
YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION 1

Learning Hierarchical Image Representation
with Sparsity, Saliency and Locality
Jimei Yang
jyang44@ucmerced.edu

Ming-Hsuan Yang
mhyang@ucmerced.edu

University of California, Merced
California, USA

Abstract
This paper presents a deep learning model of building up hierarchical image repre-

sentation. Each layer of hierarchy consists of three components: sparse coding, saliency
pooling and local grouping. With sparse coding we identify distinctive coefficients for
representing raw features of each lower layer; saliency pooling helps suppress noise and
enhance translation invariance of sparse representation; we group locally pooled sparse
codes to form more complex representations. Instead of using hand-crafted descriptors,
our model learns an effective image representation directly from images in a unsuper-
vised data-driven manner. We evaluate our algorithm with several benchmark databases
of object recognition and analyze the contributions of different components. Experi-
mental results show that our algorithm performs favorably against the state-of-the-art
methods.

1 Introduction
In this paper, we present a deep learning model for hierarchical image representation in
which we build the hierarchy by stacking up the base models layer by layer. In each layer,
the base model receives the features of the lower layer as input and produces a more invariant
and complex representation. The bottom layer receives raw images as input and the top
layer produces an image representation that can be used for high-level vision tasks. In this
paper, we focus on category-level object recognition and our base model consists of three
components: sparse coding, saliency pooling and local grouping.

Sparse coding It is well known that natural images can be sparsely represented by a set of
localized, oriented filters [16]. By imposing `1 norm regularization on representation coeffi-
cients, sparse coding can be solved efficiently [10]. Recent progress in computer vision has
demonstrated that sparse coding is an effective tool for representing visual data on different
levels, e.g. image denoising [3] and image classification [25]. We use sparse coding in our
base model to learn a set of atom or basis signals from the lower layer so that raw features
fed to the current layer can be well quantified. At each layer, we need to encode a large set
of raw features in the image domain, and thus the sparse coding is the main computational
bottleneck of our model. We develop a parallel implementation of `1 norm sparse coding
by a coordinate descent algorithm. This implementation allows us to encode raw features of
the entire image domain simultaneously and significantly improve the computational perfor-
mance of our model.
c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Olshausen and Field} 1997

Citation
Citation
{Lee, Battle, Raina, and Ng} 2006

Citation
Citation
{Elad and Aharon} 2006

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

2 YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION

Saliency pooling The sparse codes (i.e., encoded raw features) are generally computed with
an over-complete dictionary of atom signals. As a result of using the over-complete dic-
tionary, independent sparse codes are favored and inevitably the sparse representation is
more sensitive to variation (e.g., slight translation or rotation) and noise. To alleviate this,
pooling functions are often used to characterize the statistics of sparse codes within certain
local image region. Among several pooling functions (e.g., average, energy and max) in the
literature, max pooling has been shown to perform well in several tasks. For image represen-
tation, we observe that irrelevant parts of the image (background, non-target objects) may
have large sparse coefficients. Consequently, such sparse representations may encode more
non-essential visual information. We propose a saliency-weighted max pooling function
to address this problem. Visual saliency [7] models the attentional mechanism of biologi-
cal vision. The most distinctive features are identified within certain the image region by
measuring the saliency based on the principles of center-surround contrast and information
maximization. Therefore, visual saliency will bias the pooling function toward the image
regions where the targets are likely to appear. By using the bottom-up saliency to guide
pooling, in general better sparse representations focusing on the foreground objects can be
obtained.

Local grouping Grouping has been studied extensively in computer vision for extracting
mid-level visual information from pixels or features [13] [22]. Local grouping is a key
component for our base model. By grouping the pooled sparse codes in local neighborhood,
the base model can produce increasingly complex representation for the use of the upper
layer in the sense of bridging the semantic gap between successive layers. In this paper, we
use the sub-window based grouping for simplicity. We first concatenate the pooled sparse
codes in the square grids (e.g. 3×3,4×4) to form a vector. As the dimension of this vector is
high, we use PCA (Principle Component Analysis) to reduce the dimension while preserving
the representation ability for local grouping.

In this paper, we exploit the basic properties of image data: sparsity, saliency and local-
ity in the base model and organize them in hierarchical fashion to form a deep representa-
tion architecture. We refer the proposed model as HSSL (Hierarchical model with Sparsity,
Saliency and Locality) model and Figure 1 illustrates the architecture and processes.

