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Abstract
In this paper, we propose a robust visual tracking method by L0-regularized prior in a

particle filter framework. In contrast to existing methods, the proposed method employs
L0 norm to regularize the linear coefficients of incrementally updated linear basis. The
sparsity constraint enables the tracker to effectively handle difficult challenges, such as
occlusion or image corruption. To achieve realtime processing, we propose a fast and
efficient numerical algorithm for solving the proposed L0-regularized model. Although
it is an NP-hard problem, the proposed accelerated proximal gradient (APG) approach
is guaranteed to converge to a solution quickly. Extensive experimental results on chal-
lenging video sequences demonstrate that the proposed method achieves state-of-the-art
results both in accuracy and speed.

1 Introduction
Visual tracking is a highly researched topic in the computer vision community since it has
been widely applied in visual surveillance, driver assistant system, and many others. Al-
though much progress has been made in the past decades, designing a practical visual track-
ing system is still a challenging problem due to numerous challenges in real world. For
example, pose variation, shape deformation, varying illumination, camera motion, and oc-
clusions may increase the difficulty for visual tracking algorithms.

Recently, sparse representation and compressed sensing techniques [7] have been suc-
cessfully applied to visual tracking [17, 19, 20]. In this case, the tracker represents each
target candidate as a sparse linear combination of dictionary templates that can be dynam-
ically updated to maintain an up-to-date target appearance model. This representation has
been shown to be robust against partial occlusions, which leads to improved tracking perfor-
mance. However, heavy computational overhead in L1 minimization hampers the tracking
speed. Very recent efforts have been made to improve this method in terms of both speed
and accuracy by using APG algorithm [4] or modeling the similarity between different can-
didates [32]. The works in [24, 25] point out that the aforementioned methods do not exploit
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(a) (b) (c)

Figure 1: The influence of sparse coefficients in visual tracking. (a) In the first frame, the
target is specified with the red rectangle. (b) The tracking results in frame #189 show that the
proposed algorithm (the red rectangle) handles occlusion better than LSST [24] (the green
rectangle). (c) Using the cropped windows of the frame #189, the estimated coefficients by
the proposed algorithm are sparser than those by LSST.

rich and redundant image properties which can be captured compactly with subspace repre-
sentations. Thus, they propose combining the strength of subspace learning [22] and sparse
representation for modeling object appearance. In their work the object templates used in
in [4, 19] are replaced with the orthogonal basis vectors (e.g., PCA basis), and the coeffi-
cients for an image are obtained by least square (LS) method. However, we empirically find
that such linear combination of the orthogonal basis vectors sometimes include redundant
parts (e.g., background portions), which will interfere with the accuracy of object represen-
tation. Figure 1 demonstrates this observation. As shown in Figure 1 (c), one can see that
the coefficient of [24] is actually not sparse and the target object is not tracked well. In
comparison, the results with sparsity coefficient perform better.

Based on the above observation, we in this paper address this problem by proposing a
tracking method based on an L0 regularized object representation. The estimation of the L0
regularized parameters can be efficiently conducted by the proposed APG algorithm.

Contributions: The contributions of this work are threefold. (1) We propose an L0 regu-
larized representation of the target appearance for visual tracking. Compared to the state-
of-the-art algorithms, the proposed method achieves more reliable tracking results. (2) We
theoretically show that the use of L0 regularizer to represent an object has advantages over
L1 or L2 regularizer when the dictionary is orthogonal. (3) Although the L0 norm related
minimization is an NP-hard problem, we show that the proposed model can be efficiently
estimated by the proposed APG method. This makes our tracking method computationally
attractive in general and comparable in speed with the methods in [24, 25] and the acceler-
ated L1 tracker [4].

