onnegative definite matrix. The objective of 2DPCA is to find the

ptimal orthonormal matrix, V opt , that maximizes the total scatter

n the learned subspace. The total scatter criterion J ( V ) is defined

y 

 (V ) = V 

� �V (19)

he optimal projection matrix V opt is composed of the r 1 eigen-

ectors of matrix � corresponding to the first r 1 largest eigenval-

es, where the vectors are stacked together in matrix V of size n

r 1 . We extract features of the jth training example, Y j , through

rojecting on matrix V , as F j = Y j V, and then we vectorize the re-

ulting feature matrix and have the feature vector f j of size (1 ×
r 1 ). 

For each candidate location, we project the candidate sample,

 

c , using the matrix V , and vectorize the resulting matrix to obtain

he test feature vector f c of size 1 × mr 1 . The nearest neighbor

lassifier is used to infer the index of the j th training example, ĵ

losest to the test vector f c 

ˆ j ← argmin 

j∈ { 1 , 2 , ... ,N } 
‖ f c − f j ‖ 2 (20) 

here ‖ . ‖ 2 denotes the l 2 -norm. The reconstruction error between

he test image and the training examples is ε PGM 

= ‖ a ˆ j − a c ‖ 2 ,
here a ˆ j = Mat2Vec (F 

ˆ j V � ) and a c = Mat2Vec (F c V � ) . The similar-

ty between the test and training features is computed by 

 PGM 

= exp (−ε PGM 

/ ̂  σ 2 ) (21)
Fig. 6 shows a sample intermediate output from the proposed

GM scheme. The PGM is able to retrieve the closest training

atches in 2DPCA feature subspace, which provides accurate simi-

arity measures in (21) . 

Similar to SDC tracker, PGM is updated every R u frames, by

sing the initial positive and the selected key samples at time t ,

here N = N p + N 

t 
p,u . To update 2DPCA feature space, we used a

atch learning technique. In this scheme, we update the optimal

rojection matrix, V opt , and extract the feature vectors, { f j } N 
j=1 

.

hile the incremental 2DPCA learning has been used in Wang

t al. (2007) , we find that batch learning performs more efficiently

han the incremental learning scheme, since we replace some sam-

les every update rate with newly selected key samples. 

.3. Sample selection 

We propose a sample selection scheme to learn and adapt the

ppearance model for each tracker by using the samples with

igh confidence from the object trajectory, in a way similar to
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Fig. 7. (a) Key samples in the object trajectories and occlusion issues that should be handled, (b and c) Examples for key samples selected from object trajectories, using a 

sequence from the PETS09-S2L1 dataset. 
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existing methods ( Breitenstein et al., 2009 ; Kuo et al., 2010 ; Shu

et al., 2012 ). Examples for key sample locations in the object trajec-

tory are shown in Fig. 7 , where two scenarios for the key samples

are selected from the tracker history. The sample selection scheme

alleviates the problem of including occluded samples for more

effective model update and thus, reduces the drifting problem.

The proposed sample selection scheme is based on the following

criteria: 

1. We measure the goodness of the key samples. A good key sam-

ple is one at which the tracker b t does not intersect with other

trackers or nearby detections except the associated detection d t .

We denote the set of good key samples at time t by K 

t 
g . 

2. We use the online trained SDC tracker to measure the similarity

between the current appearance model of the tracker, b t , and

the i th good key sample K 

t 
g,i 

∈ K 

t 
g by 

S DC (b t , K 

t 
g,i ) = exp (−(ε i + − ε i −) /σ 2 ) (22)

where ε i + = ‖ z i t − A + αi + ‖ 2 2 
, ε i − = ‖ z i t − A −αi −‖ 2 

2 
, and αi + and αi −

are computed by using (12) . 

3. If S DC (b t , K 

t 
g,i 

) > s 0 ≥ 0 , where s 0 is the SDC similarity thresh-

old, then this key sample is selected for the model update. The

final set of selected key samples, K 

t 
u , which have high similarity

with the SDC tracker, are used to update the tracker appearance

model ( Section 3.2 ). Note that when s 0 = 0 , all the samples are

selected. 

