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Abstract

This paper presents an algorithm for modeling, tracking, and recognizing human faces
in video sequences within one integrated framework. Conventional video-based face recog-
nition systems have usually been embodied with two independent components: the tracking
and recognition modules. In contrast, our algorithm emphasizes an algorithmic architecture
that tightly couples these two components within a single framework. This is accomplished
through a novel appearance model which is utilized simultaneously by both modules, even
with their disparate requirements and functions. The complex nonlinear appearance mani-
fold of each registered person is partitioned into a collection of submanifolds where each
models the face appearances of the person in nearby poses. The submanifold is approxi-
mated by a low-dimensional linear subspace computed by principal component analysis
using images sampled from training video sequences. The connectivity between the subman-
ifolds is modeled as transition probabilities between pairs of submanifolds, and these are
learned directly from training video sequences. The integrated task of tracking and recog-
nition is formulated as a maximum a posteriori estimation problem. Within our frame-
work, the tracking and recognition modules are complementary to each other, and the
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capability and performance of one are enhanced by the other. Our approach contrasts
sharply with more rigid conventional approaches in which these two modules work inde-
pendently and in sequence. We report on a number of experiments and results that dem-
onstrate the robustness, effectiveness, and stability of our algorithm.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the past few decades, there has been intensive research and great strides in
designing and developing algorithms for face recognition with still images. Only until
recently has the problem of face recognition with video sequences started to attract
the attention of the research community [1-4]. This can be partly attributed to the
recent advance in computer hardware. In particular, with low cost cameras and suf-
ficiently powerful personal computers, it is now possible to inexpensively implement
a real-time face tracking system (e.g. [5,6]) with good performance. This capability is
the prerequisite for developing real-time video face recognition applications.

Compared with conventional still image face recognition, video face recognition
offers several challenges and opportunity. First, there is the “alignment” problem be-
tween the tracking and the recognition modules. A video-based face recognition sys-
tem invariably has two components, i.e., tracking and recognition modules. Since
tracking and recognition problems have been studied intensively but separately in
the past, these two modules are usually implemented independently and work in se-
quence. Without any alignment between the two modules, the images returned by the
tracker generally are not be in good agreement with the appearance model used by
the recognition module,' i.e., misaligned images. Unfortunately, virtually all appear-
ance-based recognition techniques are sensitive to misalignments. Therefore, some
mechanism should be in place to ensure that the images returned by the tracking
module can be correctly processed by the recognition module.

Second, there is the problem of modeling appearance variation of faces for both
the tracking and recognition modules. At the heart of any tracking or recognition
algorithm is an internal representation which defines the allowable variation in
appearances of the object to be tracked or recognized. Factors such as changes
of viewpoint, shape (deformations, articulations), and illumination, individually
or combined, can cause significant image variations in a dynamic environment.
(See Fig. 1). For appearance-based methods, some (if not all) of these image vari-
ations should be modeled in order to produce robust results. However, due to their
different missions, tracking and recognition modules generally place different
emphasis and requirement on their internal model or representation. For

"'In this paper, our main focus is on appearance (or image)-based recognition methods. For face
recognition, it has been argued [7,8] that feature-based techniques are generally less stable and accurate.
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Fig. 1. Other important image variations for video-based face recognition include occlusion by an external
object, expression variation and the combination of the two. For face recognition methods using still
images, identification is generally quite difficult with these images.

recognition, the model is required to accurately capture subtle differences between
the appearances of different enrolled individuals in order to correctly recognize
them. For tracking, such fine granularity in detail is unnecessary. Instead, a model
that captures common image features of human faces is preferred, and perhaps
more importantly, the model should be simple and efficient so that the tracking
module can complete its task quickly. Therefore, in developing a combined track-
ing and recognition system, our challenge is to design a model that is both accurate
and efficient.

Finally, unlike still-image recognition, video-based recognition provides the
opportunity to correctly identify individuals in frames, even though there is not
strong support for a decision solely with image content. As illustrated by the frames
in Fig. 1 in which the faces are occluded, have widely varying facial expression, or
have both events occurring, most still-image systems would likely make mistakes.
One expects that, in a real-world situation, a video sequence will be punctuated by
episodes similar to those shown in the figure. Yet, the recognition decision prior
to these episodic circumstances can be utilized to assist in determining the correct
identification. What is needed, therefore, is a principled method for integrating infor-
mation and decisions from earlier frames so that robust and stable recognition re-
sults are still possible when the conditions are more difficult.

In this paper, we propose a unified framework and appearance model that address
the aforementioned three problems. Based on this framework, we propose an algo-
rithm that can simultaneously track and recognize human faces. Our solution to the
alignment problem is to abandon the typical two-component architecture in favor of
a tightly integrated tracking/recognition algorithm, in which both the tracker and
recognizer share the same appearance model. The sharing of the model increases
the likelihood of tracker returning results that are in good alignment for the recog-
nizer. Furthermore, while the recognition module keeps a detailed appearance model
for each registered individual, at each frame, the tracker only uses a portion of the
appearance model of an individual identified by the recognizer. Therefore, the actual
appearance model used by the tracker is small but accurate, and it lessens the track-
er’s computational load considerably.

The appearance model we propose is based on the concept of the appearance
manifold [9], and the actual model is a piecewise linear approximation of the appear-
ance manifold, i.e., a collection of affine subspaces in the image space. During train-
ing, we apply a clustering algorithm to partition the training images into clusters,
and the images in each cluster usually come from neighboring poses. Principal com-
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ponent analysis (PCA [10]) can be applied to images in each cluster to yield a low-
dimensional linear subspace approximation. The connectivity among the linear sub-
spaces is represented by a transition matrix that encodes the likelihood of observing
transitions between a pair of subspaces in a video sequence. Finally, recognition re-
sults from the previous frames and information from the current frame are consid-
ered in a Bayesian framework, and a maximum likelihood estimate yields the
recognition result for the current frame. For the experiments, we have collected more
than 50 video sequences with varying degrees of difficulty, and scores of experiments
were performed to validate each aspect of our algorithm. The experiments demon-
strate that our approach does indeed improve both the tracking and recognition per-
formance, especially when compared with algorithms based on the existing
techniques.

The rest of this paper is organized as follows. We briefly summarize the most rel-
evant works in Section 2. In Section 3, we detail our probabilistic appearance model
and the online tracking and recognition algorithm. Tracking and recognition exper-
iments on a large and difficult collection of video sequences are reported in Section 4.
We conclude this paper with remarks and future work in Section 5. An early version
of our approach to video face recognition, but with a different tracking algorithm,
was presented in [11].

