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We propose a novel algorithm for affine registration of 2D point sets. The main idea is to treat the 2D
points as complex numbers and from each point set, a polynomial with complex coefficients can be com-
puted whose roots are the points in the given point set. The two-step algorithm first reduces the affine
registration problem to a rigid registration problem, and the unknown rotation is then computed using
the coefficients of these polynomials. The algorithm is entirely algebraic with clear underlying geometric
motivation. The implementation is straightforward and it takes less than a second to compute the affine
transformation for point sets containing hundreds of points. We validate the algorithm on a variety of
synthetic 2D point sets as well as point sets extracted from real-world images.
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1. Introduction

Matching 2D points has been an important and classical prob-
lem in computer vision. The problem can be formulated in a variety
of ways depending on the applications and their allowable defor-
mations. For instance, affine and rigid registrations have been stud-
ied already a while ago, e.g. [1,2], and their applications in
computer vision range from shape analysis [3] to medical imaging
analysis [4]. Many other applications, particularly those related to
medical imaging, require nonrigid registration and recent research
activities have focused quite extensively on this subject, e.g. [5–8].
In this paper, we study the more classical problem of matching two
point sets in R2 related by a rigid (orthogonal) or affine transforma-
tion. This problem is still important and relevant today because af-
fine registration is often the crucial first step in many nonrigid
registration algorithms as the nonrigid deformation in these algo-
rithms are usually estimated only after a global corrective (affine)
transformation has been found to roughly align the point sets.
Therefore, an efficient and robust affine registration algorithm
could potentially improve significantly the performance of many
nonrigid registration algorithms.

Let P ¼ fp1; . . . ; pkg and Q ¼ fq1; . . . ; qkg denote two collections
of points in R2 related by some unknown transformation (rigid or
affine) (A,t):

qpðiÞ ¼ Api þ t;

where A, t are the linear and translational components, respec-
tively. For an affine transformation, A is represented as a nonsingu-
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lar 2 � 2 matrix and for a rigid transformation, it is represented by a
2 � 2 rotation matrix. The function p:{1, . . . ,k} ? {1, . . . ,k} between
the two sets of indices gives the correspondence between the points
in P and Q as the point pi corresponds to the point qp(i). For the mo-
ment, we assume that the two point sets contain equal number of
points.1

To formulate an objective function for the affine registration
problem for the two point sets P; Q, we start with the matching
cost function

EpðA; tÞ ¼
Xk

i¼1

kqpðiÞ � Api � tk2
; ð1Þ

for a fixed correspondence p. Clearly, we have Ep P 0. Let P denote
a set of correspondences between points in P; Q, we define the de-
sired affine transformation to be

ðA; tÞ ¼ arg min
A;t;p2P

EpðA; tÞ: ð2Þ

For us, the set P will be the set of all bijections between the two in-
dex sets as we assume the two point sets contain equal number of
points. In the noiseless case, there exists at least one correspon-
dence p and (A,t) such that EpðA; tÞ attains its smallest possible va-
lue of zero. In general, without restriction on the correspondences
in P, the problem posed in (2) cannot be solved because of the
degenerate correspondences (e.g., the range of p contains exactly
one point).

The main difficulty in finding an affine transformation that min-
imizes the error function above is the unknown correspondence p.
1 We will discuss methods for dealing with point sets of different sizes later in this
paper.
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That is, if the correspondence p between points in P and Q are
known, the optimization problem

ðA; tÞ ¼ arg min
A;t

EpðA; tÞ ¼ arg min
A;t

Xk

i¼1

kqpðiÞ � Api � tk2 ð3Þ

can be easily solved by solving a system of linear equations. For ri-
gid case with the orthogonality constraint, a slightly more compli-
cated linear-algebraic result will allow us to compute the optimal
orthogonal transformation in closed form [9]. However, without
knowing the correspondence, any general approach for solving
the registration problem posed above invariably requires either
some continuous minimization or a discrete variant of it, such as
Iterative Closest Point (ICP), e.g. [10,11]. As is well-known, local
minimums are usually difficult to avoid and more importantly, it
is generally not clear a priori that the algorithm will indeed con-
verge to the true solution even in the noiseless case. The problem
with local minimums can be alleviated somewhat using simulated
annealing [12]; however, this makes the method very inefficient
and impractical for many applications.

In this paper, we propose a novel affine registration algorithm
that avoids using optimization, and it will guarantee to produce
the exact result when the data points contain no noise. The algo-
rithm first reduces the general affine case to that of the orthogonal
case. In the later case, we use the geometry of the complex num-
bers to explicitly produce a closed-form formula for computing
the unknown rotation. Analogous to the interpretation of 3D rota-
tions as unit quaternions [9],2 2D rotations can also be interpret as
multiplications by unit complex numbers. The main difference be-
tween these two cases is that the multiplication for complex num-
bers is commutative, while it is not for quaternions. This, of
course, corresponds to the fact that the special orthogonal group
SO(2) is commutative while SO(3) is not. Treating points in P and
Q as complex numbers, we can compute polynomials P, Q whose
roots are the complex numbers in P and Q, respectively. The relation
that the two point sets are related by a 2D orthogonal transforma-
tion translates immediately to the fact that the coefficients of the
two polynomials are related through powers of some unit complex
number. Therefore, by examining the coefficients P, Q, we are able
to recover this unit complex number and hence the rotation. Alge-
braically, we can compute the rotation in R2 without knowing the
correspondence is a consequence of the fact the R2 can be equipped
with a field structure (complex numbers), and for higher-dimen-
sions, the relevant algebraic structures are the Clifford algebras
[13], which are generally not commutative.

