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We propose an algorithm for accurate tracking of articulated objects using online update of appearance
and shape. The challenge here is to model foreground appearance with histograms in a way that is both
efficient and accurate. In this algorithm, the constantly changing foreground shape is modeled as a small
number of rectangular blocks, whose positions within the tracking window are adaptively determined.
Under the general assumption of stationary foreground appearance, we show that robust object tracking
is possible by adaptively adjusting the locations of these blocks. Implemented in MATLAB without sub-
stantial optimization, our tracker runs already at 3.7 frames per second on a 3 GHz machine. Experimen-
tal results have demonstrated that the algorithm is able to efficiently track articulated objects undergoing

large variation in appearance and shape.

Published by Elsevier Inc.

1. Introduction

Developing an accurate, efficient and robust visual tracker is
always challenging, and the task becomes even more difficult
when the target is expected to undergo significant and rapid
variation in shape as well as appearance. While the audience is
delighted and awed by the virtuoso performance of the world-
renown skaters (Fig. 1), their graceful movements and dazzling
poses offer multiple challenges for any visual tracker. In this
example (and many others), the appearance variation is mainly
due to change in shape while the foreground intensity distribution
remains roughly stationary. An important problem is then to
efficiently exploit this weak appearance constancy assumption
for accurate visual tracking amidst substantial shape variation.

Intensity histogram is perhaps the simplest way to represent
object appearance, and tracking algorithms based on this idea
abound in the literature (e.g., [1,2]). For rectangular shapes, effi-
cient algorithms such as integral image [3] and integral histogram
[4] have been successfully applied to object detection and tracking
[5]. In particular, it is possible to rapidly scan the entire image to
locate the target. However, computing intensity histogram from a
region bounded by some irregular shape cannot be done efficiently
and rapidly using these methods. To deal with shape variation in
the context of histogram based tracking, one general idea is to
use a (circular or elliptical) kernel [6,7] to define a region around
the target from which a weighted histogram can be computed.
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Rapid scanning of the image using this approach is not possible;
instead, differential algorithms can be designed to iteratively con-
verge to the target object [2]. Nevertheless, differential approaches
become problematic for tracking sequences with rapid and large
motions. In a way, the kernel imposes a “regularity” constraint
on the irregular shape, thereby relaxing the more difficult problem
of efficiently computing the intensity histogram from an irregular
shape to that of a simpler one of estimating histogram from a reg-
ular shape.

Another way to deal with irregular shapes is to enclose the tar-
get with a regular shape (e.g., a rectangular window) and compute
histogram from the enclosed region. However, this inevitably in-
cludes background pixels when the foreground shape cannot be
closely approximated. Consequently, the resulting histogram can
be corrupted by background pixels, and the tracking result de-
grades accordingly (e.g., unstable or jittered results as shown in
Fig. 1). Furthermore, complete lack of spatial information in histo-
grams is also undesirable. For problems such as face tracking that
do not have significant shape variation, it is adequate to use inten-
sity histogram as the main tracking feature [1]. However, for a tar-
get undergoing significant shape variation, the spatial component
of the appearance is very prominent, and the plain intensity histo-
gram becomes inadequate as it alone often yields unstable tracking
results.

Each of the aforementioned problems has been addressed to
some extent (e.g., spatiogram [8] for encoding spatial information
in histogram). However, most of them require substantial increase
of computation time, thereby making these algorithms applicable
only to local search and infeasible for global scans of images. Con-
sequently, such algorithms are not able to track objects undergoing
rapid motions.



902 S.M.S. Nejhum et al./ Computer Vision and Image Understanding 114 (2010) 901-914

BY.... $ 4E=Tm"
.

Fig. 1. Top: Using only histogram for representing object’s appearance, the tracking results are often unsatisfactory. Bottom: Using the proposed algorithm, the tracking

results are much more consistent and satisfactory.