2. Related work

While numerous tracking and recognition algorithms have been proposed, in the
vision community, these two topics were usually studied separately. For human face
tracking, many different techniques have been proposed, such as subspace-based
methods [6,12], pixel-based tracking algorithms [13], contour-based tracking algo-
rithms [5,14,15], and global statistics of color histograms [5,16]. Likewise, there is
a rich literature on face recognition published in the last 15 years (see [17-19] for sur-
veys). However, most of these works deal exclusively with still images, and in several
cases, [20-22], algorithms for still images are generalized in a straightforward way to
perform video face recognition. In these algorithms, the still image recognition algo-
rithm is applied independently for each frame and temporal voting is used to im-
prove the identification rate. Among the few attempts aiming to address the
problem of video-based face recognition in a more systematic and unified manner,
the methods by Zhou and Chellappa [23], Krueger and Zhou [2], and Liu and Chen
[4] are the most relevant.

Zhou and Chellappa [23] proposed a generic framework to track and recognize
human faces simultaneously by adding an identity variable to the state vector in a
sequential importance sampling method. They then marginalized over all state vec-
tors to yield an estimate of the posterior probability of the identity variable. Though
this probabilistic approach aims to integrate motion and identity information over
time, it nevertheless considers only identity consistency in the temporal domain
and thus may not work well when the target is partially occluded. Furthermore, it
is not clear how one can extend this work to deal with large 3-D pose variation.
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Krueger and Zhou [2] applied an on-line version of radial basis functions to select
representative face images as exemplars from training videos, and in turn this facil-
itates tracking and recognition tasks. The state vector in this method consists of af-
fine parameters as well as an identity variable, and the state transition probability is
learned from affine transformations of exemplars within training videos in a way
similar to [24]. Since only 2-D affine transformations are considered, this model is
effective in capturing small 2-D motion but may not work well with large 3-D pose
variation or occlusion.

Though no new tracking algorithm was presented, Liu and Chen [4] proposed a
video face recognition algorithm based on a hidden Markov model (HMM). At a
high-level, their recognition algorithm closely resembles ours in several aspects
since our framework also admits a Markovian interpretation. However, our algo-
rithm admits a clear and concise geometric interpretation in terms of the appear-
ance manifolds in the image space, while their algorithm focuses on a more
probabilistic framework. The advantage of having a concise geometric interpreta-
tion is that many aspects of our algorithm can be made transparent, both concep-
tually and implementation-wise. Li et al. [25] applied piecewise linear models to
capture local motion and a transition matrix among these local models to describe
nonlinear global dynamics. They applied the learned local linear models and their
dynamic transitions to synthesize new motion video such as choreography. Our
work bears some resemblance to their method in the sense that both methods uti-
lize local linear models, something advocated in several prior works [9,26,27], and
both learn the relationships among these models [28-31]. In our work, the dynam-
ics is incorporated in a larger probabilistic framework in which the likelihood of
the local linear models are propagated through the transition matrix (i.e., utilizing
temporal information) with the aim of producing stable and robust face recogni-
tion results.

Although similarities exist between our algorithm and the works just cited
above, our work differs from theirs in two important aspects. First, none of these
works emphasize the importance of combining tracking and recognition into one
tightly coupled system. In fact, these works (except [25]) are all recognition algo-
rithms, and the important issue of how to provide well-aligned images for the rec-
ognition algorithm under difficult imaging conditions seems to have been neglected.
Our point has been that it is difficult to consistently provide good quality tracking
result when a person is undergoing significant pose changes (and other tricky fac-
tors). Consequently, an important problem for us is how to organize and unify the
two seemingly disparate processes, tracking and recognition, into one single algo-
rithmic framework so that each can improve and enhance the performance of the
other. Perhaps because of the lack of a robust and stable tracker, the experimental
results reported in these prior works seem to have focused on test videos with a
limited range of views (e.g., close to frontal). This limited pose variation can be
sufficiently modeled by just one linear subspace, thereby making the tracking
and recognition problem easier. Furthermore, the importance of modeling and uti-
lizing dynamics as well as pose transitions cannot be fully revealed from such test
videos.
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Finally, we remark that there are several algorithms that aim to extract 2-D or
3-D face structure from video sequences for recognition and animation [1,8,32—
38]. However these methods require meticulous and complicated procedures to build
2-D or 3-D models, and they do not fully exploit temporal information for
recognition.

3. Mathematical framework
3.1. Motivations

It has been shown that the set of images of an object under all viewing conditions
can be considered as a low-dimensional manifold in the image space [9]. For video
face recognition, the foremost important image variation that needs to be adequately
modeled is due to pose variation, the relative orientation between the camera and the
object, and we limit ourselves to this. Other important image variations such as
shape changes (e.g., expression variation) and partial occlusions are not directly
modeled in this work. Although such variations are likely to occur in video se-
quences, we will consider their occurrences to be episodic, and tracking and recogni-
tion under these episodic circumstances will be tackled in our framework with the aid
of a probabilistic method detailed later.

If the appearance manifold of a face is known, tracking and recognition become
straightforward. Suppose there is a set of N faces (indexed by k) that we wish to track
and recognize. Let M, denote the appearance manifold of person k, and {F}, ..., F}}
denotes a video sequence of / frames. For each frame, the tracking/recognition sys-
tem produces an estimate of the face’s location in the image and also its identity. In
this work, the location of a face in an image is specified by a rectangular region that
contains the face, and the rectangular region is represented by a set u of five param-
eters, specifying the rectangular region’s center (in image coordinates), its width and
height as well as its orientation. If f(u, F,) denotes the cropping function (f returns
the subimage 7 of F, enclosed in the rectangular region specified by u), our tracking
and recognition algorithm can be succinctly summarized by the following optimiza-
tion problem

(w, k) :argmiknd(f(u,F,),Mk), (1)

17

where d(I, M) denotes the usual L? distance between an image and manifold M,.
The pair (u}, k) is the tracking/recognition result for frame z.