Needless to say, the literature on affine registration is immense
and extensive. However, in the context of what has been already
known about 2D affine registration, our paper has following two
specific contributions:

1. A novel affine registration algorithm that does not require con-
tinuous optimization and in the absence of noise, it will recover
the exact affine transformation. The algorithm is very easy to
implement and it is very efficient for medium-size point sets
containing hundreds of points.

2. Experimental results that validate the proposed algorithm.
Using both synthetic and real 2D point sets, we demonstrate
that the proposed algorithm does indeed provide an efficient
and robust solution for affine registration problems.

We believe that the proposed algorithm has a great potential in
many applications as it can be used either as a stand-alone regis-
tration algorithm or as an efficient method for producing good ini-
2 We note that in [9] the correspondence p is known and in our case, it is unknown.
tializations for registration algorithms that use more elaborated
nonlinear optimization, e.g. [12].
2. Related work

Affine registration is a classical problem in computer vision and
there is an extensive body of literature on this subject, e.g.
[14–22]. It is certainly beyond the scope of this paper to provide a
detailed survey on this topic, and here we discuss only the most
relevant work for matching 2D point sets. Broadly speaking, the
existing algorithms can be categorized into three groups: invari-
ant-based methods, e.g. [23–26], optimization-based methods, e.g.
[5,27,10,6,12,21,28,11] and spectral matching methods, e.g. [1,29–
31]. For the invariant-based methods, Hu’s work on moment invari-
ants [32,33] has been particularly influential. The idea behind this
type of approaches is to define numerical quantities constructed
from various moments that are invariant under affine transforms.
These invariants can be specialized to define affine-invariant fea-
tures for each point [25,26], and the correspondences can be com-
puted as a global linear or quadratic assignment problem using
these local invariant features. However, the affine-invariant features
are usually constructed from moments with degree greater than
two, and as the invariants typically contain multiple products of
these moments, the effective degrees of the invariants are generally
larger than four or five, which makes them sensitive to noise. Fur-
thermore, the algebra required to define these invariants can be
quite involved, e.g. [33], and computing correspondences from local
features almost always requires one more layer of algorithmic com-
ponent that increases the algorithm’s complexity. Therefore, our
method compared favorably with these algorithms in terms of sim-
plicity in its underlying theory as well as implementation. Besides
moment-based invariants, geometric invariants have also been
investigated, e.g. [34,35]. For example, the edges of the point-set’s
convex hull can serve as important features for matching was first
noted in [36] for similarity transforms, and the vertices of the convex
hull were later used for affine point-set matching in [37,38]. Affine
invariants are constructed using four consecutive vertices of a con-
vex hull at a time. These invariants are then used to estimate a global
affine transform between the two point sets. Unfortunately, these
local geometric invariants are even more sensitive to noise than
the moment invariants as small local perturbations of the points
can alter the invariants considerably to render them ineffective.

The Iterative Closest Point (ICP) algorithm by Besl and McKay
[10] is perhaps the most widely used technique in point matching.
The method iteratively solves for the correspondence and transfor-
mation, and it can be applied to both affine and rigid registrations.
The correspondence is determined using the nearest neighbor with
a fixed transformation, and the transformation is determined by
solving a linear system of equations when the correspondence is
fixed. This interleaving process of solving correspondence and
transformation is repeated until it reaches a local minimum. We
note however that there exist no theoretical results that provide
some guarantee on the ICP outcome. In particular, even for noise-
less data, it is not clear if ICP would in fact converge to the right
solution. A more elaborated method appeared in [39], where the
registration problem is solved using a relaxation scheme with a
doubly stochastic matrix (soft assignment) in place of the permu-
tation matrix (hard assignment). The registration error is mini-
mized with nonlinear optimizer using the Levenberg–Marquardt
algorithm (also used in [11]).

Spectral algorithms [1,29,31] make up the most important class
of registration algorithms that do not require optimization. The
well-known algorithm by [1] solves the registration problem by
aligning the (unit) eigenvectors of the covariance matrices of the
two point sets. It has been extended and generalized in several dif-
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ferent ways for matching points and shapes in R2 [30,40,31]. How-
ever, for a spectral algorithm to work, it requires the eigen-structure
of some symmetric matrix to be rich enough so as to provide suffi-
ciently discriminating features for computing correspondence. To
the best of our knowledge, the spectral algorithms do not guarantee
to converge to the exact solution for every pair of point sets P; Q.
Furthermore, they also require computing the eigenvectors and
eigenvalues of a k � k matrix, where k is the number of points. This
step may be expensive if k is large. In contrast, the algorithm we will
describe below does not require any computationally-expensive
step, and the algorithm will recover the exact affine transformation
and correspondence for every pair of point sets P; Q when there is
no noise in the data.