2 Related Work
In past decades, there have been extensive literatures on object tracking. Comprehensive re-
views can be found in [27, 29]. In this paper, we only briefly review the most relevant algo-
rithms. Visual tracking algorithms can be roughly categorized into two kinds: discriminative
and generative tracking. Discriminative tracking methods (e.g., [2, 3, 8, 9, 10, 14, 18, 30])
use a binary classifier in solving the tracking problem. The classifier distinguishes the tar-
get from background and the region with highest classification score is considered as the
target. Generative methods (e.g., [1, 5, 6, 11, 13, 21, 22, 28]) employ a generative appear-
ance model to represent the target’s appearance. The tracking is achieved by searching the
location which is most similar to the learned appearance model.
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Recently, sparse representation has been successfully applied to visual tracking. Mei
and Ling [19] assume that a target candidate can be represented as a sparse linear combi-
nation of object templates and trivial templates. Liu et al. [17] integrate group sparsity and
high dimensional features to improve the robustness of tracking algorithm. Li et al. [15] use
dimensionality reduction and a customized orthogonal matching pursuit algorithm to accel-
erate [19]. Mei et al. [20] propose a robust L1 tracker with minimum error bound and occlu-
sion detection. In [4], a faster numerical solver of [19] is proposed, and its extended version
for handling multi-task is proposed in [32]. Considering the superiority of [22] and [4], the
works in [24, 25] combine PCA basis [22] and sparse representation [19] schemes for object
tracking. Zhang et al. [31] propose low-rank sparse learning method for robust tracking.

Our method is inspired by the sparse representation method [19] and subspace based
tracking [22, 24]. We use an orthogonal dictionary to replace the object templates used
in [19]. To improve accuracy of object representation and computational efficiency, we pro-
pose an L0 regularized method together with an efficient solver for the object tracking.

3 Visual Tracking via L0 Representation
In this section we propose a new model for target appearance using L0 regularization on
the coefficients and a fast numerical algorithm for solving the proposed model using APG
approach [16, 23]. The visual tracker using the proposed appearance model and particle filter
can run in realtime. We also show that the L0 regularization is very effective in handling
outlier pixels such as in occluded regions.

3.1 L0 Regularized Object Representation
We assume that the target region y ∈ Rd×1 can be represented by an image subspace with
corruption,

y = Dααα + e, (1)

where the columns of D ∈Rd×n are orthogonal basis vectors of the subspace, ααα is the sparse
coefficient vector, and e represents additive errors modeled by a Laplacian noise. Our goal
is to remove redundant features while preserving the useful parts in the subspace. Thus, we
propose an L0 regularized prior to select useful features, which is defined as

min
ααα,e

1
2
‖y−Dααα− e‖2

2 +λ‖e‖1 + γ‖ααα‖0, (2)

where D>D = I, ‖ · ‖0 denotes the L0 norm which counts the number of non-zero elements,
‖ · ‖2 and ‖ · ‖1 denote L2 and L1 norms, respectively, γ and λ are regularization parameters,
and I is an identity matrix. The term ‖e‖1 is used to reject outliers (e.g., occlusions), while
‖α‖0 is used to select the useful features. We note that if we set γ = 0, (2) is reduced to [24].
The difference from [24] will be detailed in Sec. 3.4.

3.2 Fast Numerical Algorithm for Solving (2)

Solving (2) is an NP-hard problem because it involves a discrete counting metric. We adopt
a special optimization strategy based on the APG approach [16], which ensures each step
can be easily solved. The numerical algorithm for solving (2) is summarized in Algorithm 1.
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Algorithm 1 Fast numerical algorithm for solving (2)
(i) Set initial guesses ααα0 = ααα−1 = 0, e0 = e−1 = 0, and t0 = t−1 = 1.
For k = 0,1, ..., iterate until convergence

zα
k+1 := αααk +

tk−1−1
tk

(αααk−αααk−1),

ze
k+1 := ek +

tk−1−1
tk

(ek− ek−1),

αααk+1 := argminααα γ‖ααα‖0 +
L
2

∥∥∥ααα− zα
k+1 +

∇ααα F(zα
k+1,z

e
k+1)

L

∥∥∥2

2
,

ek+1 := argmine λ‖e‖1 +
L
2

∥∥∥e− ze
k+1 +

∇eF(zα
k+1,z

e
k+1)

L

∥∥∥2

2
,

tk+1 :=
1+
√

1+4t2
k

2 ,

(3)

where ∇ααα F(ααα,e) = D>(Dααα + e− y), ∇eF(ααα,e) = e− (y−Dααα), and L is a Lipschitz
constant.