The simplicity of the form of Eq. (1) disguises its complexity as well as the prac-
tical difficulty of trying to solve it directly. First, the domain of the optimization
(u, k), can be very large. Unlike [6], Eq. (1) does not provide a closed form formula
for the gradients since this almost always requires M, to have a closed form
description (e.g., algebraic equations), which is not available to us. Therefore, opti-
mization techniques for continuous objective functions are not available. One pos-
sible solution is to discretize the domain and solve the optimization problem on the
discretized domain, by drawing a large number of samples of u, and finding the
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minimum among the samples. Note that k indexes a discrete variable not a contin-
uous one; therefore, the actual number of samples is the product of the number of
samples for u and the number N of individuals to be recognized. If the number of
samples for u is large (which is usually the case), even a small N would have gen-
erated a great quantity of samples for the algorithm to process and hence invariably
limit its performance. To reduce the number of necessary samples, we minimize
each variable in Eq. (1) independently, i.e., minimize u with fixed k and vice versa:

u :argmllind(f(u7Ft),Mk;71)7 (2)

K = argmind(f(u;, F,), My). 3)

The two suboptimization problems correspond exactly to the tracking and recog-
nition problems, respectively. In Eq. (2) we are solving a tracking problem with
appearance model provided by M,, whereas Eq. (3) is a recognition problem using
the tracking result u as the input. Therefore, within this framework, the recognizer
uses the tracker’s result as input, and it updates the internal appearance model used
by the tracker through the identity variable k. The tight coupling between the track-
ing and recognition components is achieved via the shared appearance models
My, ..., My. Another difficulty of solving Eq. (1) directly is related to the definition
of the L? distance d(I, M) between an image I and a manifold M, in the image
space. By definition, d(I, M}) = d(I,x") with x* is a point on M, having minimal
L? distance to I (See Fig. 2). Even if an analytic description of M, were available,
finding x* is generally not an easy problem. In our case M, is, at best, modeled by
a modest number of images sampled from it; therefore, M, is available to us only
through a very coarse and sparse representation with many “gaps” in which we have
inadequate or incomplete information. The main focus of our work is to provide an
effective definition for d(I, M}) that works for a coarse representation of M.

3.2. Probabilistic face recognition

Probabilistically, we can modify Eq. (3) slightly by defining the conditional prob-
ability p(k|I) (given image I, the likelihood that it originated from person k) as

Fig. 2. Appearance manifold. A complex and nonlinear manifold My can be approximated as the union of
several simpler submanifolds; here, each submanifold C*' is represented by a PCA plane.
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1 —1
pl0ln) = exp (3 0,10 ). @
where A is a normalization term, and for a given cropped image 1,
k= argml?xp(k|l). (5)

To implement this scheme, one must be able to estimate the projected point
x* € My, and then the image to model distance, d(I, M}), can be computed for a gi-
ven cropped region [ from F, and for each M,. However, such distances can be com-
puted accurately only if M} is known exactly. In our case, M is usually unknown
and can only be approximated with samples. We provide a probabilistic framework
for estimating x* and d(x*,I). Note that if we define the conditional probability
Py, (x|I) to be the probability that among points on M, x" has the smallest L? dis-
tance to I, then

d(I,My) = | d(x,I)py, (x|I)dx, (6)
My
and Eq. (3) is equivalent to
Kk :argmkin/ d(x, I)pyy, (x|1)dx. (7)
My

Here, d(I, M}) can be viewed as the expected distance between an image 7 and the
appearance manifold M. If M, were fully known or well-approximated (e.g., de-
scribed by some algebraic equations), then p,, (x|/) could be treated as a J-function
at the set of points with minimal distance to /. When sufficiently many samples are
drawn from M, the expected distance d(/, M) will be a good approximation of the
true distance. The reason is that p,, (x|I) in the integrand of Eq. (6) will approach a
delta function with its “energy” concentrated on the set of points with minimal dis-
tance to 1. In our case, M) is approximated, at best, through a sparse set of samples,
and so we will model p,, (x|/) with a Gaussian distribution.

Since the appearance manifold M), is nonlinear, it is reasonable to decompose M
into a collection of m simpler disjoint submanifolds, M, = C*' U --- U C*", with C*/
denoting a submanifold in a decomposition of person k’s appearance manifold.

Each C* is assumed to be amenable to linear approximations by a low-dimen-
sional linear subspace computed through principal component analysis (i.e., a
PCA plane). We define the conditional probability p(C*|I) for 1 < i < m as the prob-
ability that C* contains a point x with minimal distance to I. With

P (1) = 0 p(CY[1)pess(x|D), we have

a. ) = | d(x,z)pMk(xu)dx:ip(ckfu) /C (. DpesxlD)dx

My i=1

= S p(Cna, ). ®

The above equation shows that the expected distance d(1, My) can be treated as
the expected distance between I and each C*'. In addition, this equation transforms
the integral to a finite summation which is feasible to compute numerically.
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Fig. 3. Difficulty of frame-based tracking/recognition: The two solid curves denote two different
appearance manifolds, M4 and Mp. It is difficult to reach a decision on the identity from frame /, ; to
frame 7, because these frames have smaller L? distance to appearance manifolds M 4 than M. However, by
looking at the sequence of images /,_¢ ... I, 1 3, it is apparent that the sequence has most likely originated
from appearance manifold Mp.

For face tracking/recognition in video sequences, we can exploit temporal coher-
ence between consecutive image frames. As shown in Fig. 3, the L? distance may
occasionally be misleading during tracking/recognition. But if we consider previous
frames in an image sequence rather than just one, then the set of closest points x™ will
trace a curve on a submanifold C*’. In our framework, this is embodied by the term
p(CY|1) in Eq. (8). In Section 3.3, we will apply Bayesian inference to incorporate
temporal information to provide a better estimate of p(C*|I) and thus d(I, M}); this
will then yield better tracking/recognition performance.

3.3. Computing p(C¥|1,): incorporating dynamics

For tracking/recognition from a video sequence, we need to estimate p(C¥|,) for
each i and k at time 7. To incorporate temporal information, p(C¥|,) should be ta-
ken as the joint conditional probability p(Cff" |1;,10,—1) where Iy, denotes the frames
from the beginning up to time ¢ — 1. We further assume /7, and /., are independent
given C¥, as well as C¥ and Iy.,_, are independent given C¥ . Using Bayes’ rule and
these assumptions, we have the following recursive formulation:

p(CHI, 1o, 1) = ap(L|C¥, To,1)p(C¥|1o.1)

ap(L|CF) > p(CICY y Tou1)p(CY i [Tos 1)

J=1

= ap(L,|CY) ZP(Cfi|CI;£1)p(Cf£1 11i-1,10.4-2)

J=1

m

= ap(L|C) S p(CHCP(CY 1. o), (9)

=1
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P(CRICK)

Fig. 4. Dynamics among the submanifolds C*. The dynamics is learned from training videos which
describes the probability of moving from one submanifold C*' to another C¥ at any time instant.

where o is a normalization term to ensure a proper probability distribution, and we
assume that the transition probability is time invariant.