Finally, there are other algorithms that do not easily fit into the
three broad categories described above. For example, a fast 2D clus-
tering-based approach is introduced in [41]. [42] uses a least-
squares approach for registering two point sets with equal number
of points, and in [43], distances between every pair of points are cal-
culated for each point set, and some heuristics are used to compute
local matches between the point sets using these pairwise distances.
More involved computational structures such as graphs and search
trees can be use to provide more efficient and better methods for
determining the correspondences [44,45]. A different approach
using statistical methods appears in [46], where the proposed meth-
od iterative computes the registration and correspondence using
Procrustes and point-distribution models. [47] proposes a geometric
alignment strategy for registering images, and the concept of geo-
metric hashing is used in [48]. Again, compared with our methods,
these earlier methods are considerably more involved both in their
underlying theory and implementation.

3. Matching algorithm

In this section, we detail the proposed matching algorithm. Our
main contribution is the idea of using complex numbers to solve
rigid registration. The general affine registration is then solved by
reducing it to a corresponding rigid registration. This orthogonal
reduction step is based on the idea of normalizing the covariance
matrices, and it is a well-known method in computer vision and
machine learning. While we do not claim originality for this step,
for completeness, we provide all the necessary details in Sec-
tion 3.1. The remaining sections will be focused on using complex
numbers to solve rigid registration.

To fix the notations for the following discussion, we let
P ¼ fp1; . . . ; pkg and Q ¼ fq1; . . . ; qkg denote two collections of
points in R2. The sizes of the two point sets are assumed to be
the same for the moment. p, a permutation on k elements, will de-
note the correspondence between the two point sets such that

qpðiÞ ¼ Api þ t; ð4Þ
for some 2 � 2 nonsingular matrix A and 2 � 1 vector t. Our goal is
to recover the linear A and translational t components of the affine
transformation between the two point sets. The translational com-
ponent t can be immediately disposed of by observing that if mp and
mq are the centers of mass for P and Q,

mp ¼
1
k

Xk

i¼1

pi; mq ¼
1
k

Xk

i¼1

qi;

(4) then implies that

qpðiÞ �mq ¼ Aðpi �mpÞ
with

t ¼ mq � Amp:

That is, we can estimate A using the centered points qi �mq,
pi �mp, and the translational component t can be recovered once
A is determined using the equation above. Henceforth, we assume
that the points in P; Q are centered and

qpðiÞ ¼ Api; ð5Þ
3.1. Orthogonal reduction

The centering above gets rid of the translational component. A
more sophisticated coordinates transform will allow us to reduce
the problem further: from the four-dimensional problem of deter-
mining A to that of an one-dimensional problem of determining a
rotation. As will be clear soon, the combined step here is to nor-
malize the two point sets so that they have zero mean and unit
covariance, a normalization step often employed in computer vi-
sion and machine learning for processing training data.

The basic idea behind the orthogonal reduction step is to deter-
mine the unknown matrix A up to a rotation by requiring it to pre-
serve the two covariance matrices

SP ¼
1
k

Xk

i¼1

pip
t
i ; SQ ¼

1
k

Xk

i¼1

qiq
t
i :

If (5) is satisfied, then the two covariance matrices are related as

SQ ¼ AtSPA: ð6Þ

Therefore, A is a solution of (6). If we assume that the two covari-
ance matrices are positive-definite (otherwise, the point sets lie
on lines and the problem reduces to matching points on R1), (6)
can always be solved up to an unknown rotation. This is a special
case of a more general theorem [49]

Theorem 3.1. For any pair S, T of n � n symmetric positive-definite
matrices, there exists an nonsingular n � n matrix A such that

S ¼ AtT � A ð7Þ

Furthermore, any matrix of the form

A ¼ T�
1
2RS

1
2

with R an n � n rotation matrix satisfies (7).
It is easy to verify that such A does satisfy (7) with S

1
2; T�

1
2

denoting the square-root and inverse square-root of S, T, respec-
tively. Using this theorem, we can define coordinates transforms
using the inverse square-roots of the covariance matrices

pi ! S�
1
2

P pi; qi ! S�
1
2

Q qi: ð8Þ

If the original point sets are related by A, the transformed point sets
are then related by the linear transformation R ¼ S�

1
2

Q AS
1
2
P. The theo-

rem above immediately implies that R is a rotation matrix, and we
have

Proposition 3.2. Let P and Q denote two point sets in R2, and they
are related by an unknown nonsingular matrix A as in (5). Assume
that their covariance matrices SP and SQ are positive-definite. Then,
the transformed point sets (using (8)) are related by an orthogonal
matrix R.