In this paper, we propose a tracking algorithm! that solves the
above problems, and at the same time, it still has comparable run-
ning time as the tracking algorithm using (plain) integral histogram
[4]. The proposed algorithm consists of global scanning, scaling, local
refinement and update steps. The main idea is to exploit an efficient
appearance representation using histograms that can be easily eval-
uated and compared so that the target object can be located by scan-
ning the entire image. Shape update, which typically requires more
elaborated algorithms, is carried out by adjusting a few small blocks
within tracked window. Specifically, we approximate the irregular
shape with a small number of blocks that cover the foreground ob-
ject with minimal overlaps. As the tracking window is typically
small, we can estimate the foreground region using a fast segmenta-
tion algorithm without increasing the run-time complexity signifi-
cantly. We then update the target shape by adjusting these blocks
locally so that they provide a maximal coverage of the foreground
target.

The adaptive structure in our algorithm contains the block con-
figuration and their associated weights. Shape of the target object
is loosely represented by block configuration, while its appearance
is represented by intensity distributions and weights of these
blocks. In doing so, spatial component of the object’s appearance
is also loosely encoded in block structure. Furthermore, these rect-
angular blocks allow rapid evaluations and comparisons of histo-
grams. Note that our goal is not to represent both shape and
appearance precisely since this will most likely require substantial
increase in computation. Instead, we strive for a simple but ade-
quate representation that can be efficiently computed and man-
aged. Compared with tracking methods based on integral
histograms, our tracker is also able to efficiently scan the entire im-
age to locate the target, which amounts to the bulk of the process-
ing time for these algorithms. The extra increase in running time of
our algorithm results from the refinement and update steps.
Since segmentation is carried out only locally in a (relatively) small
window and the weights can be computed very efficiently, such
computation overhead is generally small. Experimental results re-
ported below demonstrate that our algorithm renders much more
accurate and stable tracking results compared to the integral histo-
gram-based tracker, with a negligible increase in running time.

2. Previous work

There is a rich literature on shape and appearance modeling for
visual tracking, and a comprehensive review is of course beyond
the scope of this paper [10]. In this section, we discuss the most
relevant works within the context of single articulated object
tracking. Specifically, we aim to track generic articulated objects

1 An early version of this work was presented in [9].

from images acquired with one camera at a distance while under-
going large and rapid deformation in shape as well as appearance.
We note that there exist tracking algorithms for specific objects
operating under different imaging conditions and constraints,
e.g., human tracking [11-14], hand tracking [15-17,6], model-
based tracking [18,19], to name a few.

Articulated objects can be modeled with parameterized shapes
or contours. Active contours using parametric models [17,20] typ-
ically require offline training, and expressiveness of these models
(e.g., splines) is somewhat restrictive. Furthermore, with all the off-
line training, it is still difficult to predict the tracker’s behavior
when hitherto unseen target is encountered. For example, a num-
ber of exemplars have to be learned from training data prior to
tracking in [21], and the tracker does not provide any mechanism
to handle shapes that are drastically different from the templates.
Likewise, there is also an offline learning process involved in the
active shape and appearance models [22]. Level set algorithms
have also been successfully applied to track articulated objects
[23-26]. However, these methods rely mainly on the information
near the contours and do not exploit the rich appearance or texture
information. In addition, these algorithms usually do not have
mechanisms to handle drifting effects.

Instead of using contours to model shapes, kernel-based meth-
ods represent target’s appearance with intensity, gradients, and
color statistics [1,2,27]. These methods have demonstrated suc-
cesses in tracking targets whose shapes can be well enclosed by
ellipses. Although methods using multiple kernels [28,6] and adap-
tive scaling [29] have been proposed to cope with this problem, it
is not clear such methods are able to effectively track articulated
objects whose shapes vary rapidly and significantly.

In a somewhat different direction, the use of Haar-like features
plays an important role in the success of real-time object detection
[3]. However, fast algorithms for computing Haar-like features and
histograms such as integral images [3] or integral histograms [4]
require rectangular windows to model the target’s shape. Conse-
quently, it is not straightforward to apply efficient methods to
track and detect articulated object with varying shapes. Haar-like
and related features play a significant role in several recent work
on online boosting and its applications to tracking and object
detection [30]. One interesting aspect of this latter work is to treat
tracking as sequential detection problems, and an important com-
ponent in the tracking algorithm is the online construction of an
object-specific detector. However, the capability of the tracker is
somewhat hampered by the Haar-like features it uses in that this
invariably requires the shapes of the target to be well approxi-
mated by rectangular windows.