3.4. Data association 

The similarity matrix S for data association measures the rela-

tion between a tracker b t ∈ B 

t 
e and a detection d t ∈ D 

t by 

S(b t , d t ) = G (b t , d t ) O (b t , d t ) (23)
here G (b t , d t ) = G SGM 

(b t , d t ) + G PGM 

(b t , d t ) considers the appear-

nce similarity between the tracker b t and detection d t , and O ( b t ,

 t ) represents the overlap ratio between the tracker and the detec-

ion to suppress confusing detections, where the overlap ratio is

ased on the PASCAL VOC criterion ( Everingham et al., 2010 ). 

The association is computed online by using the Hungarian al-

orithm to match a tracker to a detection in a way similar to exist-

ng methods ( Breitenstein et al., 2009; Shu et al., 2012 ). The pro-

osed data association scheme iteratively finds the maximum in

he matrix S , and associates the tracker b t to a detection d t if S ( b t ,

 t ) is larger than a threshold s 1 . The row and the column corre-

ponding to S ( b t , d t ) are removed. As the object detector is likely

o miss some objects, using the similarity threshold, s 1 , can alle-

iate the tracker to be updated with confusing nearby detections.

urthermore, we select a number of key samples to update the ap-

earance model ( Sections 3.3 and 3.2 ). We initialize new trackers

ith non-associated detection windows if the maximum overlap

ith other existing trackers is less than o 1 to avoid creating multi-

le trackers for the same target. 

e-detection module 

A pre-trained object detector usually suffers from false positives

nd negatives, thereby causing trackers to drift. On the other hand,

 tracker does not perform well in the presence of heavy occlu-

ion or background clutters. To handle these challenging cases, we

ntroduce the inactive or on-hold states before tracker termination

n case the tracker misses a high number of detections. Let the

et of trackers on-hold be denoted as B 

t 
h 
. When the tracker does

ot estimate the target location at an inactive state, we adopt the

GM ( Section 3.2 ) to measure the similarity between the tracker

n-hold b t ∈ B 

t 
h 

and the new candidate location. When the tracker

s in the inactive state b h t , it still can be reinitialized after check-

ng the similarity with the new un-associated detection, d u t by

 h (b h , d u ) = G PGM 

(b h , d u ) (where G PGM 

is computed by (21) ). 
t t t t 
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The inactive tracker is reactivated if S h (b h t , d 
u 
t ) > s 2 , where s 2 

s a pre-defined threshold. During the inactive state, the proposed

racker can re-identify lost targets and discriminate among trackers

sing the 2DPCA feature space learned from selected key samples. 

. Experimental results 

.1. Datasets 

We evaluate the tracking performance of the proposed algo-

ithm using seven challenging sequences, namely, the PETS09-S2L1,

ETS09-S2L2 ( Ferryman, 2009 ), UCF Parking Lot (UCF-PL) dataset

 Shu et al., 2012 ), Soccer dataset ( Wu et al., 2008 ), Town Cen-

er dataset ( Benfold and Reid, 2011 ), and Urban as well as Sunny

equences from LISA 2010 dataset ( Sivaraman and Trivedi, 2010 ),

nd compare it with that of several state-of-the-art online MOT

ethods. 

The PETS09-S2L1 sequence consists of 799 frames of 768 × 576

ixels recorded at 7 frames per second with medium crowd den-

ity. The PETS09-S2L2 sequence consists of 442 frames with the

ame resolution and frame rate as the PETS09-S2L1 sequence, but it

ontains heavy crowd density and illumination changes. The target

bjects undergo scale changes, long-term occlusion, and with sim-

lar appearance. The ground truth (GT) data from Yang and Nevatia

2012) , ( http://iris.usc.edu/people/yangbo/downloads.html . Last re-

rieved March 14, 2016) and ( http://research.milanton.de/data.html .

ast retrieved March 14, 2016) are used for evaluating the track-

ng results on PETS09-S2L1 and PETS09-S2L2 , respectively. The Soc-

er sequence consists of 155 frames of 960 × 544 pixels recorded

t 3 to 5 frames per second. The challenging factors of this se-

uence include heavy occlusion, sudden change of motion direc-

ion of players, high similarity among players of the same team,

nd scale changes. The GT data provided by Wu et al. (2008) are

sed for evaluation. On the PET S09-S2L1, PET S09-S2L2 and Soccer

equences, the FPD detector Dollár et al. (2010) is used as the base-

ine detector for the proposed tracking scheme. 