The temporal dynamics of face motion is captured by the transition probability
between the manifolds, p(C¥|CY ). Namely, p(C¥|CY ) is the probability of the
observation I, being generated from C given that a previous observation 7,
was generated from the submanifold CY,. The transition probability p(C¥|C¥ )
is assumed to be independent to ¢, and it encodes the temporal coherence of hu-
man motion as one cannot move suddenly from C* to C¥ if these two subman-
ifolds are not connected or with low probability (e.g., one cannot move from the
leftmost pose to rightmost pose without going through some intermediate pose)
(see Fig. 4).

3.4. Learning manifolds and dynamics

For each person k, we collect at least one video sequence containing / consecutive
images S, = {I, ... ,I;}. We further assume that each training image is a fair sample
drawn from the appearance manifold M. There are three steps in the learning algo-
rithm. We first cluster these samples into m disjoint subsets {Sj, ...,S,,}. For each
collection Sy;, we can consider it as containing points drawn from some submanifold
C" of My, and from the images in Sy;, we construct a linear approximation to the C*/
of the true manifold M. After all the C*' have been computed, the transition prob-
abilities p (C"|CY) for i # j are estimated.

In the first step, we apply a K-means clustering algorithm to the set of images
in the video sequences. We initialize m seeds by finding m frames from the train-
ing videos with the largest L? distance to each other. This process can be easily
realized by the following greedy search procedure. First an initialized seed is se-
lected randomly, and then the remaining m — 1 seeds are iteratively selected to
each maximize the average L* distance to the seeds already selected. Then the
general K-means algorithm is used to assign images to the m clusters. As our goal
in performing clustering is to approximate the data set rather than to derive
semantically meaningful cluster centers, it is worth noting that the resulting
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clusters are no worse than twice what the optimal center would be if they could
be easily found [39].

Second, for each S;; we obtain a linear approximation of the underlying subset
C" © M, by computing a PCA plane L; of fixed dimension for the images in Sy;.
Since the PCA planes approximate the appearance manifold M;, their dimension
is the intrinsic dimension of M, and therefore the dimensions of all PCA planes L,
are taken to be the same.

Finally, the transition probability p (C*|C") is defined by counting the actual tran-
sitions between different S; observed in the image sequence

_ L

Cki Ck]
p(C"] 7]

!
Zé _1 € Sk 5(Iq S Skj)a (10)

ki g=2

where d(I, € Sy;) = 1 if I, € S;, and otherwise it is 0. The normalizing constant A;;

ensures that

ip(C’“'IC"") =1, (11)

where we set the diagonal terms, p(C¥|C"), to a small constant x. A graphical rep-
resentation of a transition matrix with m =5 learned from a training video is de-
picted in Fig. 5.

With C* and its linear approximation L, defined, we can define how p (1|C*) can
be calculated. We can compute the L? distances d; = d(I,Ly) from I to each Ly;.

aTa
3 4 5

Fig. 5. Graphical representation of a transition matrix learned from a training video. In this illustration,
the appearance manifold is approximated by five linear subspaces. The reconstructed center image of each
subspace is shown at the top row and column. The transition probability matrix is drawn by the 5x 5
block diagram. The brighter block indicates a higher transition probability. It is easy to see that the frontal
pose (pose 1) has higher probability to change to other poses; the right pose (pose 2) has almost zero
probability to change directly to the left pose (pose 3).
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We treat d,; as an estimate of the true distance from 7to C¥’ i.e., d(, Cki) =d(I,Ly;).
p1C*) is defined as

; 1 —1 .2
1164 = exp (551 (12)

with 47 = S exp(sd,).

202
3.5. Face tracking and recognition from video sequences

In this section, we outline our tracking/recognition algorithm. The more detailed
algorithm is summarized in Fig. 6. Conceptually, the tracker and recognizer compute
Egs. (2 and 3), respectively. Given the current frame F, from a video sequence and
assuming that the tracking result for the previous frame is u’ |, the tracker samples
a collection of subimages specified by different u based on a Gaussian distribution
centered at u’_|.? Eq. (13) is evaluated by the tracker (with f'as the cropping function)

u' =argmind(f(u,F,),C" ). (13)

The tracker determines a subimage /, = f(u}, F,) which has the shortest distance
to the submanifold C¥ | determined in the previous frame. Next, the recognizer uses
the subimage I, returned by the tracker to compute the distance d(1;, M}) for each
person k using Eq. (8). Note that p(C{|I,) has a temporal dependency, and it is com-
puted recursively using Eq. (9). Once all d(/,, M},) have been computed, the posterior
p(k|I,) is computed by Eq. (4), and the recognition result is decided by Eq. (7).

4. Experiments and results

In this section, we describe experimental evaluations of our tracking/recognition
algorithm. The aim for these experiments is to demonstrate that all of the new ideas
introduced in this paper (namely probabilistic modeling of temporal coherence, tran-
sition matrix, tracking with identity and local linear approximations) do enhance
and improve the performance of the combined tracking/recognition system consid-
erably. Comparisons with algorithms based on well-known existing techniques are
also presented.

4.1. Data preparation and training process

Due to the lack of any standard video database for evaluating face tracking/rec-
ognition algorithms, we collected a set of 52 video sequences of 20 different persons
for the task of testing our system. Each video sequence is recorded by a SONY EVI
D30 camera in an indoor environment at 15 frames per second, and each lasted for at

2 More sophisticated sampling techniques for non-Gaussian distributions (e.g., the CONDENSATION
algorithm [40] for incorporating dynamic changes in probability distributions) can also be applied.
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Integrated Tracking and Recognition Algorithm:

Input Parameters: (2, S)

Q = {wy, wy, wy,wn, wy}: the set of five parameters for sampling windows
on the screen.

S: the number of windows sampled for each frame.
Output: (I*,u* k*)

I*: image of the tracked face.

u*: the screen position of I*.

k*: current identity of the tracked face.
Model Parameters: (m,n, L, T, u*)

m: the number of PCA subspaces Lg1,..., Ly, that approximates the
submanifolds C*, ..., C*™ of the appearance manifold M* of person k.

n: the (common) dimension of the linear subspaces Lg;.

Ly;: i-th (affine) subspace for person k, represented by a local mean and a
set of orthonormal basis vectors.

T*: a m-by-m probability transition matrix for person k where each entry
is an estimated transition probability p(C**|C*7).

u* = (z,y,w,h,0): the location of the object in the image, represented
by a rectangular box in the image centered at (z,y) and of size (w,h)
with orientation 6.