The proof follows easily from the theorem above, or one can
prove directly that (1) the covariance matrices SP and SQ are now
the identity matrix I for the transformed point sets, and (2)
SQ ¼ RtSPR becomes I = RtR. Two examples of the normalization
are shown in Fig. 1.

3.2. Rigid registration

Again, we will use the same notations to denote the trans-
formed points and point sets (8), and the point sets P; Q are



Fig. 1. Orthogonal reduction. Two examples of the coordinates transform (8) that normalizes the covariance matrices. The first two images from the left give the original
point sets with 2927 and 2866 points, respectively. The normalized point sets are shown in the last two images. Notice the scale change as well as some amount of shearing in
the normalized point sets. The covariance matrices of the normalized point sets are the identity matrix.
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now related by an orthogonal matrix R, a rigid registration prob-
lem. Spectral methods such as [29,31] can in principle recover
the rotation R without optimization provided that the point sets
P; Q do not have too much internal symmetry. For example, [29]
solves the rigid registration problem by matching the eigenvectors
of the two covariance matrices. Unfortunately, this method is not
applicable here because the two covariance matrices are now the
identity matrix, and there is no way to match the eigenvectors
using different eigenvalues as in [29]. On the other hand, [31] re-
quires the computation of a ‘‘proximity matrix”, and it uses the
eigenvectors of this matrix as features for computing correspon-
dences. Therefore, for this method to work, the eigen-structure of
the proximity matrix must be rich enough to supply sufficient dis-
criminative features for computing correspondences. Here, we
present a much simpler algorithm for solving the rigid registration
using the geometry of complex numbers.

We will identify every point in R2 with a complex number in
the usual manner: (x,y) ? x + i y, and each point in P and Q is
now considered as a complex number. A rotation (with determi-
nant 1) in R2 then corresponds to the multiplication by a complex
number with unit modulus, i.e., a complex number of the form

z ¼ eih ¼ cosðhÞ þ i sinðhÞ;

for some real number h. As is well-known, the group O(2) of orthog-
onal matrices has two connected components: the component
SO(2) with rotation matrices of determinant 1 and the other compo-
nent with matrices of determinant �1. The reflection x across the
real (x-) axis is a rotation matrix with determinant �1

x ¼
1 0
0 �1

� �
;

and in the complex setting, it is given by the action of conjugation:
z! �z. With this, every matrix R 2 O(2) can be represented as either
a multiplication by a unit complex number or multiplication by a
unit complex number followed by taking the conjugate:

z! eihz or z! e�ih�z;

for some h. Therefore, to determine the unknown rotation g 2 O(2)
between P and Q, we can try to find an element g 2 SO(2) between
P and Q or between P and Q, conjugates of points in Q.

We define two polynomials of degree k with complex
coefficients:

PðzÞ ¼
Yk

i¼1

ðz� piÞ; Q ðzÞ ¼
Yk

i¼1

ðz� qiÞ: ð9Þ

The condition that P and Q are related by a (orientation preserving)
rotation implies that there exists a real number h, such that the two
polynomials P(z), Q(eihz) are related by an unknown multiplicative
constant k:Q(eihz) = kP(z). This follows from the fundamental theo-
rem of algebra because the two polynomials have the same degree
and the same set of roots, and it follows that they must differ only
by a multiplicative constant.

Let P(z) = zk + a1zk�1 + � � � + ak�1z + ak and Q(z) = zk + b1zk�1 +
� � � + bk�1z + bk. The coefficients ai, bi can be computed using ele-
mentary symmetric polynomials in k indeterminates: these are
the k linearly independent polynomials with degrees 1,2, . . . ,k:

P1ðx1; . . . ; xkÞ ¼
X

16i6k

xi

P2ðx1; . . . ; xkÞ ¼
X

16i<j6k

xixj

P3ðx1; . . . ; xkÞ ¼
X

16i<j<l6k

xixjxl

..

.

Pkðx1; . . . ; xkÞ ¼ x1 x2 . . . xk

The coefficients of P(z) and Q(z) are the values of elementary sym-
metric functions at their respective roots:

ai ¼ Piðp1; . . . ;pkÞ; and bi ¼ Piðq1; . . . ; qkÞ:

A quick calculation shows that

Q ðeihzÞ ¼ eikhzk þ b1eiðk�1Þhzk�1 þ � � � þ eihbk�1zþ bk;

and since Q(eihz) = kP(z), by matching the coefficients, we have
k = eikh, and

eilhbk�l ¼ kak�l;! eiðk�lÞh ¼ bk�l=ak�l

for 1 6 l 6 k � 1. That is, h is one of the roots of the equation

zd ¼ bd=ad

for all 1 6 d 6 k � 1, provided that ad – 0. The d roots of the above
equation are all unit complex numbers, and they can be determined
quickly by taking the complex logarithm of bd/ad for d such that
ad – 0: if bd/ad = x + i y for some real numbers x and y,

h ¼ tan�1 y
x

� �
þ 2np

d

for n = 0,1,2, . . . ,d � 1. This results in d choices for h. Some choices
of h may not correspond to the desired rotation; however, every
rotation that can match the two point sets must correspond to
one of the d choices. Therefore, to determine the rotation, we can
take the first nonzero coefficient ad of P(z), compute the quotient
bd/ad, and determine which of the d choices are indeed the desired
rotation. For instance, if d = 1, we have eih = b1/a1, and there is only
one h satisfying this equation. Geometrically, this is easy to see be-
cause the coefficients a1, b1 are simply the sums of the points in P

and Q, respectively. The desired rotation must then take the center
of P to that of Q. Therefore, if b1 – 0, the rotation is determined by
the quotient (as complex numbers) of the two centers, a1/k and b1/k.