The UCF-PL dataset consists of 998 frames of 1920 × 1080 pix-

ls recorded at 29 frames per second with medium crowd den-

ity, long-term occlusion, and targets of similar appearance. On this

ataset, the detection results of the part-based pedestrian detec-

or proposed in Shu et al. (2012) are used for evaluation based on

he GT data provided by ( http://crcv.ucf.edu/data/ParkingLOT/index.

hp . Last retrieved March 14, 2016). 

The Town Center dataset consists of 4500 frames of 1080 ×
920 pixels recorded at 25 frames per second. The dataset con-

ains medium crowd density, heavy occlusion, and scale changes.

n Benfold and Reid (2011) , two categories of GT annotations are

rovided based on the full body and head regions of pedestrians.

n this dataset, the aggregated channel feature (ACF) detector pro-

osed by Dollár et al. (2014) is used for performance evaluation.

n the case of the full body of pedestrians, it has been observed

hat the ACF detector does not perform well on this sequence as

he false positive rate is high. To alleviate this problem, the first

00 frames of this sequence are used to collect hard-negative sam-

les related to the background clutters, and the ACF detector is

e-trained using both the INRIA dataset ( Dalal and Triggs, 2005 )

nd hard-negative samples. In case of tracking multiple people

ased on the head regions, the positive training examples provided

n Benfold and Reid (2011) and negative samples collected from

he first 500 frames of this sequence are used to train the ACF

etector. 

The Urban and Sunny sequences from the LISA 2010 dataset

 Sivaraman and Trivedi, 2010 ) contain car images of 704 × 480 col-

ected at 30 frames per second from a camera mounted on a mov-

ng vehicle. The Urban sequence (300 frames) was captured from

n urban area with a low traffic density on a cloudy day, while the
unny sequence (300 frames) was captured from a highway with

edium traffic density on a sunny day. The challenging factors of

hese sequences include the effect of camera vibration, illumina-

ion changes, and the targets’ scale changes; the GT data are pro-

ided by Sivaraman and Trivedi (2010) . The pre-trained vehicle de-

ector proposed in Naiel et al. (2014) is used for evaluation on this

ataset. 

.2. Qualitative results 

In this section, we study the qualitative performance of the pro-

osed tracking scheme using the datasets mentioned above. Figs. 8

nd 9 show some of the tracking results and videos are available

t https://youtu.be/lnAUnU596UE . 

ETS09-S2L1. Fig. 8 (a) shows the sample tracking results of the

roposed scheme on the PETS09-S2L1 sequence. The proposed

ethod performs well despite several short-term occlusions, scale

nd pose changes. Furthermore, it should be mentioned that the

re-trained FPD detector ( Dollár et al., 2010 ) misses objects that

re close to the camera or those located far from the camera. 

ETS09-S2L2. Fig. 8 (b) shows that non-occluded targets are tracked

ell although targets with long-term occlusions or located far from

he camera are missed. Again, it should be mentioned that the FPD

etector ( Dollár et al., 2010 ) misses numerous detections in this

equence due to the high crowd density. 

occer. This sequence contains soccer players with similar visual

ppearance and fast motion. The FPD detector ( Dollár et al., 2010 )

s not trained to detect the soccer players at different poses. Nev-

rtheless, the proposed scheme performs well with accurate short

racklets, as shown in Fig. 8 (c). 