Finally, our algorithm shares some similarity with the part-
based object detection algorithm proposed in [31] as both algo-
rithms use rectangular blocks to define the target object. However,
the similarity is only superficial since, in our method, there is no
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specific part definition as the blocks are online adjusted to provide
the coverage for the foreground target only. While decompositions
of the target using rectangular blocks are employed in both meth-
od, the decomposition in our case is geometrical with the explicit
purpose of covering the foreground and accurately estimate the
intensity histogram while theirs is semantical in that each block
or part has its own unique appearance and characteristic. Our goal
is to have a general-purpose tracker and this necessarily requires
us to avoid detecting object parts as it will involve more extensive
training and require more assumptions on the target’s appearance.

3. Tracking algorithm

We present the details of the proposed tracking algorithm in
this section. The output of the proposed tracker consists of a rect-
angular window enclosing the target in each frame. Furthermore,
an approximated boundary contour of the target is also estimated,
and the region it encloses defines the estimated target region. Our
objective is to achieve a balance among the three somewhat con-
flicting goals of efficiency, accuracy and robustness. Specifically,
we treat the tracking problem as a sequence of detection problems,
and the main feature that we use to detect the target is the inten-
sity histogram. The detection process is carried out by matching
foreground intensity histogram and we employ integral histo-
grams for efficient computation. In the following discussion, we
will use the terms histogram and density interchangeably. The
main technical problem that we solve within the context of visual
tracking is how to approximate the foreground histogram under
significant shape variations so that efficient and accurate articu-
lated object tracking is possible under the general assumption
(held by most tracking algorithms) that the foreground histogram
stays roughly stationary.

The high-level outline of the proposed algorithm is shown in
Fig. 2. It consists of four sequential steps: detection, scaling, refine-
ment, and update. At the outset, the tracker is initialized with the
contour of the target, it then automatically determines the initial
tracking window W and K rectangular blocks B; as well as their
weights Z; according to the procedure described below. The fore-
ground intensity histogram H{J for the initial frame is kept through-
out the sequence.

The shape of the foreground target is approximated by K rectan-
gular blocks, B;, 1 <i < K, within the main tracking window W as
shown in Fig. 3. The positions of the blocks within the tracking
window are adaptively adjusted throughout the tracking sequence,

Tracking Algorithm Outline

1. Detection

The entire image is scanned and the window with the highest similarity is deter-
mined to be the tracking window W*.

2. Scaling

Size of tracking window W* is adjusted according to scale of target.

3. Refinement

Within W*, the target is segmented out using a graph-cut based segmentation
which divides the tracking window between foreground and background regions.
The segmentation uses both estimated foreground and background distributions.
4. Update

Block configuration is adjusted locally based on the segmentation result obtained

in the previous step. The non-negative weights \; of the blocks are recomputed.

Fig. 2. High-level outline of the proposed tracking algorithm.

Fig. 3. Left: Examples of articulating targets. Right: Given the contour of the target
object, we select those blocks (and associated weights) with non-empty intersec-
tion with the interior region of the target defined by the contour. Blocks containing
only background pixels are not selected. The importance of a block is proportional
to the percentage of its pixels belonging to the foreground.

and they may have some overlaps to account for extreme shape
variations. At each frame t, the tracker maintains the fol-
lowing: (i) a tracking window W, with a block configuration, (ii)
a foreground histogram H{ represented by a collection of “local

. B . . .
foreground histograms”, H," and their associated weights Z;, com-

puted from the blocks, and (iii) a background histogram Hf. The
tracker first detects the most likely location of the target by scan-
ning the entire image (i.e., the window with the highest similarity
when compared with the tracking window W).

After detection, tracking window size can be adjusted to make it
tightly enclose the target without unnecessary background pixels.
Note that for tracking articulated objects, it is inevitable for track-
ing windows to enclose some background pixels as the shapes and
sizes of targets vary significantly. We introduce an adaptive scaling
step to update the size of the tracking window based on scale of
the target object.

In the refinement step, the tracker works exclusively in the de-
tected window and the target is segmented from the background
using the current foreground density. This result is then used in
the update step to adjust the block positions in the tracking win-
dow W and then the weights assigned to each block is recomputed.
In addition, the background density H’; is also updated. Ideally, the
number of blocks K and the size of each block B; should be adap-
tively determined during tracking. However, in this paper, we fix
the number of blocks, while the position of each block is adjusted
accordingly to account for shape variation.