Recall that the point sets P; Q have been centered and their
covariance matrices are the identity matrix. A simple algebra will
show that the first two coefficients a1, b1, a2, b2 must vanish:
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Proposition 3.3. Let P ¼ fp1; . . . ; pkg be a point set in R2 such that
its center is the origin and its covariance matrix is the identity. If
P(z) = zk + a1zk�1 + a2zk�2 + � � � + ak is its associated polynomial as
defined above, then
a1 ¼ a2 ¼ 0:
Fig. 2. 2D affine registration algorithm.
Proof. Let pj = xj + i yj for 1 6 j 6 k. The coefficient a1 is simply the
sum of pi, which is zero because P is centered. To show that a2 is
also zero, we first observe that

a2 ¼
X

16i<j6k

ðxixj � yiyjÞ þ i
X

16i<j6k

ðxiyj þ xjyiÞ:

The condition that P has zero mean and unit variance implies that

x1 þ � � � þ xk ¼ 0; y1 þ � � � þ yk ¼ 0 ð10Þ
x2

1 þ � � � þ x2
k ¼ 1; y2

1 þ � � � þ y2
k ¼ 1 ð11Þ

x1y1 þ x2y2 þ � � � þ xkyk ¼ 0

The first two equations above imply that the real part of a2 is zero
because by squaring the first pair of equations and using the second
pair of equations, it shows thatX
16i6j6k

xixj ¼
X

16i6j6k

yiyj:

h

Similarly, the first and third equations above together imply that
the imaginary part of a2 vanish as well.

There are no other constraints on P that will force a3 to be
zero as a1, a2 are. However, it can vanish if the point sets contain
enough internal symmetry. Nevertheless, our method will fail
only when all (non-leading) coefficients are zero. This is not pos-
sible because it will imply that the polynomial P(z) = zk, and it
has a multiple root at 0, which is not how P is defined. In gen-
eral, we expect that coefficient a3 to be nonzero for most point
sets, and we can use a3,b3 to recover the rotation matrix and
hence the affine transformation. While a3 (and b3) is a coefficient
in the high-degree polynomial P, the stability of a3 against noise
is not related to the high-degree polynomial P as a3 is the sum of
products of three points in P:

a3 ¼
X

16i<j<l6k

pipjpl;

and its degree with respect to the input points pi is three. Similarly,
the degree of a4 is four, etc. As the low-degree quantities are
generally more robust against noises compared with high-degree
quantities, ai with a small value of i P 3 should be preferred for
recovering the rotation. The full 2D affine registration is summa-
rized in Fig. 2.

For noisy data, the proposed algorithm can be enhanced by an
appended step that computes the optimal affine transformation gi-
ven the correspondence computed by the algorithm. Specifically,
let A = (A, t) denote the computed affine transformation. The corre-
spondence p is determined by finding the nearest neighbor:

pðiÞ ¼ arg min
16j6k

kqj � Axi � tk2:

As mentioned before, the optimal affine transformation with corre-
spondence p (1) can be computed by solving a system of linear
equations.

3.3. Point sets of different sizes

It is possible to generalize the method described above for point
sets of different size. Without loss of generality, we assume that P
has more points than Q. The rigid reduction part of the algorithm
does not require equal number of points as it only uses the covari-
ance matrices of the point sets. However, the rigid registration part
that follows does require P; Q to have the same number of points.
Otherwise, the polynomials P and Q would have different degrees
and we no longer have Q(eihz) = kP(z) for some multiplicative con-
stant k. Instead, we have Q(eihz)jP(z), i.e., P(z) is divisible by Q(eihz).
This will provide a set of relations between the coefficients of P and
Q. In principle, these relations can be utilized in a similar way as
before to determine the unknown rotation; however, the algebra
involved here is considerably more complicated and we will not
pursue this approach here.