In Algorithm 1, we need to solve

ααα
∗
k+1 = argmin

ααα
γ‖ααα‖0 +

L
2

∥∥∥∥ ααα− zα
k+1 +

∇ααα F(zα
k+1,z

e
k+1)

L

∥∥∥∥2

2
(4)

and

e∗k+1 = argmin
e

λ‖e‖1 +
L
2

∥∥∥∥ e− ze
k+1 +

∇eF(zα
k+1,z

e
k+1)

L

∥∥∥∥2

2
. (5)

According to proof of Theorem 3.1 (detailed in Appendix), it is easy to show that the
solutions of (4) and (5) can be obtained by

ααα
∗
k+1 = H2γ/L

(
zα

k+1−
∇ααα F(zα

k+1,z
e
k+1)

L

)
(6)

and

e∗k+1 = Sλ/L

(
ze

k+1−
∇eF(zα

k+1,z
e
k+1)

L

)
, (7)

where Sθ (x) = sign(x)max(|x|−θ ,0), and Hθ (x) is a hard thresholding operator, which is
defined as Hθ (x) = x; if x2 > θ and 0 otherwise.

Due to the orthogonality of D, Algorithm 1 converges fast, and its computation cost does
not increase compared to the solver of L1 regularized model.

3.3 Visual Tracking based on the Particle Filter
Most visual tracking methods are based on the particle filter framework. In this paper, we
also employ a particle filter to track the target object. The particle filter provides an estimate
of posterior distribution of random variables related to Markov chain. Given a set of observed
images Yl = {y1,y2, ...,yl} at the l-th frame, the target state variable xl which consists of the
six parameters of the affine transformation can be estimated by the maximal approximate
posterior (MAP) probability

x∗l = argmax
xl

p(xl |y1:l). (8)



J. PAN, J. LIM, Z. SU, AND M.-H. YANG: L0-REGULARIZED TRACKING 5

Based on the Bayes theorem, the posterior distribution can be obtained by

p(xl |y1:l) =
p(yl |xl)p(xl |y1:l−1)

p(yl |y1:l−1)
, (9)

where p(yl |xl) is the observation likelihood which reflects the similarity between an ob-
served image patch and the object class. p(xl |y1:l−1) is defined as

p(xl |y1:l−1) =
∫

p(xl |xl−1)p(xl−1|y1:l−1)dxl−1, (10)

where p(xl |xl−1) is the state transition distribution. In this paper, we set p(xl |xl−1) =
N(xl ;xl−1,Σ), where Σ is a diagonal covariance matrix whose elements are the variances
of the affine parameters. The observation likelihood p(yl |xl) is set to be as

p(yl |xl) = exp(−τE(ααα∗,e∗)), (11)

where E(ααα,e) = 1
2‖y−Dααα− e‖2

2 +λ‖e‖1, ααα∗ and e∗ are the optimal solution of (2), and τ

is a constant.
The model update process is very important in visual tracking. Since the error term e can

be used to identify some outliers (e.g., Laplacian noise, illumination), we adopt the strategy
proposed by [24] to update the appearance model using the incremental PCA with mean
update [22] as follows,

yi =

{
yi, ei = 0,
µi, otherwise, (12)

where yi, ei, and µi are the i-th elements of y, e, and µ , respectively, µ is the mean vector
computed by [22].

3.4 Analysis on the Effectiveness of L0 Representation
It is known that the L0 norm is the optimal metric that is able to describe the intrinsic essence
of sparse coding [7]. The benefit of the L0 norm regularized prior is that it is able to reduce
the redundant features while keeping the most important part, thereby facilitating the track-
ing result. In this section, we provide detailed analysis why we use the L0 norm in the object
representation.