While it is expected that the union of the blocks will cover most
of the target, these blocks will nevertheless contain both fore-
ground and background pixels. This happens often when the shape
of the target object is far from convex and exhibits strong concav-
ity. In particular, blocks containing large percentages of back-
ground pixels should be down weighted in their importance
when compared with blocks that contain mostly foreground pixels.
Therefore, each block B; is assigned a weight 4;, which will be used
in all three steps. In this framework, the shape information is rep-
resented by the block configuration and the associated weights.
Compared with other formulations of shape priors [24,26], it is a
rather fuzzy representation of shapes. However, this is precisely
what is needed here since rapid and sometime extreme shape var-
iation is expected, the shape representation should not be rigid and
too heavily constrained so as to permit greater flexibility in antic-
ipating and handling hitherto unseen shapes.
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3.1. Detection

For each frame, the tracker first scans the entire image to locate
the target object. As with many other histogram-based trackers,
the target window W’ selected in this step is the one that has
the maximum foreground similarity measure with respect to initial
tracking window W. After scanning all possible candidate window
W in current frame, we select the window as W', which minimizes
our proposed distance function D.

W' = minD(W', W). (1)

The distance function D is constructed from local foreground histo-
grams computed from the blocks as follows. First, we transfer the
block configuration of the tracking window W;_; onto each scanned
window W', and accordingly, we can evaluate K local foreground
histograms in each of the transferred blocks. The local foreground

. B/ . . . .
histogram H," for the block B; is the intersection of the raw histo-

gram H® with the initial foreground histogram of the corresponding
block:

HY (5) = min (HY0), B} )

where b indexes the bins. The distance function is defined as the
weighted sum of the Bhattacharyya distance between the densities

HY (b) and HY (b),

, S
DWW, W) => "Jip(H, H, )
i1
where 4; is the weight associated to block B; and p is the Bhattachar-
yya distance between two densities,

.
p(H0|aHtl) =

where N is the number of bins. Since the blocks are rectangular, all
histograms can be computed by a few subtractions and additions
using integral histograms. Because of /;, D will down weight blocks
containing more background pixels, and this is desirable because it
provides some measure against background noise and clutters. Note
that comparing with most histogram-based trackers, which invari-
ably uses only one histogram intersection, the distance function D
defined in Eq. 2 actually encodes some amount of shape and spatial
information through the block configuration and their weights.

N
1- 3 VHY (b)R? )
b=1

3.2. Scaling

After detection step, we randomly vary size of the tracking win-
dow while keeping the target object at the center of these win-
dows. For each scaled window W” = scale(W’,s,s,,), we estimate

the foreground density H , = HBf

twr = H,}y» ¢ and background density
Hﬁw,, (the values of s, and s, are selected within a range, i.e.,
0.8 < sp, sw < 1.2). We select the scale of a tracking window within
which its foreground matching and background mismatching is
maximized. In other words, the adaptive window W" should min-

imize following objective function,
T S B B
W' = minoy Jip (HOI,H[;W/,> +(1- oc)(l - p(H{,, Hﬁw,,)) 3)
i1

where o« is a parameter for specifying weights of two matching
terms. We set o to 0.3 in all our experiments to put more weights
on background mismatching term for scale selection. With this
scheme, we can better determine the window that tightly encloses
the target object. Fig. 4 shows some tracking results using fixed and
adaptive scaling.

3.3. Refinement

Once the global scan produces the tracking window W’ in
which the target is located, the next step is to extract an approxi-
mate foreground region so that the shape variation can be better

B ansn S _ AL ="

Fig. 5. Blue: The block configuration from the previous frame. Green: The contour is
estimated using a fast graph-cut algorithm. Red: The blocks are repositioned using a
greedy strategy to provide a maximal coverage of the target. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Top: Tracking with fixed scale window. Bottom: Tracking using adaptive scaling window.
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Fig. 6. Top: Tracking results using only integral histogram. Middle: Tracking results using the mean-shift tracker. Bottom: Tracking results using the proposed algorithm. The
shape variation in this sequence is substantial. Notice the unsatisfactory result produced by the integral histogram tracker. The inaccurate tracking results are difficult to be
utilized by other vision applications.