Initialization:

The tracker is initialized either manually or by a face detector in the first
frame. Let I* be the initial cropped image from the first frame. Using I*, the
initial identity &* and the corresponding C** is determined by the minimum
L? distance between I* and each pose subspace Ljx;.

Begin

(1) Sample Windows: Draw S samples of windows {W7y,..., W, ..., Ws} in
current image frame specified by {us,...,u,,...,us} at various locations
of different orientations and sizes according to a 5-dimensional Gaussian
distribution centered at u* with diagonal covariance specified by €.

(2) Tracking: Rectify each window W, to a 19-by-19 image and rasterize
it to form a vector I, in IR*!. Compute the L? distance between each
I, and the subspace Lj.; associated with C*"* in the previous frame by
evaluating Equation 13. Choose I* with u* that gives the minimal L?
distance to Lg«; as the tracking output.

(3) Recognition: Compute the distance d(I*, M},) for each person k using
Equations 8 and 9. The identity is computed using Equation 7. Save the
corresponding results k*, C*"*. Loop back to Step 1 until the last frame.

End

Fig. 6. Summary of the proposed tracking and recognition algorithm.
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least 20 s. The resolution of each video sequence is 640 x 480. Every individual is re-
corded in at least two video sequences. Since we believe that pose variation provides
the greatest challenge to recognition, all the video sequences contain significant 2-D
(in-plane) and 3-D (out-of-plane) head rotations. In each video, the person rotates
and turns his/her head in his/her own preferred order and speed, and typically in
about 15 s, the individual is able to provide a wide range of different poses. In addi-
tion, some of these sequences contain difficult events which a real-world tracker/rec-
ognizer would likely encounter, such as partial occlusion, face partly leaving the field
of view, and large scale changes, etc. The data set and all tracking and recognition
results are available for download at http://vision.ucsd.edu/kriegman-grp/
research/vfr/.

We selected 20 video sequences, one for each individual, for training, and the
other 32 sequences are left for testing. The main part of the training procedure is
to compute the local linear approximations of each person’s appearance manifold
as well as the connectivity between these local approximations as detailed in Section
3.2. For this, a simple face tracker (a variant of the EigenTracker of [41,12]) was ap-
plied to each training sequence. The tracker returns a cropped face image for each
frame, and these cropped images are the training images used to compute the
approximation of the appearance manifold for each individual. All of the cropped
images produced by the tracker are visually inspected. This manual intervention dur-
ing the training process is inevitable and necessary because the simple EigenTracker
used here is prone to loose the target, and it needs to be re-initialized after each fail-
ure. The cropped images are down-sampled to a standard size of 19 x 19 pixels be-
cause the tracking windows from different frames are generally of different sizes.
Appendix A shows a supplementary experimental result to demonstrate that the
cropped images with the standard size of 19 x 19 pixels are effective to perform vid-
eo-based face recognition. So in these experiments, the appearance manifolds are
subsets of Rr#*!. Fig. 7 displays some of the cropped and normalized images used
as training images.

In our current implementation, the local linear approximation of each appearance
manifold contains ten 10-dimensional subspaces. Experiments shown in [11] have
demonstrated that this setting effectively captures the structure of the appearance
manifold for video-based face recognition. The cropped and normalized images from
each individual are grouped into 10 clusters using the K-means clustering algorithm
described earlier. A 10-dimensional subspace is computed from the images in each
cluster using PCA. As described in the previous section, the connectivity between dif-
ferent subspaces is modeled by a transition matrix M, where each matrix entry
0 < M; <1 models the probability that a transition occurs between subspaces in-
dexed by i and j. M;;is computed by counting the number of transitions between sub-
spaces indexed by i and j occurring in a training video sequence (as in Eq. (10)).

4.2. Tracking experiments

Here, we present qualitative and quantitative studies of the effectiveness of our
tracking algorithm.


http://vision.ucsd.edu/kriegman-grp/research/vfr/
http://vision.ucsd.edu/kriegman-grp/research/vfr/
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Fig. 7. Samples of the training videos used in the experiments. All sequences contain significant pose
variation.

4.2.1. Tracking: qualitative results

Fig. 8 displays the tracking results for five key frames from five different video se-
quences. The results demonstrate that besides significant pose variation, our tracker
is capable of delivering precise tracking results under difficult external conditions
including partial occlusion, expression variation as well as large size changes. Note
that none of these conditions is present in the training video sequences and hence,
they are not modeled by our tracking algorithm. Therefore, the (trained) tracker
might not be expected to handle these distractions well. However, the reason why
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A face partially occluded by a black folder.

Fig. 8. Qualitative tracking results for five different video sequences. Each row displays a set of five key
frames from a video sequence.

it quite accurately tracks the intended target is largely because at any instance, the
tracker uses an appearance model (linear subspaces) that represents a specific indi-
vidual identified by the recognizer.

The importance and effect of using the correct appearance model for tracking is
illustrated in Fig. 9. In this experiment, the same sequences shown in Fig. 8 are pre-
sented to the tracker, but now the incorrect appearance model is used by the tracker.
Consequently, the tracking results no longer exhibit the same degree of robustness.
Although incorrect appearance models are used, the tracker nevertheless still uses an
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Incorrect appearance manifold resulting in bad tracking results.

Fig. 9. Compared with the tracking results displayed in Fig. 8, the results here are inaccurate. By replacing
the correct appearance manifold M with a “similar” but different appearance manifold M., the results
are not robust against partial occlusion and expression variation.

appearance model that closely resembles the face in each sequence. These experi-
ments indicate that a detailed and accurate appearance model can provide a certain
degree of robustness against partial occlusion and expression changes. One possible
explanation is that the more accurate appearance model can provide better matching
for the portion of the face that is not occluded or still remains in the same expression.
For the inappropriate appearance model, this may not be possible and the tracker’s
output is usually misaligned. Comparisons with traditional subspace-based trackers
[12,6] are also illuminating. These trackers usually employ less specific appearance
models,® and they require a separate mechanism to handle partial occlusion such
as the iterative re-weighted least square method in [6] and nonlinear robust matching
in [12]. In contrast, our tracker contains no mechanism specifically for dealing with
occlusion.