Instead, we will investigate two different approaches for han-
dling point sets of different size. In both methods, the main idea
is to produce modified point sets P0; Q0 from P;Q such that P0;Q0

have the same number of points and the registration algorithm
can be directly applied to P0;Q0.
3.3.1. Random point deletion
Given the two point sets P; Q with different number of

points, one quick solution is to modify P by randomly deleting
its points so that the resulting point set P0 has the same number
of points as Q. The two advantages of this method are its easy
implementation and the negligible increase in the overall running
time. In particular, for point sets that differ no more than 15% in
their sizes, our experiments have shown that the registration re-
sults are generally satisfactory. However, the main shortcoming
of this method is that it does not provide a principled way to
reduce the number of points for both point sets. For point sets that
differ significantly in their sizes (say more than 20%) or point sets
containing too many points, it is desirable to have a principled
method that can produce a modified point set from the original
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point set with significantly fewer number of points that still
retains sufficiently many of its original geometric features. For
example, for point sets containing tens of thousands of points, it
is desirable to first reduce the number of points to the order of
thousands or hundreds of points and register the simplified point
sets. Unfortunately, for this type of drastic reductions (typically
more than 90% reduction), random point deletion is not particu-
larly effective, and the second method improves on this shortcom-
ing, at the expense of longer running time, using the idea of point
resampling.

3.3.2. Point resampling
The main idea here is to treat the points in the point set P as

sample points drawn from an unknown probability density func-
tion (PDF). Therefore, if we can estimate the density function, we
can sample with respect to it a new set P0 of points of any given
size, and this gives us a principled way for obtaining the simplified
point sets P0; Q0 that have the same number of points. This ap-
proach can be justified for many practical applications. For exam-
ple, many affine registration problems involve aligning 2D planar
shapes given as point sets (Fig. 3). The aim here is to align the
shapes implied by the point sets, and the actual matching of each
individual point is only of secondary importance. In this context,
the shapes implied by the point sets are represented as probability
density functions, and the registration problem turns into a regis-
tration problem for two PDFs defined on R2, which can be formu-
lated and solved in various ways. Given a pair of PDFs, FP; FQ, the
most straightforward method would be to align the two PDFs
based on the ‘2-error [50]:

ðA; tÞ ¼ arg max
A;t

Z Z
R2
kFQðxÞ �FPðAxþ tÞk2 dx:

Different distance measures for the density functions, such as the
various divergences, can be substituted for the ‘2-norm. The optimi-
zation problem is typically solved using gradient descent, and as
usual, the quality of the solution cannot be guaranteed in general.
To make our method directly applicable here, we opt for a simpler
solution that registers two new point sets containing the same
number of points obtained by sampling the two PDFs.

Density estimation, particularly on R2, is a well-studied subject,
encompassing a variety of techniques and mathematical formula-
tions. We choose to fit the point set P with a Gaussian Mixture
Model (GMM) of K components, where K is an integer that can
be either user-specified or determined by the required precision
for the fitting [51]: the density function FP is given in the form

FPðxjHÞ ¼
XK

i¼1

xi Nðx;li;RiÞ

where

Nðx; li;RiÞ ¼
1

ð2pÞN=2jRij
1
2

exp �1
2
ðx� liÞ

tR�1
i ðx� liÞ

� �
Fig. 3. Point sets of the different sizes. The first two images show the original point sets w
fitted to each point set and the centers of the mixture components are marked black in th
images.
is the 2D normal distribution with mean li and covariance matrix
Ri, and xi the non-negative weights that sum to one. H = {l1, . . . ,
lK,R1, . . . ,RKx1, . . . ,xk} denote the parameters of the Gaussian
Mixture Model, and the parameters can be estimated by maxi-
mizing the (log) likelihood

LPðHÞ ¼ Pk
i¼1FPðpijHÞ:

This can be solved using the EM algorithm, and the details are avail-
able in many textbooks (e.g., [51]). Once the density function FP

has been estimated, the sampling with respect to it is straightfor-
ward: first, we sample the component according to the weights
{x1, . . . ,xK}. Once the component is given, sampling with respect
to N(x;li,Ri) is straightforward.

4. Experiments

In this section, we present experimental results for the 2D affine
registration algorithm described above. We experimented with
both real and synthetic data, and our aim is to provide convincing
empirical validation on the accuracy as well as robustness of the
proposed method. We have implemented the algorithm in C++
and MATLAB. Both implementations are without optimization,
and for point sets containing roughly 500 points, the MATLAB
and C++ implementations take, on average, 5–7 s and less than
one second to compute the affine transformation on a DELL note-
book with a 1.5 GHz processor, respectively. On MATLAB, the poly-
nomials defined in (9) can be computed efficiently using the
MATLAB routine poly, and the entire MATLAB implementation
contains roughly 30 lines of code. We compare the performance
of our algorithm with that of the affine variant of the usual ICP
algorithm that iteratively computes the transformation and
correspondences.

4.1. Experiments with synthetic data

In these experiments, we randomly generate point sets in R2

and evaluate the accuracy of the proposed algorithm on these point
sets with various amounts of added noise. More specifically, we
randomly generate the point set P ¼ fp1; . . . ; p400g of 400 points
in the domain �2 6 x 6 2, �2 6 y 6 2. The nonsingular matrix A
and translational component t are also randomly generated such
that all of their components are required to be in between �2
and 2. The transformed point set Q ¼ fq1; . . . ; q400g is given by:

qi ¼ A xi þ nd
i

� �
þ t;

where nd
i is a randomly generated noise vector whose two compo-

nents are independently generated. We experimented with two
types of noise: uniform random noise (within ±d% of the true value
xi) and Gaussian random noise (with standard deviation d%). We
experimented with five different values of d, d = 0,2,4,8, and 10.