When there are no errors (e.g., occlusion) in the observation y, i.e., e≈ 0, then (2) reduces
to

min
ααα

1
2
‖y−Dααα‖2

2 + γ‖ααα‖0, where D>D = I. (13)

In general we can think of Lp regularized error metric,

min
ααα

1
2
‖y−Dααα‖2

2 + γ‖ααα‖p
p, where D>D = I, (14)

and the solutions for different p are given in the following theorem.

Theorem 3.1 Assume that D ∈ Rd×d and D>D = I. The solution of (14) when p is 0 is
given by

ααα = H2γ(D>y), (15)
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Reconstruction results

Candidates
Figure 2: Coefficients and reconstruction results by using LS method, L2 and L0 norm under
the same dictionary D, respectively. The coefficients by using L0 norm are more sparse than
those by L2 norm and LS method, and the reconstruction result and the best candidate are
also better. The rectangles in the last image represent MAP states for particle filers.

when p is 1, the solution is

ααα = Sγ(D>y), (16)

and when p is 2, the solution becomes

ααα =
D>y

1+2γ
. (17)

The proof can be found in Appendix. Based on Theorem 3.1, we have the following corol-
lary.

Corollary 3.1 We assume D contains all possible basis vectors. Let u∗ denote the non-zero
elements of D>y. If we set γ = 1

2 mini{|u∗i |2}, the solution of (13) can exactly recover the
data y.

Corollary 3.1 illustrates that the reconstruction error ‖y−Dααα‖2
2 by L0 norm is zero,

whereas the reconstruction error ‖y−Dααα‖2
2 by L1 or L2 norm may not be zero according to

the solution of (16) or (17).
Theorem 3.1 and Corollary 3.1 demonstrate the properties of L2, L1, and L0 regularized

methods in theory. We also use the proposed Algorithm 1 to verify their properties in prac-
tice. Figure 2 shows the tracking results by using LS method [24] (i.e., γ = 0 in (2)), L0
and L2 norm under the same dictionary D, respectively. We note that using L0 regularized
method is able to find the good candidate when there exists occlusion, then facilitating the
tracking results.

4 Experiments
The proposed method is implemented with MATLAB. We empirically set λ = 0.2, γ =
0.024, τ = 20, and the Lipschitz constant L = 6. Before solving (2), all the candidates y
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are centralized. Considering the efficiency, each target image observation patch is resized to
32×32 pixels, the dictionary D is taken 16 eigenvectors of PCA, 600 particles are adopted,
and the model is incrementally updated every 5 frames. The MATLAB code, datasets, and
supplementary materials are available at http://faculty.ucmerced.edu/mhyang.

To demonstrate the effectiveness of the proposed method, we use nineteen challeng-
ing image sequences which contain different challenging situations (e.g., severe occlusion,
illumination, fast motion, etc.) and compare our method with eight state-of-the-art meth-
ods: IVT [22], VTD [13], APG-L1 [4], MTT [32], SCM [33], ASLA [12], SP [25], and
LSST [24]. For fair comparison, we use the source codes provided by the authors and run
them with adjusted parameters for the best performance.

4.1 Quantitative Evaluation
We use two metrics to evaluate the proposed algorithm with other state-of-the-art methods.
The first metric is the center location error measured with manually labeled ground truth
data. The second one is the overlap rate, i.e., score = area(RT

⋂
RG)

area(RT
⋃

RG)
, where RT is the tracking

bounding box and RG is the ground truth bounding box. The larger average scores mean
more accurate results. Table 1 shows the average center location errors in pixels where a
smaller average error means a more accurate result. Table 2 shows the average overlap rates.
In these two tables, the standard deviation is also employed to further describe the accuracy
of each tracker. As can be seen from these two tables, the most sequences generated by our
method have lower average error and higher overlap rate values.