CF-PL. This sequence contains crowds of medium density, with

cclusions. Fig. 8 (d) shows some tracking results for the proposed

cheme using the detector in Shu et al. (2012) . Despite the chal-

enges of the sequence, the proposed tracking scheme maintains

ong trajectories. 

own Center. The crowd density of this sequence is medium with

 number of long-term occlusions. Fig. 8 (e) and (f) shows sample

racking results corresponding to full body and head, respectively.

hile it is difficult to track the full human body due to heavy oc-

lusions, or the head due to false positives, the proposed method

erforms well. 

ISA 2010. Fig. 9 (a) and (b) shows the sample results of our tracker

sing the detector in Naiel et al. (2014) on the Urban and Sunny se-

uences. The Urban sequence contains only one vehicle, but there

s illumination change and the effect of camera vibrations. The

unny sequence contains, on average, three non-occluded vehicles

ith different velocities. In spite of these challenges, the proposed

cheme tracks the vehicles very well in both cases. 

.3. Quantitative results 

We use the CLEAR MOT metrics ( Bernardin and Stiefelhagen,

008 ) including multiple object tracking accuracy (MOTA), multiple

bject tracking precision (MOTP), false negative rate (FNR), false

ositive rate (FPR), and identity switches (IDSW) for evaluating the

erformance of the proposed tracker. We use the overlap threshold

f 0.5 for all experiments. For this study, we set the various param-

ters to be N 

P 
s = 150 , N 

�
s = 100 , N p = N 

t 
p,u = 10 , N n = N 

t 
n,u = 20 ,

 u = 10 , λSDC = 0 . 02 , λSGM 

= 0 . 01 , ˆ σ = 10 4 , ε 0 = 0 . 8 , μ = 0 . 6 , ˆ σ =
 × 10 6 , s 0 = 1 . 0 , s 1 = 2 . 5 , s 2 = 0 . 7 , and o 1 = 0 . 2 . For the multi-

erson tracking sequences, namely, PETS09-S2L1, PETS09-S2L2, UCF-

L, Soccer , and Town Center (Body) , we use m = 32 , n = 16 , M = 84 ,

http://iris.usc.edu/people/yangbo/downloads.html
http://research.milanton.de/data.html
http://crcv.ucf.edu/data/ParkingLOT/index.php
https://youtu.be/lnAUnU596UE
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Fig. 8. Sample tracking results for five sequences, the arrangement from top to bottom as (a) and (b) PET S09-S2L1 , and PET S09-S2L2 , respectively, (c) Soccer sequence, 

(d) UCF-PL sequence, (e) Town Center dataset (body), and (f) Town Center dataset (head). 
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ˆ m = ˆ n = 6 and N k = 50 . Further, for the multi-head tracking se-

quence, namely, Town Center (Head) , as well as the multi-vehicle

tracking sequences, namely, Urban and Sunny , we use m = n = 16 ,

M = 16 , ˆ m = ˆ n = 6 and N k = 16 . 

Effect of the collaborative factor. To measure the effect of the

proposed collaborative model, we changed the value of the collab-

t  
rative factor γ in the interval [0,1] in increments of 0.2. Fig. 10

hows the performance of the proposed method with different val-

es of γ for the PETS09-S2L1 sequence. When γ = 0 , the likelihood

unction of the particle filter is based completely on the propa-

ated particles, and the proposed method does not perform well

ue to the degeneracy problem. When γ = 1 , the likelihood func-

ion is based on the associated detections, and the tracker does not
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Fig. 9. Sample tracking results for LISA 2010 dataset, where (a) and (b) correspond to Urban and Sunny sequences, respectively. 