For each noise setting, the accuracy of our method is measured
by computing several error values. Let (Aest, test) denote the output
ith 2927 and 2866 points, respectively. A 70-component Gaussian Mixture Model is
e figures. The two new sampled point sets with 700 points are shown in the last two



Table 1
Experimental results with uniform noise. For each noise setting, we ran 1000
independent trials. The mean errors are listed with standard deviations shown in
parenthesis.

Noise ? 0% 2% 4% 8% 10%
Error ;

kA � Aestk2 0
(0)

0.005
(0.06)

0.01 (0.14) 0.06 (0.24) 0.085
(0.28)

kA�Aest j2
kAk2

0
(0)

0.003
(0.05)

0.01 (0.1) 0.04 (0.18) 0.06 (0.21)

kt � testk2 0
(0)

0 (0) 0.002
(0.005)

0.0053
(0.0150)

0.06
(0.016)

EðA; tÞ 0
(0)

0.12
(0.026)

0.4329
(0.08)

1.2 (0.19) 1.6 (0.25)

EðAest ; testÞ 0
(0)

0.14 (0.2) 0.51 (0.3) 1.4 (0.51) 1.8 (0.65)

Table 2
Experimental results with Gaussian noise. For each noise setting, we ran 1000
independent trials. The mean errors are listed with standard deviations shown in
parenthesis.

Noise ? 0% 2% 4% 8% 10%
Error ;

kA � Aestk2 0
(0)

0.01(0.12) 0.04
(0.21)

0.16 (0.4) 0.17 (0.4)

kA�Aest j2
kAk2

0
(0)

0.01 (0.09) 0.02 (0.2) 0.04 (0.18) 0.13 (0.3)

kt � testk2 0
(0)

0.001
(0.008)

0.01
(0.02)

0.0053
(0.0150)

0.01
(0.02)

EðA; tÞ 0
(0)

0.32 (0.06) 0.9 (0.15) 1.8 (0.3) 2.2 (0.38)

EðAest ; testÞ 0
(0)

0.36 (0.32) 1.1 (0.6) 2.3 (0.68) 2.6 (0.7)

Table 3
Experimental results using affine ICP with Gaussian noise. For each noise setting, we
ran 1000 independent trials. The mean errors are listed with standard deviations
shown in parenthesis.

Noise ? 0% 2% 4% 8% 10%
Error ;

kA � Aestk2 0.45
(0.33)

0.51
(0.32)

0.62
(0.45)

0.55
(0.61)

0.54
(0.51)

kA�Aest j2
kAk2

0.81
(0.45)

0.83
(0.51)

0.79
(0.43)

0.85
(0.61)

0.96
(0.53)

kt � testk2 0.03
(0.06)

0.04
(0.06)

0.05
(0.04)

0.06
(0.06)

0.07
(0.06)

EðA; tÞ 3.5 (1.4) 3.7 (1.7) 3.9 (1.9) 3.6 (2.1) 4.1 (1.7)
EðAest ; testÞ 3.7 (1.2) 3.6 (1.4) 3.7 (1.2) 4.1 (1.2) 3.9 (1.3)
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of our algorithm for the input point sets P and Q. We compute the
‘2-difference (Frobenius norm) between the exact affine transfor-
mation and our estimated result, kAest � Ak2, ktest � tk2, and also
the relative error kAest�Ak2

kAk2
. To compare the quality of the registration

result, we also compute the errors for both (A,t) and (Aest, test) using
(1). For each noise setting, we ran 1000 independent trials (differ-
ent P; Q and (A,t) for each trial), and the mean errors obtained
from these trials using uniform and Gaussian noises are tabulated
in Tables 1 and 2, respectively.

The results show that our method, which is entirely algebraic,
does tolerate some degrees of input noises. We note that when
there is no added noise, our method does indeed recover the cor-
rect affine transformation as all the error values are zero. In all
the experiments, the relative error kAest�Ak2

kAk2
of the estimated affine

transformation is less than 13% of the true affine transformation
A. This shows that the affine transformation Aest recovered by our
method is indeed quite close to the actual transformation A for
noisy point sets.

For comparison, we test the affine variant of the ICP algorithm.
This algorithm iteratively computes the transformation and corre-
spondence. Given the transformation, the correspondence is com-
puted using the nearest neighbors: for each p 2 P, its
corresponding point q in Q is defined as

q ¼ arg min
�q2Q
k�q� Ap� tk2

:

We note that the resulting correspondence can fail to be surjective,
and multiple points in P can be assigned to the same point in Q.
Conversely, given the correspondence, the affine transform is com-
puted by minimizing (1), which can be done efficiently by solving
two linear systems for A, t separately. The algorithm is initialized
using the identity transform as the initial affine transform, and
the results are tabulated in Table 3. The poor performance is not
surprisingly since the algorithm is known to depend on the initial-
ization. In particular, the registration accuracies do not generally
depend on the amount of added noise, which implies that the effect
of poor initializations typically overrides the effect of noise. For
most optimization-based methods, a good initialization is usually
a prerequisite for the success of the algorithms. Unfortunately, for
most applications, good initializations are often unavailable if the
algorithm does not assume any prior information.