Data IVT VTD APG-L1 MTT SCM ASLA SP LSST Ours

Animal 16.4±46.1 10.7±17.2 11.2±74.1 17.3±136.3 10.1±11.9 7.1± 8.7 15.7±18.2 10.1±15.1 7.0±12.4
Car4 3.2±1.4 55.3±* 160.7±* 27.7±305.5 22.2±89.1 3.7±2.0 3.0±1.7 2.9±6.1 2.8±1.5

Car11 2.2±1.3 27.1±* 21.9±* 1.7±0.9 1.7±0.6 1.7±0.8 1.6±0.9 1.6±0.9 1.5±0.8
Caviar1 18.6±468.7 2.7±4.0 20.0±208.5 54.1±* 0.9±0.2 1.5±5.4 4.3±2.3 1.4±1.4 1.2±1.3
Caviar2 8.6±35.4 4.7±4.7 39.4±965.3 3.02±4.1 2.3±1.4 2.0±1.0 2.2±1.7 2.3±4.0 1.6±0.7
Caviar3 65.0±* 55.5±739.2 17.2±205.6 66.3±* 1.8±1.5 5.0±58.4 66.8±* 3.1±6.0 2.3± 2.5

DavidOutdoor 5.6±20.7 61.2±* 222.9±* 112.2±* 78.9±* 103.6±* 5.8±12.3 6.4±28.7 5.3±11.2
Face 12.3±7.7 190.14±* 91.7±* 99.7±* 13.8±60.8 179.1±* 24.1±* 12.3±9.0 11.3±6.9

Occlusion1 10.3±61.8 11.1±54.7 9.9±56.8 14.1±44.7 3.4± 6.8 143.7±* 4.7±13.0 5.3±16.5 5.2±10.1
Occlusion2 4.4±32.9 8.8±78.5 8.5±63.0 7.6±39.0 7.8±36.0 6.9±47.9 4.0±5.7 3.1±6.0 2.9±3.9

Jumping 5.9±6.5 63.0±616.7 4.5±3.8 6.3±10.7 3.9±7.4 5.3±28.0 5.0±14.8 4.8±4.9 3.9±3.5
Singer1 8.5±8.1 4.1±11.9 4.6±4.7 21.5±108.8 3.2±3.2 6.3±6.8 4.8±5.2 3.5±4.4 2.9±3.4

Owl 150.9±* 143.2±* 4.9±8.5 16.8±107.8 16.9±447.2 134.0±* 47.4±* 6.2±10.7 5.9±17.6
Boy 47.8±* 7.3±22.5 10.6±455.4 5.9±44.9 2.5±2.8 2.8±7.7 136.5±* 122.9±* 7.6±259.0

Football 7.0±18.5 5.3±24.4 38.2±* 7.5±29.9 14.1±436.0 6.1±12.3 6.6±60.1 7.6±55.7 7.3±35.1
Lemming 16.9±193.1 86.9±* 185.8±* 90.8±* 78.5±* 152.9±* 9.1±73.9 81.6±* 13.6±171.5

Dog1 3.3±14.3 15.7±736.3 3.0±7.1 3.5±6.1 7.8±41.0 4.1±12.30 4.6±16.0 6.5±62.8 4.4±14.7
Fish 6.3±4.6 7.2±17.0 6.5±11.6 4.0±2.9 8.1±110.2 3.5±1.6 2.9±1.4 3.3±2.5 3.1±3.3

Mhyang 2.9±1.7 5.6±6.9 2.6±4.2 2.1±3.0 2.5±9.9 2.1±4.9 1.4±0.8 2.0±1.3 2.3±2.0

Table 1: Average center location error (in pixels). The best results are shown in bold font.
The “*" denotes the value of standard deviation is larger than 1,000.

4.2 Qualitative Evaluation
We choose some examples from the test sequences to illustrate the effectiveness of the pro-
posed method. Figure 3 shows the visualization results.