Fig. 10. Performance of the proposed method on the PETS09-S2L1 sequence for different values of the collaborative factor γ . 
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Fig. 11. MOTA vs. number of retained key samples for the proposed tracker on the 

PETS09-S2L1 sequence. 
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a  
erform well due to false positives and missed detections. The pro-

osed method performs best for this sequence when γ = 0 . 8 , as

an be seen from Fig. 10 . It is worth noting that for high track-

ng performance, the value of γ should be adjusted according to

he detector used. For detectors with high precision and recall (the

nes used in the PETS09-S2L1, UCF-PL, Town Center (Head), Urban

nd Sunny sequences), the proposed tracker provides a high MOTA

alue when γ is in the interval of [0.65, 0.85]. On the other hand,

hen the detector has low precision and recall (the ones used in

he case of PETS09-S2L2, Soccer and Town Center (Body) sequences),

he proposed tracker provides a high MOTA value when γ is in the

nterval of [0.5,0.6]. 

umber of key samples. We analyze the effect of the number of

ey samples retained on MOTA using the PETS09-S2L1 sequence.

he appearance model (SDC, SGM, and PGM) is updated online at

n update rate R u of 10. Fig. 11 shows the performance of the pro-

osed tracker when the number of key samples retained is varied.

e choose the number of retained key samples to be 20 at which

he highest MOTA performance is exhibited, as seen from Fig. 11 . 

ey sample selection. To demonstrate the strength of the pro-

osed sample selection scheme, we examine the performance

f the proposed tracking scheme by varying the SDC similarity

hreshold, s 0 , from 0 to 1.5 in increments of 0.1. Fig. 12 shows the

erformance of the proposed scheme at different SDC tracker simi-

arity threshold values. When s 0 = 1 , the proposed tracker exhibits

he best performance in terms of MOTA. If 0 ≤ s 0 < 1, the perfor-

ance is not as good in view of the fact that only a few or none

f the key samples are rejected, and hence, occluded samples are
 p
ikely to be selected. When s 0 > 1.2, the proposed tracker performs

orse than that at s 0 = 1 , since a large number of key samples are

ejected. As such, we choose s 0 = 1 . 0 for all the experiments. 

ffect of tracker re-detection. We analyze the effect of using the

e-detection module on MOT tracking. Fig. 13 shows that the pro-

osed method with tracker re-detection scheme achieves slightly

ower FNR and FPR than that obtained without using the tracker

e-detection scheme, while maintaining approximately the same

erformance in terms of MOTA and MOTP values. The tracker re-

etection scheme aims to reduce the number of identity switches

nd maintains long trajectories, without reducing the tracking

erformance. 
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Fig. 12. Performance of the proposed tracking scheme with respect to the SDC similarity threshold, s 0 , using the PETS09-S2L1 sequence. 

Fig. 13. Performance of the proposed method with and without tracker re-detection on the PETS09-S2L1 sequence. 
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Generative appearance models. We study the tracking perfor-

mance of the proposed method by using several types of gener-

ative models to solve the data association problem in (23) . These

generative models are (1) SGM, as outlined in Section 3.2.2 , which

is based on local patch features (by substituting in (23) by G =
G SGM 

); (2) 2DPCA generative model, as proposed in Section 3.2.3 ,

which is based on holistic features (by substituting in (23) by

G = G PGM 

); (3) combination of SGM and 2DPCA generative mod-

els as mentioned in Section 3.4 ; (4) principal component anal-

ysis (PCA) 2 generative model (instead of using the 2DPCA gen-

erative model); and (5) combination of SGM and PCA generative

models. 

The main differences between 2DPCA versus PCA are as fol-

lows. The covariance matrix in the case of 2DPCA can be com-

puted directly from the image samples in 2D matrices rather than

1D vectors as in the case of PCA ( Yang et al., 2004 ; Zhang and

Zhou, 2005 ). The complexity for computing the covariance matrix

using a 2DPCA-based appearance model is O(mn 2 N) , whereas the

corresponding complexity using a PCA-based appearance model is

O(m 

2 n 2 N) , when a set of N image samples, each of size m × n

pixels, is used. Further, it may be pointed out that 2DPCA encodes
2 The function pcaApply from toolbox Dollár 2015 has been used to calculate 

the PCA. 

t  

t  

I  

w  
he relationship among neighboring rows in a given set of image

amples ( Zhang and Zhou, 2005 ). Such a relationship should have

 positive effect on the tracking performance. 