4.2. Experiments on registering 2D shapes

In this section, we report results of applying our method to reg-
istering 2D shapes. The shapes used in our experiments are taken
from the MPEG-7 shape database. In this database, there are 70 dif-
ferent shape categories with 20 shapes per category. All shapes in
this database are represented as point sets containing roughly be-
tween 1000 and 3000 points.3 Using this database, we report two
sets of experiments that qualitatively and quantitatively study the
accuracy of our method.

In the first set of experiments, two images from the same shape
category are randomly chosen for registration. Since no ground
truth can be established for this experiment, five registration re-
sults are shown in Fig. 4 without any quantification on their error
and accuracy. The quality of the registration result is determined
visually, and as can be seen from the figure, our automatic registra-
tion method does quite well for affine aligning the pairs of shapes
belonging to the same shape category. Since the point sets in gen-
eral do not contain the same number of points, we use the point
resampling method described in the previous section by fitting a
K-component Gaussian Mixture Model to each point set. In all
the experiments, K is taken to be 70 and we sample 700 points
3 We thank Anand Rangarajan and Adrian Peter for providing the data.
from each GMM to form the new point set, which is roughly 80%
reduction in the number of points. For each pair of shapes, it takes
about, on average, several minutes for the algorithm to finish run-
ning a MATLAB implementation. Most of computation time is how-
ever spent on estimating the two Gaussian Mixture Models, and
the actual registration step takes only a few seconds to complete
as before.

The second set of experiments provide a quantitative analysis
on the accuracy of our method for registering point sets containing
different number of points using randomly point deletion. In this
experiment, we randomly select five shapes from the MPEG-7
shape database (shown in Fig. 5) and each shape is represented
as a point set P. A percentage of the points are deleted from P

and a randomly generated affine transformation (A,t) is then ap-
plied to the resulting point set to form a new point set Q. The
two point sets P; Q are then related by a known affine transforma-
tion but containing different number of points. Again, let (Aest, test)
denote the output of our method for the input point sets P and Q,
and the error of interest here is the relative error kAest�Ak2

kAk2
between



Table 4
Experimental results with unequal number of points. For each shape and deletion
setting (d% of points deleted), 20 trials with 20 randomly generated affine transfor-
mations are performed. The mean relative errors and their variances (in parenthesis)
are shown.

%Deletion ? 1% 2% 5% 10% 15%
Shape ;

Apple 0.02 (0.01) 0.02 (0.02) 0.06 (0.04) 0.11 (0.06) 0.14 (0.13)
Beetle 0.03 (0.03) 0.04 (0.03) 0.8 (0.07) 0.13 (0.12) 0.20 (0.13)
Bird 0.02 (0.02) 0.04 (0.02) 0.06 (0.08) 0.13 (0.10) 0.19 (0.13)
Butterfly 0.03 (0.04) 0.04 (0.05) 0.08 (0.06) 0.13 (0.11) 0.15 (0.13)
Cattle 0.03 (0.03) 0.03 (0.05) 0.05 (0.07) 0.11 (0.11) 0.16 (0.12)

Fig. 4. Shape registration. First row: five pairs of input point sets with unequal number of points. The shapes are centered: the translational component t is known but not the
linear component A. Second row: the sampled point sets with 700 points. Third row: registration results.

Fig. 5. The five shapes used in the experiments reported in Table 4: Apple, Beetle, Bird, Butterfly, and Cattle.
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the estimated (linear component) affine transformation and the
ground truth. In this experiment, we experimented with five differ-
ent deletion settings: d% of points from P are randomly chosen and
deleted for d = 1,2,5,10 and 15. For each d, we run the registration
algorithm 20 times with 20 randomly generated affine transforma-
tions. The mean and variance estimated from the 20 relative errors
for all the five shapes used in the experiment are tabulated in Ta-
ble 4. The results show that the random point deletion method
does provide reasonably accurate registration results for two point
sets with sizes differed by less than 15%. The method is efficient
and does not incur noticeable extra running time.
5. Summary and conclusions

We have proposed a novel affine registration algorithm for
matching 2D point sets related by an unknown affine transforma-
tion. The most prominent feature of the algorithm is that it is en-
tirely algebraic and does not require any optimization. For data
points without noise, the algorithm has been shown to be able to
recover the exact affine transformation and correspondence. The
algebraic and geometric motivations behind the proposed algo-
rithm is both clear and transparent. While the algorithm was orig-
inally formulated for point sets containing equal number of points,
we have investigated two methods for handling arbitrary point
sets: resampling of points from Gaussian mixture models and ran-
dom deletion of points. The algorithm is efficient and takes only
seconds to finish for point sets with hundreds of points. Experi-
mental results on both synthetic and real-world point-set data
show that the proposed algorithm is capable of producing good
registration results using noisy inputs.
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