Fig. 7. First and fourth rows: Tracking results using only integral histogram. Second and fifth rows: Tracking results using the mean-shift tracker. Third and sixth rows:
Tracking results using the proposed algorithm.
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Fig. 8. Top: Tracking results using only integral histogram. Middle: Tracking results using the mean-shift tracker. Bottom: Tracking results using the proposed algorithm.

Note the target undergoes large shape and scale variation.

Fig. 9. Top: Tracking results using only integral histogram. Middle: Tracking results using the mean-shift tracker. Bottom: Tracking results using the proposed algorithm.

Note the target undergoes significant shape and appearance variation.

accounted for. We apply a graph-cut segmentation algorithm to
segment out the foreground region in W'. Previous work on this
type of segmentation in the context of visual tracking (e.g.,
[24,26,32]) always define the cost function in the form

E = Eq+ pEs,

where E4 and Es are terms relating to appearance and shape, respec-
tively. However, we have found that hard coding the shape prior in
a separate term Es is more of a hindrance than help in our problem
because of the extreme shape variation as strong shape priors with-
out dynamic information often lead to unsatisfactory results. In-
stead, our solution will be to use only the appearance term E, but
incorporating shape component through the definition of fore-
ground density.

Specifically, let p denote a pixel and 2 denote the set of all pix-
els in W', Let Pg denote the background density that we estimated
in the previous frame, and P;, 1 < i < K the foreground density from
B; (by normalizing the histogram H;"). Furthermore, we will denote

Prthe foreground density obtained by normalizing the current fore-
ground histogram H{. Following [33,32], the graph-cut algorithm
will minimize the cost function

EG) = HZRp(Cp) + Z Bpg: (4)

pe? (P.g)eN:Cp#Cq

where C, : 2 — {0, 1} is a binary assignment function on 2 such
that for a given pixel p, C((p)=1 if p is a foreground pixel and 0
otherwise.? 11 is a weighting factor and .+" denotes the set of neigh-
boring pixels. We use u to 0.5 in our algorithm. We define

exp((I(p) — 1(9))*/20?)
Ip—qll

where I(p) is the intensity value at pixel p and ¢ is the kernel width.
The term Rp(Cp) is given as

Bpq

)

2 We will denote C(p) by C,.
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Fig. 10. Tracking results using the proposed algorithm. Note there is a large variation in shape, scale and appearance of the target. In addition, the target exhibits ballistic and

non-rigid motions.

Fig. 11. Tracking occluded target. Top row: Tracking result by the proposed algorithm. Bottom row: Tracking result using the mean-shift tracker. The proposed tracker can
recover the target after occlusion, while the mean-shift tracker fails.

Fig. 12. Tracking with a cluttered background. Top row: Tracking result using the proposed algorithm. Bottom row: Tracking result using the mean-shift tracker. The
proposed tracker can track the target more consistently than the mean-shift tracker.

Fig. 13. Tracking of a wildlife target using the proposed algorithm. Eight selected frames from a sequence of 100 frames are shown there.

R,(C, = 0) = —log Pe(I(p),p) polynomial complexity exists for minimizing the energy function E,
Ry(C, = 1) = —log Ps(I(p)), based on the problem of computing a minimum cut across a graph
[33]. Since we only perform the graph-cut in a (relatively) small

where P(I(p)) = P(I(p)) if p € B;, and P{I(p)) = P{I(p)) if p is not con- window, this can be done very quickly and does not substantially
tained in any block B;. Note that the shape information is now increase the computational load. Fig. 5 presents one segmentation
implicitly encoded through Pr. A fast combinatorial algorithm with result where the extracted target contour is shown in green.
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(c) Indian dancer

Fig. 14. Top rows: Tracking results of our algorithm with fixed scale. Bottom rows: Tracking results of our algorithm with adaptive scaling.

Fig. 15. Examples of ground truth windows for articulated targets.

3.4. Update

After the object contour is extracted from the segmentation re-
sult, we update the positions of the blocks B; within W', The idea is
to locally adjust these blocks so that they provide a maximal cov-
erage of the segmented foreground region. We employ a greedy
strategy to cover the entire segmented foreground by moving each
block locally using a priority based on their sizes. Note that such an

approach (i.e., local jittering) has often been adopted in object
detection and tracking algorithms for later-stage refinement and
fine-tuning. Fig. 5 shows one result of this block adjustment
(shown in red).