Table 2 shows the results on the seven sequences. Overall, the

roposed scheme with SGM in conjunction with 2DPCA performs

etter than that by using SGM with PCA. In most sequences, the

ethod of using SGM with 2DPCA or SGM with PCA performs bet-

er than that using only SGM. On a machine with 2.9 GHz CPU,

he average tracking time per frame (over all the seven sequences

ithout counting the time for object detection) for the proposed

racker with SGM and 2DPCA is 2.88 s whereas the corresponding

ime in the case of SGM and PCA is 2.90 s. Hence, this improve-

ent in the performance of the proposed tracker is achieved with-

ut loss in speed. 

.4. Performance comparison 

In this section, we evaluate the performance of the proposed

lgorithm with two online MOT methods in Yoon et al.(2015) ;

ae and Yoon (2014) using the seven challenging sequences de-

cribed in Section 4.1 . Table 3 shows the performance of these

wo methods (using the original source code) along with that of

he proposed tracker in terms of the various CLEAR MOT metrics.

n addition, the performance of the proposed scheme is compared

ith the reported results of state-of-the-art online MOT methods
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Table 2 

Performance of the proposed scheme using different generative models. 

Sequence Generative model MOTA MOTP FNR FPR IDSW 

PETS09-S2L1 SGM 89 .08% 79 .89% 5 .11% 5 .42% 17 

PCA 89 .86% 79 .97% 5 4 .76% 16 

SGM + PCA 90 80 5 .34% 4 .30% 13 

2DPCA 89 .81% 79 .82% 5 .40% 4 .41% 20 

Proposed 92 .13% 80 .62% 3 .19% 4 14 

PETS09-S2L2 SGM 36 .43% 71 .19% 39 .38% 26 .31% 263 

PCA 45 .69% 71 35 20 .25% 218 

SGM + PCA 44 .35% 71 .54% 36 .04% 21 .30% 237 

2DPCA 46 71 .77% 36 .59% 19 .33% 221 

Proposed 46 .88% 71 .66% 34 .92% 19 258 

Soccer SGM 67 .36% 70 .28% 16 14 .49% 45 

PCA 70 .33% 70 .64% 18 .85% 10 38 

SGM + PCA 70 .21% 70 .99% 18 .20% 11 .03% 36 

2DPCA 71 70 .73% 17 .00% 10 .66% 49 

Proposed 73 .54% 70 16 .20% 9 .45% 38 

UCF-PL SGM 82 .30% 71 .84% 10 .77% 6 .27% 16 

PCA 82 .14% 71 10 6 .56% 21 

SGM + PCA 83 71 .81% 10 .64% 5 .40% 16 

2DPCA 81 .89% 71 .75% 11 .47% 5 .90% 18 

Proposed 85 .02% 71 .89% 8 .70% 5 15 

Town Center (Body) SGM 69 .41% 73 .82% 17 .08% 12 .81% 4 4 4 

PCA 70 73 .83% 18 .18% 11 .08% 351 

SGM + PCA 69 .83% 73 .89% 19 .29% 10 .37% 320 

2DPCA 71 .24% 74 .02% 18 10 337 

Proposed 70 .16% 73 19 .35% 9 .95% 342 

Town Center (Head) SGM 70 .32% 68 14 .96% 14 .48% 164 

PCA 72 68 .71% 14 13 163 

SGM + PCA 69 .37% 68 .78% 15 .62% 14 .77% 166 

2DPCA 70 .43% 68 .82% 15 .06% 14 .29% 158 

Proposed 74 .54% 69 .15% 13 .02% 12 .21% 158 

LISA10 Urban SGM 100 .00% 82 .67% 0 .00% 0 .00% 0 

PCA 100 .00% 82 .68% 0 .00% 0 .00% 0 

SGM + PCA 100 .00% 82 .68% 0 .00% 0 .00% 0 

2DPCA 100 .00% 82 .68% 0 .00% 0 .00% 0 

Proposed 100 .00% 82 .68% 0 .00% 0 .00% 0 

LISA10 Sunny SGM 97 .22% 78 .28% 0 .78% 1 .98% 0 

PCA 97 .22% 78 .28% 0 .78% 1 .98% 0 

SGM + PCA 97 .22% 78 .28% 0 .78% 1 .98% 0 

2DPCA 97 .22% 78 .28% 0 .78% 1 .98% 0 

Proposed 97 .22% 78 .28% 0 .78% 1 .98% 0 