Tracking results using two other trackers are shown in Fig. 10. The two-frame-
based tracker is perhaps the simplest tracker in that the tracker’s appearance model
consists of only the tracking result from the previous frame. Another tracker used for
comparison is a variant of the EigenTracker [12]is a subspace-based algorithm, and
in this respect it is technically very similar to ours. The appearance model of the
tracker is defined by one single 30-dimensional PCA subspace computed from our
training images. However, our implementation of this EigenTracker differs from

3 In a sense, our appearance model is person-specific while the general subspace-based trackers do not
use appearance models as detailed as ours.
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0.89 0.99 0.84 0.98 0.95

0.78 0.65 0.21 0.18 0.87

0.48 0.11 0.81 0.81 0.19

EigenTracking algorithm

Fig. 10. Qualitative comparison among our tracker, two-frame-based tracker, and EigenTracker. For
each frame, the tracking result is shown with a white rectangle, and the ground truth is represented by a
gray thin rectangle. Five key frames, the 22nd, 106th, 127th, 187th, and 287th, of a test sequence totaling
320 frames are displayed. The accuracy value defined by Eq. (14) is shown below each frame.

the original EigenTracker of [12] in two aspects. First, for comparison purpose, the
robust matching [12] is omitted since our tracker has no such component. Second
and less importantly, the gradient descent in [12] is replaced by the samplings of win-
dows on the screen, exactly as in our tracking algorithm. The major difference be-
tween this tracker and ours is that of a single global subspace vs. a collection of
local subspaces. As the figure shows, both trackers can still claim that they can stay
with the target. However, because the overall aim is to correctly identify the person
in the video, misaligned tracking results provided by the two trackers are quite inef-
fective for any image-based recognition algorithm.

4.2.2. Tracking: quantitative results

To quantitatively evaluate trackers, we need a measure to compare a tracking re-
sult (a rectangle) with “ground truth”. Let W' = (o],0!, of o], of) and
we = (0,0, 0f, of ,of) denote two rectangular regions in an image, where
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(o, ®)) specifies the center of the rectangle, (w,,®;) specifies its width and height,
and wy denotes the angular orientation. The similarity between these two rectangular
regions is defined as

5

SOV ) — exp (Z M) (14)

i=1 i

where the weights, a;, are used to control the sensitivity of the similarity measure.
The exponential ensures that the largest value is 1, and this occurs only when the
two rectangular regions coincide.

With the similarity between two rectangular regions defined by Eq. (14), the
accuracy of a tracking result can be defined by computing the similarity between
the rectangular region returned by the tracker and a rectangular region deemed
as the “ground truth.” To obtain the “ground truth,” we manually inspect all
images in a video sequence and select a rectangular region containing the face.
Fig. 10 displays several accuracy values computed for five frames of a video se-
quences (with 319 frames) using three different trackers, and Fig. 11 plots the accu-
racy values of the entire sequence. In the plot, the tracker is considered “lost” if
the accuracy value is smaller than 0.1. Once the tracker is declared lost, we re-ini-
tialize the tracker to the rectangular region represented by the “ground truth” and
continue the tracking process. The re-initializations are seen in the plot by the

1 T T W
0.5 -1
0 1 1 1 1 1 1
50 100 150 200 250 300
1 I I I W"N“;’W\
0.5 Bl
1| —— Two—Frame Tracker |
0 1 1 1 1 1 1
50 100 150 200 250 300
1 T T T T
0.5 &
—— EigenTracker
0 1 1 1 1 1 1
50 100 150 200 250 300

Fig. 11. Quantitative comparisons among our tracker, a two frame-based tracker, and the EigenTracking
algorithm for the test sequence shown in Fig. 10. The abscissa represents the frame number, and the
ordinate represents the accuracy defined by Eq. (14).
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vertical jumps. In these experiments, the values for oy, ... ,05 are set to 8.45, 6.39,
9.64, 10.10, 4.31, respectively. These numbers are determined as follows. We apply
our tracker to all the test video sequences. For each i, 1 < i< 5 and each frame, we
compute w! — o, where o is the “ground-truth” result and ! is our trackers’
output. Each ¢, is simply the standard deviation of w! — w¢ gathered from all
the test video sequences.

As can be seen from these plots, our tracker is almost always more accurate than
the other two trackers. The two-frame-based tracker was declared lost only once, but
in general it was less accurate than the other two competing trackers. The plot for the
two-frame-based tracker also indicates the inevitable error accumulated by the track-
er; the accuracy degrades continuously and noticeably throughout the sequence. The
EigenTracker, on the other hand, is more accurate than the two frame-based tracker
on average. The FigenTracker works well when the images lies close to the Eigen-
Subspace. However, there are certain portions of the video sequence which are
poorly modeled with the single subspace used by the EigenTracker. The result is sig-
nificant degradation in tracking accuracy for these frames, and almost invariably, it
causes the tracker to lose the target.

An alternative criterion to compare the robustness of the trackers is to count the
number of times a tracker loses the target. For the results in Fig. 11, we have used a
threshold value of 0.1 to define failure of a tracker, and certainly this value can be
varied. Fig. 12 shows a plot of the number of tracking failures for the three trackers
as the threshold is varied. This demonstrates that our tracker outperforms the other
two trackers by a significant margin.

The experimental results reported in this section have provided direct empirical
support for our claim that in a face tracking/recognition system, the two processes

100 | | —&— Proposed Tracker
—— Two-frame-based Tracker
| —— EigenTracker

Number of Tracking Loss

01 015 02 025 03 035 04 045 05
Threshold

Fig. 12. In the plot, the abscissa denotes the threshold values used to define tracking failures, and the
ordinates represents the number of failures. Once the tracker is declared lost (when the accuracy value is
smaller than the threshold value), it is re-initialized and continued. A total of 32 videos with 9866 frames
were used in this experiment.
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should not be completely independent from each other. Instead, each should enhance
the performance of the other. In our algorithm, the recognizer provides the person’s
identity for the tracker, and the tracker selects for each frame the appropriate
appearance model to use based on the recognition result. The results reported above
strongly indicate that a robust and stable tracker can be obtained based on the sim-
ple principle of integrating a tracker and a recognizer.

4.3. Recognition results

In this section, we report on three different sets of experiments to test various as-
pects of the recognition component of our algorithm. Simple video face recognition
systems can be implemented by performing face recognition at each frame indepen-
dently using existing techniques such as Eigenfaces [10] and Fisherfaces [42]. Our
algorithm differs from these frame-based algorithms through the use of a probabilis-
tic model that integrates recognition results across different frames. The first set of
experiments demonstrates that these frame-based recognition methods do not have
comparable recognition performance to ours. With the importance of using temporal
information established, the second set of experiments shows that our probabilistic
model offers considerably better robustness and stability than the usual majority vot-
ing method, one of the most popular and simplest methods for integrating recogni-
tion results across time. While the first two sets of experiments demonstrate that our
algorithm provides robust and stable recognition results for video sequences contain-
ing a single individual, the third set of experiments shows that our algorithm can also
swiftly and correctly detect a change in identity.