As the foreground definition is now known, we can compute the
foreground histogram H,’ from each block B; After that, we
recompute corresponding block weights according to following
equation
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Table 1
Location errors of our tracker, the integral histogram-based tracker [4] and the mean-shift tracker [2].
Sequence Integral histogram tracker Mean shift tracker Our proposed tracker
Max Mean Std Max Mean Std Max Mean Std
Center location errors (in pixels)
Female skater 55.2 29.7 11.8 69.2 26.9 16.1 33.1 13.1 6.8
Male skater 165.0 45.7 29.6 168.0 69.8 26.6 35.0 13.6 7.5
Indian dancer 255 12.1 5.8 49.5 254 11.6 29.8 8.4 4.8
Dancer 58.9 31.9 10.2 61.5 41.6 11.8 33.7 16.1 6.9
Table 2
Coverage errors of our tracker, the integral histogram-based tracker [4] and the mean-shift tracker [2].
Sequence Integral histogram tracker Mean shift tracker Our proposed tracker
Max Mean Std Max Mean Std Max Mean Std
Coverage errors (in %)
Female skater 79.91 61.15 9.37 100.0 63.76 16.29 63.45 48.24 9.39
Male skater 100.00 67.48 13.63 100.0 80.12 19.01 74.79 53.28 11.77
Indian dancer 66.68 50.19 6.38 89.21 61.25 13.13 58.96 46.26 5.66
Dancer 87.59 62.55 9.42 87.38 71.49 8.95 69.82 48.23 8.70
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Fig. 16. Location errors of three trackers. Top row: (Left) Male skater, (Right) Female skater, Bottom Row: (Left) Indian dancer and (Right) Dancer sequence.

_ SIH )
Zpew*c(p)

Weights /; are normalized to enforce the requirement that their

sum is one.

3.5. Discussion

Comparing with the recent work that employ discriminative
models (classifiers) for tracking (e.g., [30]), our approach is mainly
generative through the use of intensity histograms. While we as-
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Fig. 17. Coverage errors of three trackers. Top row: (Left) Male skater, (Right) Female skater, Bottom row: (Left) Indian dancer and (Right) Dancer sequence.

Table 3
Center location errors of our tracker with fixed and adaptive scaling.

Sequence Fixed scale window Adaptive scaling window
Max Mean Std Max Mean Std

Center location errors (in pixels)

Female skater 33.11 12.11 7.72 21.84 9.15 4.98

Male skater 22.64 10.28 5.27 26.73 9.48 5.56

Indian dancer 29.83 8.36 4.75 24.63 6.58 4.35

Table 4
Coverage errors of our tracker with fixed and adaptive scaling.

Sequence Fixed scale window Adaptive scaling window
Max Mean Std Max Mean Std

Coverage error (in %)

Female skater 63.49 52.44 5.89 59.72 44.95 6.07

Male skater 72.64 52.02 13.37 71.07 44.75 11.08

Indian dancer 58.95 46.26 5.66 57.29 37.29 8.41

sume that the intensity distribution stays stationary, the features
we constantly update are the block configurations and the associ-
ated weights. Online appearance updates (e.g., [30,34,35]) have
been shown to be effective for tracking rigid objects. However, as
the examples shown in these work are almost without significant

shape variation, it is difficult to see that these techniques can be
generalized immediately to handle shape updates. On the other
hand, shape variation has often been managed in visual tracking
algorithms using shape templates learned offline and the dynamics
among the templates [17,24,26,21]. It is also not clear how these
algorithms can deal with sequences containing unseen shapes or
dynamics. Instead of “hard coding” the shape prior, our algorithm
provides a soft update on shape in the form of updating the block
configuration, and the update is constrained by the appearance
model through the requirement that the foreground intensity
distribution stays roughly stationary.

Our use of adaptive block structure is easily associated with
recent work that track and detect parts of an articulated object
(e.g., [36,37]). However, our goal and motivation are quite different
in that the blocks are employed for providing a convenient struc-
ture to approximate the object’s shape and estimating intensity
histogram. Our objective is an accurate and efficient tracker, not
the precise localization of parts, which in general requires substan-
tially more processing. Nevertheless, it is interesting to investigate
the possibility of applying our technique to this type of tracking/
detection problem, and we will leave this to future work.