Average SGM 76 .51% 74 .60% 13 .10% 10 .22% - 

PCA 78 .45% 74 .72% 12 8 .53% - 

SGM + PCA 78 .05% 74 13 .24% 8 .64% - 

2DPCA 78 74 .73% 13 .04% 8 - 

Proposed 79 .94% 74 .87% 12 .02% 7 .87% - 

Note: The best and the second best results on each dataset are shown in boldface and underscored, 

respectively. The proposed method is SGM + 2DPCA. 
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 Benfold and Reid, 2011; Breitenstein et al., 2011; Gomez et al.,

012; Poiesi et al., 2013; Shu et al., 2012; Zhang et al., 2012; Zhou

t al., 2014 ) using the sequences considered in these papers. 

On the PETS09-S2L1 and PETS09-S2L2 sequences, the proposed

cheme provides the second highest MOTA values. It also offers the

ighest and second highest MOTP values on the PETS09-S2L1 and

ETS09-S2L2 sequences, respectively. This can be attributed to the

roposed update mechanism, and the inactive or on-hold states of

he tracker. 

For the Soccer sequence, the proposed scheme performs better

han the methods in Yoon et al. (2015) ; Bae and Yoon (2014) de-

pite fast camera motion and the presence of similar objects in the

cenes. For the UCF-PL sequence, the MOTA value of the proposed

ethod is higher than that of the methods in Yoon et al. (2015) ;

hu et al. (2012) ; Bae and Yoon (2014) , using the same detector

s in Shu et al. (2012) . On the other hand, the MOTP value of the

roposed technique is close to that of Shu et al. (2012) . In addi-

ion, the proposed method has lower values for FNR and FPR than

he methods in Yoon et al. (2015) ; Shu et al. (2012) ; Bae and Yoon

2014) do. 
d  
For the Town Center dataset, the proposed scheme is first eval-

ated to track the full body of pedestrians. In this case, the pro-

osed scheme yields the second highest MOTP, FNR and FPR val-

es compared to the methods in Yoon et al. (2015) ; Bae and Yoon

2014) ; Benfold and Reid (2011) ; Zhang et al. (2012) ; Shu et al.

2012) . Next, the proposed scheme is evaluated on tracking the

eads of pedestrians from the same dataset. The head regions in

his sequence are less occluded than the full body, although the

ead detector has higher FPR than the full-body detector. As shown

n Table 3 , the proposed method performs well against other ap-

roaches ( Yoon et al., 2015 ; Bae and Yoon, 2014 ; Poiesi et al., 2013 ;

enfold and Reid, 2011 ) in terms of MOTA. For the Urban and

unny sequences from LISA 2010 dataset, the proposed scheme pro-

ides a better performance than that provided by the methods in

oon et al. (2015) ; Bae and Yoon (2014) for tracking multiple vehi-

les on-road. 

We note that the proposed scheme uses grayscale images as

eatures, whereas the methods in Breitenstein et al. (2011) ; Shu

t al. (2012) ; Zhang et al. (2012) are based on the color or gra-

ient information of the targets. In addition, the proposed scheme

oes not require the detector confidence density or a gate function
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Table 3 

Performance measures of CLEAR MOT metrics. 