4.3.1. Comparisons with frame-based algorithms

Table 1 shows the results of comparing our algorithm with four frame-based rec-
ognition algorithms. The error rates are computed by taking the ratio of the number
of correctly recognized frames and the total number of frames used in the experi-
ment.* All algorithms listed in Table 1 use the same collection of training images,
and excluding our algorithm, they simply perform face recognition for each frame
using their respective methods. For our algorithm, each individual is represented
by ten 3-D local PCA subspaces, and the transition probabilities. The Ensemble
of LPCA (eLPCA for short) shares the same collection of local linear subspaces
as our method, but without using the transition probabilities. eLPCA computes
the distance between each test image and all local PCA subspaces, and it returns
the identity associated with the subspace that gives the minimal distance to the test
image. This method can be considered as using a set of local linear models to approx-
imate a global appearance manifold without defining any connectivity between these
local models.

4 A total of 32 video sequences of 20 individuals with 9866 frames were used in all the recognition
experiments. Eleven video sequences with 3186 frames contain significant partial occlusions. The other 21
video sequences with 6680 frames contain only pose and expression variations.
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Table 1
Recognition accuracy comparing frame-based methods and the proposed method
Method Accuracy (%)
Videos w/o occlusion Videos with occlusion

Comparison of recognition methods

Proposed method 98.8 97.8

Ensemble of LPCA 76.9 70.3

Eigenfaces 69.3 53.7

Fisherfaces 74.5 65.4

Nearest Neighbor 81.6 76.3

The next three methods are all standard image-based face recognition algo-
rithms. The linear projection space used by Fisherfaces [42] is set to 19 (i.e., the
number of classes minus 1). As for the Eigenfaces method [10], a global PCA sub-
space of dimension 30 is used to linearly reduce all training data. In both Fisher-
faces and Eigenfaces methods, all training images are projected to the respective
subspaces and the usual K-means clustering algorithm is applied to the projected
data to yield 40 clusters for each individual.’ For each test image, both algorithms
compute the distances between the projected test image and these cluster centers,
and the algorithms return the identity associated with the cluster centers that gives
the minimal distance. The Nearest Neighbor method (NN) does not require any
projection, and the training images are directly clustered in the image space to yield
40 clusters for each individual. The rest of the algorithm is the same as in
Eigenfaces.

The results in Table 1 demonstrate that our algorithm offers better recognition per-
formance. Furthermore, the results with the occlusion sequences illustrate the robust-
ness and stability of our algorithm. While our algorithm barely acknowledges the
challenges posed by the occlusion sequences, the recognition performance of all other
algorithms has degraded considerably. Though it may not seem to be fair to compare
with frame-based recognition algorithms, these baseline experiments suggest that
frame-based methods may not work well in an unconstrained environment where there
are large pose changes. There are essentially two important problems as we mentioned
earlier, the nonlinear nature of the appearance manifold due to significant pose varia-
tions and our inability to densely sample images from it. The comparison between eLP-
CA and the two classical linear methods (Eigenfaces and Fisherfaces) illustrate the first
point. Because eLPCA uses local linear subspaces to approximate the nonlinear
appearance manifold, it is expected to provided a more accurate approximation, espe-
cially when compared with Eigenfaces which uses only one subspace for modeling pose
variation. While eLPCA uses local linear approximations, the Nearest Neighbor di-
rectly samples points from the appearance manifold. We have used forty images for

> In our algorithm, each individual is represented by ten affine subspaces of dimension three. Each
subspace is represented by its center and three orthogonal vectors. This is equivalent to four images
(vectors), and hence each individual is represented by 40 images (vectors) in our algorithm.
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each individual in the Nearest Neighbor method. This is by no mean a dense sampling
of the appearance manifold, and therefore, there are “gaps’ in which in which the per-
son’s appearance cannot be adequately modeled. In a frame-based algorithm, these
“gaps” are problematic and they usually cause incorrect recognition. Denser sampling
would likely produce better recognition results, but at the expense of requiring longer
computation. The experimental results show that our algorithm correctly fills in these
gaps most of the time.

The conclusion we draw from the experiments is quite different from that reported
by the Face Recognition Vendor Test 2002 (FRVT 2002) [43,44], which claimed that
temporal information (i.e., videos) does not enhance nor improve face recognition
performance. In particular, there are comparisons in FRVT 2002 that show no sig-
nificant difference between video and still-image face recognitions. Since no detail of
the video face recognition algorithms used by the vendors are available to us, we do
not know if algorithms similar to ours have been tested using FRVT 2002 video data.
However, we notice that most of the images used in FRVT 2002 are well-cropped
frontal face images, and large pose variation and partial occlusion rarely appear
in test images. In our framework, the frontal pose is modeled by just one subspace.
Applying our algorithm to FRVT 2002 image data would probably result in no tran-
sition between subspaces, and hence, no temporal information being used. This indi-
cates the possibility that the conclusion concerning video face recognition presented
in [43,44] may be more data-specific instead of a more general observation.

4.3.2. The effect of transition matrix P (C*|CY)

In this set of experiments, we demonstrate that the transition matrix, p(C*|C¥), in
our algorithm does capture the image dynamics sufficiently to improve recognition
rates. Certainly, other temporal strategies for integrating recognition results across
different frames are possible. Temporal voting (or majority voting) is the most
well-known (e.g. [20,45,22]), and we augmented the eLPCA method described earlier
with a temporal voting scheme (using voting windows of size 30). The additional rec-
ognition algorithm (Temporal Voting in Table 2) is similar to our algorithm except
that our algorithm has a more sophisticated probabilistic model for integrating tem-
poral information. For the second method (Uniform Transition in Table 2), we ran
our algorithm with all the entries in the transition matrix set to a default constant.
The main difference between this algorithm and ours is that although transitions be-
tween different subspaces are summed in both algorithms, this algorithm counts all

Table 2
Recognition results using various temporal strategies
Temporal strategy Accuracy (%)
Videos w/o occlusion Videos with occlusion

Comparison of temporal strategies
Proposed method 98.8 97.8
Temporal Voting 84.2 74.4
Uniform Transition 80.1 70.2
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transitions with equal weight (same p(C"|C"), see Eq. (9)) while ours associates each
transition with different weights (likelihood p(C*|C")) learned from the training vi-
deo sequences.