Fast Motion: Fast motion of the target object usually leads to motion blur which increases
the difficulty for tracking. Figure 3 (a-c) show the sequences Jumping, Face, and Owl with
fast motion. In Figure 3(a), the captured images are blurred seriously. Our method tracks
the target faithfully throughout the three images while the IVT [22], VTD [13], MTT [32],
SCM [33], ASLA [12], SP [25], LSST [24] trackers fail to track the target due to severe blur.
We note that the LSST tracker [24] performs better in sequences Face and Owl. However,
the linear coefficients of incrementally updated linear basis of this method is obtained by the
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Data IVT VTD APG-L1 MTT SCM ASLA SP LSST Ours

Animal 0.49±0.01 0.65±0.01 0.61±0.02 0.50±0.02 0.60±0.01 0.65± 0.01 0.50±0.01 0.58±0.01 0.66±0.01
Car4 0.92±0.00 0.45±0.12 0.24±0.11 0.51±0.04 0.52±0.03 0.90 ±0.00 0.92±0.00 0.92±0.00 0.92±0.00

Car11 0.81±0.00 0.43±0.13 0.52±0.09 0.83±0.01 0.80±0.01 0.84±0.01 0.83±0.01 0.84±0.01 0.84±0.00
Caviar1 0.25±0.14 0.85±0.01 0.32±0.18 0.29±0.18 0.90±0.00 0.89±0.01 0.73±0.00 0.89± 0.00 0.90±0.00
Caviar2 0.45±0.07 0.67±0.03 0.32±0.16 0.70±0.01 0.81±0.00 0.84±0.00 0.71±0.00 0.80±0.00 0.77±0.00
Caviar3 0.14±0.10 0.17±0.09 0.40±0.16 0.14±0.10 0.88±0.00 0.75±0.08 0.17±0.07 0.85±0.01 0.86±0.01

DavidOutdoor 0.73±0.02 0.44±0.13 0.12±0.07 0.24±0.13 0.32±0.13 0.29±0.15 0.77±0.01 0.76±0.01 0.78±0.01
Face 0.75±0.00 0.05±0.02 0.20±0.09 0.26±0.14 0.74±0.01 0.14±0.09 0.68±0.04 0.76±0.00 0.77±0.00

Occlusion1 0.84±0.01 0.77±0.02 0.76±0.03 0.82±0.01 0.93±0.00 0.24±0.17 0.91±0.00 0.91±0.01 0.90±0.00
Occlusion2 0.61±0.01 0.72±0.03 0.58±0.01 0.74±0.02 0.75±0.02 0.72±0.02 0.84±0.00 0.86±0.01 0.86±0.00

Jumping 0.62±0.02 0.08±0.06 0.67±0.01 0.64±0.02 0.72±0.01 0.68±0.02 0.69±0.02 0.65±0.01 0.65±0.01
Singer1 0.66±0.02 0.79±0.01 0.70±0.01 0.39±0.06 0.87±0.00 0.77±0.01 0.82±0.01 0.80±0.00 0.80±0.01

Owl 0.22±0.13 0.07±0.02 0.82±0.01 0.60±0.04 0.66±0.06 0.24±0.12 0.48±0.17 0.81±0.01 0.82±0.01
Boy 0.33±0.14 0.64±0.03 0.66±0.07 0.61±0.03 0.80±0.01 0.79±0.01 0.30±0.15 0.31±0.17 0.73±0.07

Football 0.71±0.02 0.74±0.02 0.55±0.14 0.71±0.03 0.67±0.11 0.75±0.02 0.75±0.02 0.69±0.03 0.73±0.03
Lemming 0.38±0.08 0.35±0.10 0.13±0.08 0.28±0.12 0.39±0.12 0.22±0.10 0.76±0.02 0.22±0.13 0.65±0.03

Dog1 0.73±0.03 0.61±0.08 0.70±0.04 0.70±0.04 0.69±0.02 0.75±0.02 0.72±0.05 0.71±0.04 0.75±0.02
Fish 0.79±0.00 0.75±0.01 0.80±0.01 0.83±0.00 0.79±0.03 0.86±0.00 0.86±0.00 0.85±0.00 0.85±0.00

Mhyang 0.87±0.00 0.78±0.01 0.85±0.01 0.81±0.00 0.89±0.01 0.88±0.01 0.84±0.00 0.82±0.00 0.83±0.00

Table 2: Average overlap rate. The best results are shown in bold fonts.