4. Experiments and results

The proposed algorithm has been implemented in MATLAB with
some optimization using MEX C++ subroutines. The code and data
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Fig. 18. Comparison between our fixed and adaptive scaling window based tracker. Top: Indian dancer sequence. Middle: Female skater sequence. Bottom: Male skater
sequence. Center location errors are shown in left column and right column contains coverage errors.

are available at http://www.cise.ufl.edu/smshahed/tracking.htm.
In this implementation, we use intensity histograms with 16 bins
for grayscale videos. Each video consists of 320 x 240 pixel images
recorded at 15 frames per second. The number of blocks, K, is set to
two or three. The tracker has been tested on a variety of video
sequences, and eight of the most representative sequences are re-
ported in this paper. We compare tracking results of our algorithm
with a tracker using the plain integral histogram [4] and
mean-shift tracker [2]. On a Dell 3GHz machine, our tracker runs
at 3.7 frames per second while the integral histogram tracker has
a slightly better performance at 4 frames per second.> The

3 In our MATLAB implementation, both algorithms share same MEX C++
subroutines.

additional overhead incurred in our algorithm comes from the
update of block configuration, which amounts to a small fraction
of the time spent on computing the integral histogram over the en-
tire image. However, experimental comparisons show that this
negligible overhead in run-time complexity allows our tracker to
consistently produce much more stable and satisfactory tracking
results.

In the following experiments, for initialization, we manually
outline contour of the target in the first frame, and for the experi-
ments, all trackers start with the same tracking window. The se-
quences shown below are all collected from the web. In these
sequences, the foreground targets undergo significant appearance
changes, which is mainly due to shape variation. We first present
the qualitative tracking results and then quantitative comparisons
with ground truth data.
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Fig. 19. Results using our algorithm with fixed and adaptive scaling. Top: Indian dancer sequence. Middle: Male skater sequence. Bottom: Female skater sequence. Variations

in width and height are shown in the left and the right columns, respectively.

Table 5

Errors of adaptive scale window size.
Sequence Error in width Error in height

Mean Std Mean Std

RMS error in tracking window size (in %)
Indian dancer 9.22 7.13 6.13 5.02
Male skater 8.18 6.46 20.15 13.94
Female skater 27.84 21.05 13.55 10.76

4.1. Female skater

The female skating sequence contains over 150 frames, and the
dazzling performance is accompanied by an equally dazzling pose
variation. As shown in Fig. 6, while the background is relatively
simple, the integral histogram tracker and the mean-shift tracker
are not able to locate the skater accurately, producing jittered
and unstable tracking windows. In particular, it is impossible to
utilize this unsatisfactory tracking result for other vision applica-
tions such as gait or pose recognition. However, our tracker is able
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to track the skater well and provides tracking windows that are
much more accurate and consistent. As shown in the figures, one
major reason for this improvement is that the spatial locations of
the blocks are updated correctly by our algorithm as the skater
undergoing significant changes in pose.

4.2. Male skater

The second sequence contains 435 frames with a figure skater
performing in a cluttered environment, and the tracking results
using our method and the mean-shift algorithm are shown in
Fig. 7. Our algorithm is able to accurately track the skater through-
out the whole sequence (i.e., the tracking windows are accurately
centered around the skater) as shown in Fig. 7 while the integral
histogram tracker again produces unsatisfactory results. Perhaps
more importantly, our algorithm is able to track the skater across
shots taken from two different cameras (e.g., from frame 372 to
373 and onwards), which is difficult to handle for most visual
tracking algorithms, particularly those using differential tech-
niques. The results also demonstrate the advantage of having the
capability to efficiently scan the entire image for the target as
the mean-shift tracker loses the target when the camera angle
changes (e.g., frame 372-323 and onwards).

4.3. Dancers and cartoon

The third and fourth sequences contain two stylistically differ-
ent dances. In both sequences, adverse conditions such as cluttered
backgrounds, scale changes and rapid movements have signifi-
cance presences, and the shape variations in them are even more
pronounced when compared with the two previous sequences. In
both experiments (Figs. 8 and 9), our tracker is able to track the
dancers accurately while the integral histogram and the mean-
shift tracker fail to produce consistent and accurate results.