The experimental results demonstrate that utilizing the transition probabilities
does improve recognition performance. Again, the results for occlusion sequences
are quite striking in that the two methods suffer from substantial performance degra-
dations at the same time our algorithm holds its own ground quite well. The compar-
ison between Temporal Voting and eLPCA is also quite illuminating. While as
expected the Temporal Voting method (being based on eLPCA) outperforms eLP-
CA, it suffers more serious performance degradation than eLPCA for the challenging
occlusion sequences.

4.3.3. Abrupt changes in identity

The previous two experiments have demonstrated the stability and robustness of
our recognition algorithm. In particular, after converging quickly to the correct iden-
tity, the algorithm almost always returns the same identity in the subsequent frames.
Because every video sequence used in the experiments contains only one individual, it
is possible that our algorithm, after the initial convergence, becomes stationary and
gets stuck with the same identity. Other works in video face recognition (e.g. [2])
have also reported similar fast initial convergence of the recognition result. One pos-
sible way to investigate this issue is to re-initiate the recognizer every time after the
convergence has been reached and stabilized such as in [2]. Since there is no such
mechanism in our algorithm, we need to demonstrate that the stability of our algo-
rithm is not the consequence of the algorithm’s fixation on one particular individual.
To this aim, we show that our algorithm can swiftly and correctly detect changes in
identity when the situation demands.

For this experiment, we created 500 image sequences by concatenating two con-
secutive segments from two video sequences of different individuals, who were se-
lected at random. Since these unnatural image sequences are usually difficult for
the tracker to render correct results, instead we concatenate sequences of cropped
images that we gathered in the tracking experiment. The first part of each sequence
contains 100 consecutive frames from one individual and the second part contains 50
frames from another individual. The objective of the experiment is to allow our rec-
ognizer to stabilize its recognition result during the first 100 frames and then to
examine its response to a sudden and abrupt change in identity. Our algorithm is
tested on all 500 image sequences and for each sequence, we record the number of
frames needed for the recognizer to correctly identify the individual in the 101th
frame. Fig. 13 displays a histogram of the experiment results.

For the 500 sequences, our algorithm requires, on average, 3.5 frames to recover
the correct identity, with standard deviation of 4.8 frames and median of 2 frames.
Surprisingly, the recognizer can immediately detect the change in about 20% of the
sequences, and for more than 90% of the sequences, it takes fewer than ten frames
for our recognizer to recover the correct identity. Depending on the video’s frame
rate, this roughly corresponds to one third of a second, which is acceptable for many
applications. For the Temporal Voting method (with window size 30), it takes, on
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Fig. 13. A histogram of the experiment results. The abscissa denotes the number of frames needed for our
algorithm to switch to the correct identity. The ordinate axis denotes the number of image sequences. 500
image sequences were used in the experiment.

average, 15 frames for the algorithm to correctly detect the change. Both our method
and the Temporal Voting method integrate recognition results over time; therefore,
lags in their correct responses to identity change are expected. On the other hand, the
single-frame based algorithm can usually detect the change immediately because pre-
vious recognition results have no influence on the present recognition process. In this
experiment, the eLPCA method almost always correctly identifies the change after
only one frame. However, as we mentioned before, eLPCA method does not give
comparable recognition performance to our method, and for the 500 image se-
quences, the overall recognition rate for our method and for eLPCA are 93.41
and 78.92%, respectively (compare with Table 1). Overall, our algorithm achieves
superior recognition performance with a small lag in response time in the event of
an identity change.

5. Conclusion and future work

We have presented a novel framework for face recognition and tracking in video
sequences that tightly couples tracking and recognition components. In this new
framework, both the tracking and recognition components share the same appear-
ance model to minimize the misalignment between the tracker’s output and the rec-
ognizer’s input. The appearance of each face is modeled by a collection of linear
subspaces in the image space. Specifically, each PCA subspace approximates a col-
lection of training images with similar appearances. Conceptually, the collection of
subspaces constitutes a piecewise linear approximation of the object’s appearance
manifold [9]. The connectivity of the appearance manifold is represented in our
framework by a matrix of transition probabilities between pairs of subspaces. The
transition matrix is learned directly from the training video sequences by observing
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the actual transitions between different pose states. We have also proposed a Bayes-
ian inference framework to integrate recognition results computed independently at
each frame to yield a final robust recognition decision. The experimental results have
demonstrated that our novel framework is capable of providing robust and stable
results for video face recognition.

We have collected video sequences that are challenging for both tracking and
recognition. The video sequences used in this paper all contain significant 2-D
and 3-D rotations as well as many other challenging real-world “disturbances,”
such as partial occlusion and expression variation. However, illumination variation
is an important class of image variation that is not modeled by our algorithm.
Though our algorithm handles large pose and expression variations well, it is nev-
ertheless sensitive to large illumination changes. Presently, histogram equalization
is used to deal with serious illumination changes. However, a more attractive alter-
native may be to incorporate the idea of the illumination cone [46] directly into
our framework in order to model image variation under illumination changes.
Numerous subspace-based face recognition methods [47,8,48] have demonstrated
their robustness against significant illumination variation. Therefore, an interesting
direction for future research is to formulate a new and more inclusive subspace-
based framework under which both pose and illumination variations can be
handled.
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Appendix A. Recognition performance vs. resolution of cropped images

In this appendix, we present a quantitative study of the impact on face recogni-
tion of down-sampling the tracking window to different resolutions. In this exper-
iment, we down-sampled the tracking windows in the training videos to the given
resolution, and constructed the proposed representation using clustering and PCA.
Tracking and recognition then proceed as in Section 3.5. The resolutions vary by a
factor of 1.3. Fig. 14 displays the recognition result of our proposed algorithm
and the standard Eigenfaces method. Except for the resolution of the down-
sampled cropped images, all of the parameter settings are the same as presented
in Section 4.

The results show that the recognition rate is flat for both recognition algorithms
when the down-sampled image size ranges from 19-by-19 to 42-by-42, and the per-
formance drops dramatically when the image size becomes smaller than 16-by-16 for
our method. For Eigenfaces method, the performance is again flat but for all reso-
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Fig. 14. In the plot, the abscissa denotes the down-sampled size of the cropped face windows, and the
ordinates represents the the recognition rate. A total of 20 videos with 6076 frames were used in this
experiment.

lutions. Therefore, for the computational efficiency, we choose 19-by-19 as the down-
sampling size of the cropped face images for all the experiments reported in the Sec-
tion 4.
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