LS method, which may contain redundant features and interfere the reconstruction results
(see Figure 2). Thus, it is not able to capture the accurate candidate.

Occlusion: Occlusion is one of the crucial problem in visual tracking. Figure 3(d), (e), (f),
(k), and (l) show several examples with severe occlusion. The IVT method does not con-
sider the occlusion in object representation and this method is less effective for the sequence
with large occlusion. Both LSST and the proposed method consider the occlusion in object
representation, where the occluded part is handled by ‖e‖1. Thus, these two methods per-
form well when a sequence contains occlusion. However, the proposed method further use
L0-regularized term to reduce the redundant features. The results are better than those of
LSST.

Illumination Change: The sequences shown in Figure 3(g) and (h) contain large illumina-
tion changes. Because our method adopts (12) to update the appearance model using the
incremental PCA, it is able to deal with the illumination changes.

Background Clutter: Figure 3(i) and (j) show the tracking results in the Car11 and Animal
sequences with complex background. Moreover, the Car11 sequence contains illumination
changes and the Animal sequence also contains abrupt motion. As the proposed model is
able to reduce the redundant features and takes occlusion into account, the tracking results
are comparable with the state-of-the-art methods presented in Figure 3(i) and (j).

4.3 Running Time Comparison
Running time is also an important issue in tracking algorithms. Because our tracking method
is based on the particle filter framework and sparse representation, we compare the proposed
method with the state-of-the-art algorithms using similar approaches [4, 24]. For fair com-
parison, we use the same template size. Table 3 shows the comparison result. The running
time1 comparison results show that our method is much efficient and comparable to [24].

Template size APG-L1 LSST Ours
32×32 (pixels) ∼ 0.98 ∼ 3.16 ∼ 2.30

Table 3: Comparison of running speed (frames per second)

1All algorithms are tested on an Intel Xeon 2.53GHz machine with 12GB memory using a MATLAB imple-
mentation.
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(a) Sequence Jumping with fast motion. (b) Sequence Face with fast motion.

(c) Sequence Owl with fast motion.

(d) Sequences Caviar1, Caviar2, Caviar3 with severe occlusion.

(e) Sequences Occlusion2 with severe occlusion.

(f) Sequences DavidOutdoor with severe occlusion.

(g) Sequences Car4 with illumination changes. (h) Sequences Singer1 with illumination changes.

(i) Sequences Car11 with background clutter. (j) Sequences Animal with background clutter.

(k) Sequences Lemming with occlusion.

(l) Sequences Football with occlusion.

Figure 3: Sample tracking results of evaluated algorithms on several challenging image
sequences. (best viewed on high-resolution display)
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5 Conclusion
In this paper, we propose an L0 sparse representation method for robust visual tracking. We
provide some analysis about L0 regularized representation when the dictionary is orthogonal
and show that it has better ability to represent an object than L1 or L2 regularized representa-
tion. Moreover, we also develop a fast and efficient algorithm to solve the proposed model.
Extensive experiments verify the superiority of our method over state-of-the-art methods,
both qualitatively and quantitatively. Given the elegant properties of the L0 norm, we plan
to apply it to other vision problems, such as dictionary learning and sparsity based face
recognition [26].

Appendix: Proof of Theorem 3.1
Because D>D = I, we have ‖y−Dααα‖2

2 = ‖D>(y−Dααα)‖2
2. Thus, (13) is equivalent to the

following minimization problem:

min
ααα

1
2
‖D>y−ααα‖2

2 + γ‖ααα‖0. (18)

Note that each element of ααα is independent each other. Then, (18) can be solved with respect
to each element αi. Note that the solution of one dimensional L0 regularized problem (18) is

αi = H2γ((D>y)i). (19)

Similarly, the solution of one dimensional L1 regularized problem can be obtained by shrink-
age formula.
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