Fig. 10 presents the tracking results using a very challenging se-
quence in which there is a large variation in shape, scale, and
appearance of the target. Furthermore, the target undergoes ballis-
tic movements. Notwithstanding these difficulties, the proposed
tracker is able to follow the target accurately using only two blocks.

In Fig. 11, we apply our tracking algorithm to a sequence in
which the target object is fully occluded at some point. In this se-
quence, two persons walk pass each other and the person being
tracked is fully occluded. As shown in Fig. 11, our tracking algo-
rithm is able to track the target correctly before and after occlusion
while the mean-shift tracker is confused by occlusion and lose the
target afterward.

We test our tracker with a sequence in which the target soccer
player appears in a cluttered and changing background. As shown
in Fig. 12, our tracker produces more stable results than the mean-
shift tracker. And finally, in Fig. 13, we apply the proposed tracker
to a wildlife sequence with natural scene as the background.

4.4. Tracking with adaptive scale

As described in Section 3.2, our tracker is able to adjust the size
of tracking window to tightly enclose the target object. In this sec-
tion, we present some results of our tracker with fixed and adap-
tive scaling. As shown in Fig. 14, our tracker with adaptive
scaling is able to better enclose the target object than the one with
fixed scaling although both are centered at the same target
locations.

4.5. Quantitative analysis

For quantitative performance evaluation of our tracker, we
manually label the ground truth by selecting the minimal window

that encloses the target in every frame. As our sequences contain
articulating targets, we do not include parts (hands, legs) in the
ground truth window when they are spread out too much. Some
of these examples are shown in Fig. 15.

We use two error metrics for quantitative evaluations. The first
one measures the deviation of the center of the tracking window
from the ground truth, whereas the second one measures the cov-
erage of the tracking window against the ground truth. Certainly
an optimal tracker is expected to have small errors in both met-
rics. Quantitative performance of our tracker, the integral histo-
gram-based tracker and the mean-shift tracker with respect to
these error measurements are summarized in Tables 1 and 2
and Fig. 16 as well as Fig. 17. We observe that our tracker outper-
forms the other two trackers by a large margin as our tracker
achieves the lowest mean errors in all sequences with small stan-
dard deviations.

We present quantitative comparisons of our trackers with
fixed and adaptive scaling. From each original sequence, we se-
lect a subsequence which contains substantial scale variation
of target for experiments. Experimental results, as summarized
in Tables 3 and 4 and Fig. 18, show that adaptive scaling im-
proves the accuracy in location in all cases and coverage in most
cases.

As the size of the target objects varies significantly in our exper-
iments, it is of great interest to further analyze whether the pro-
posed algorithm is able to adjust the tracking window size in
terms of width and height. Using ground truth data, we compute
the variation of width and height the target object and then com-
pare it with the results obtained from our tracker with adaptive
scaling. Fig. 19 shows the plots for this analysis and Table 5 sum-
marizes the errors for this experiment. Overall, our tracker with
adaptive scaling is able to adjust both the width and height of
the tracking window when the target object undergoes large vari-
ation in scale.

5. Conclusion and future work

In this paper, we have introduced an algorithm for accurate
tracking of objects undergoing significant shape variation (e.g.,
articulated objects). Under the general assumption that the fore-
ground intensity distribution is approximately stationary, we show
that it is possible to rapidly and efficiently estimate it amidst sub-
stantial shape changes using a collection of adaptively positioned
rectangular blocks. The proposed algorithm first locates the target
by scanning the entire image using the estimated foreground
intensity distribution. The refinement step that follows provides
an estimated target contour from which the blocks can be reposi-
tioned and weighted. The proposed algorithm is efficient and sim-
ple to implement. Experimental results have demonstrated that
the proposed tracking algorithm consistently provides more pre-
cise tracking result when compared with integral histogram-based
tracker [4] and mean-shift tracker [2].

We have identified several possible directions for future re-
search. Foremost among them is the search for a more efficient
algorithm for adjusting and repositioning the blocks. The current
greedy algorithm we have is not optimal but it has the virtue of
being easy to implement with good empirical results. Finally, on-
line learning of shape and appearance variations will be a challeng-
ing research problem for the future.
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