Sequence Method MOTA MOTP FNR FPR IDSW 

PETS09-S2L1 Proposed 92 80 .62% 3 .19% 4 .33% 14 

Yoon et al. (2015) ∗ 66 .64% 57 .46% 17 .99% 15 .14% 34 

Bae and Yoon (2014) ∗ 89 .94% 79 4 4 23 

Zhang et al. (2012) 93 .27% 68 .17% - - 19 

Zhou et al. (2014) 87 .21% 58 .47% - - - 

Breitenstein et al. (2011) 79 .70% 56 .30% - - - 

Gomez et al. (2012) 51 .10% 75 .00% 45 .20% - 0 

PETS09-S2L2 Proposed 46 71 34 .92% 19 258 

Yoon et al. (2015) ∗ 26 .85% 47 .99% 51 .27% 28 .86% 218 

Bae and Yoon (2014) ∗ 45 .98% 71 .77% 35 19 .06% 325 

Zhang et al. (2012) 66 .72% 58 .21% - - 215 

Soccer Proposed 73 .54% 70 .77% 16 .20% 9 .45% 38 

Yoon et al. (2015) ∗ 29 .99% 53 .77% 52 .89% 26 .19% 10 

Bae and Yoon (2014) ∗ 54 69 35 12 24 

UCF-PL Proposed 85 .02% 71 .89% 8 .70% 5 .65% 15 

Yoon et al. (2015) ∗ 29 .50% 45 .33% 38 .04% 33 .95% 15 

Bae and Yoon (2014) ∗ 82 73 10 6 15 

Shu et al. (2012) 79 .30% 74 .10% 18 .30% 8 .70% - 

Town Center (Body) Proposed 70 .16% 73 19 9 342 

Yoon et al. (2015) ∗ 62 .93% 48 .66% 20 .00% 17 .14% 330 

Bae and Yoon (2014) ∗ 79 .07% 73 .46% 11 .19% 9 .44% 307 

Benfold and Reid (2011) 61 .30% 80 .30% 21 .00% 18 .00% - 

Zhang et al. (2012) 73 68 .75% - - 421 

Shu et al. (2012) 72 .90% 71 .30% - - - 

Town Center (Head) Proposed 74 .54% 69 .15% 13 .02% 12 158 

Yoon et al. (2015) ∗ 73 70 .16% 17 .23% 9 .49% 126 

Bae and Yoon (2014) ∗ 70 .65% 69 16 13 .07% 320 

Poiesi et al. (2013) 54 .60% 63 .70% 23 .80% 21 .70% 285 

Benfold and Reid (2011) 45 .40% 50 .80% 29 .00% 26 .20% - 

LISA10 Urban Proposed 100 .00% 82 .68% 0 .00% 0 .00% 0 

Yoon et al. (2015) ∗ 99 81 .98% 0 0 0 

Bae and Yoon (2014) ∗ 98 .33% 82 1 .67% 0 .00% 0 

LISA10 Sunny Proposed 97 .22% 78 .28% 0 .78% 1 .98% 0 

Yoon et al. (2015) ∗ 92 .89% 77 .20% 6 .89% 0 .24% 0 

Bae and Yoon (2014) ∗ 97 77 2 0 0 

Note: ∗ denotes the results obtained by utilizing the code provided by the authors of the paper, where the 

detection results and GT annotations that have been used with the proposed scheme are used. The best 

and the second best results on each dataset are represented in boldface and underscored, respectively. 
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in the data association step as in Breitenstein et al. (2009, 2011) ,

where the gate function provides higher weight for detections lo-

cated in the direction of motion of the target. 

5. Conclusion 

In this paper, we have presented a robust collaborative model

that enhances the interaction between a pre-trained object detec-

tor and a number of single-object online trackers in the particle

filter framework. The proposed scheme is based on incorporating

the associated detections with the motion model, in addition to

the likelihood function providing different weights for the propa-

gated and the newly created particles sampled from the associated

detections, providing a reduction on the effect of the detector er-

rors on the tracking process. We have exploited sparse representa-

tion and 2DPCA to construct diverse features that maximize the

appearance variation among the trackers. Furthermore, we have

presented a conservative sample selection scheme to update the

appearance model of every tracker. Experimental results on bench-

mark datasets have shown that the proposed scheme outperforms

state-of-the-art multi-object tracking methods in most of the cases.
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