Figure 1: Illustration of the HSSL model. The shadowed components denote the learning
process. At layer 0, a standard preprocessing is applied to reduce noise (e.g., whitening and
normalization). From layer 1 and onward, the base model at layer i is repeatedly built upon
layer i−1. The output of the layer n is fed into classifiers for vision tasks.

Instead of using hand-crafted descriptors (SIFT, HoG, Gabor, LBP), the proposed HSSL
model learns effective representation directly from images in a unsupervised data-driven

Citation
Citation
{Itti, Koch, and Niebur} 1998

Citation
Citation
{Marr} 1982

Citation
Citation
{Shi and Malik} 1997

YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION 3

manner. The proposed model requires minimum expert knowledge for specific tasks or la-
borious labeling process. Therefore, it can be easily applied to vision tasks with different
sensor data such as infrared and depth images where descriptive features cannot be easily
crafted.

2 Related Work
The proposed HSSL model is developed with the deep learning framework [5] in which
feature hierarchy is constructed directly from data by layer-wise progressive training. Each
layer defines a base model consisting of a set of functions mapping from input to output.
The crux of this architecture is to learn the base model that can be applied repeatedly across
multiple layers. Each layer generates latent representation that is not directly related to the
final tasks, so the mapping functions need to be well constrained. One class of deep learn-
ing algorithms [19][8] define a pair of encoder and decoder functions as the base model in
which the input is mapped to the output and vice versa. By using this encoder and decoder
pairs, variations of the generated representation can be constrained by reconstruction error.
Another line of deep learning uses restricted Boltzmann machines (RBM) [5][11] as the base
model. Each RBM learns a generative model so that encoder and decoder functions can be
derived by marginalization. However, training generative models is still a challenging task.
Our model employs a feedforward mapping of sparse decomposition. In this sense, our work
bears some resemblance to the deconvolutional network algorithm [26]. The base model of
the deconvolutional networks decomposes input raw features of entire image domain into
a linear combination of sparse code maps convolved with learned filters. The deconvolu-
tional networks produce smooth sparse code maps at the expense of complex deconvolution
computation. Our model performs sparse decomposition of input raw features independently
using learned atom signals. Furthermore, sparse coding is followed by saliency pooling and
local grouping, which equips our base model with nonlinear mapping from input raw features
to latent representations.

In addition, our HSSL model shares a similar framework with a family of biologically-
inspired hierarchical models [20] [21] [14] [17] for object recognition. These models are
constructed by alternating between convolutional filtering and max pooling, which mimic
the simple-complex cell model of Hubel and Wiesel [6]. Instead of validating the proposed
model with neural evidence, we aim to integrate learning techniques in order to develop
effective image representations for various vision tasks.

We note that some techniques used in our base model are similar to those of [25] but at
its core the approach and goals are different. In [25], Yang et al. extract well established
SIFT [12] descriptors as image representation. Sparse coding and max pooling are utilized
in a spatial pyramid matching structure to generalize the bag-of-words model for object
categorization. However, our HSSL model learns deep representations by layer-wise training
instead of using task-specific descriptors, e.g. SIFT for object categorization, HoG for human
detection and Gabor for face recognition, to name a few. Thus, it can be easily applied to
different vision tasks and data without designing features first.

3 Base Model
The base model defines a nonlinear mapping from the lower layer to the next latent layer
within a restricted domain. We denote Ω` as the working domain of layer `. Let x`−1

i be a
feature vector of layer `−1 and X`−1 = {x`−1

i }i∈Ω` be the feature set in the working domain

Citation
Citation
{Hinton and Osindero} 2006

Citation
Citation
{Ranzato, Huang, Boureau, and LeCun} 2007

Citation
Citation
{Jarrett, Kavukcuoglu, Ranzato, and LeCun} 2009

Citation
Citation
{Hinton and Osindero} 2006

Citation
Citation
{Lee, Grosse, Ranganath, and Ng} 2009

Citation
Citation
{Zeiler, Krishnan, Taylor, and Fergus} 2010

Citation
Citation
{Riesenhuber and Poggio} 1999

Citation
Citation
{Serre, Wolf, Bileschi, Riesenhuber, and Poggio} 2007

Citation
Citation
{Mutch and Lowe} 2008

Citation
Citation
{Pinto, Cox, and Dicarlo} 2008

Citation
Citation
{Hubel and Wiesel} 1962

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Lowe} 2004

4 YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION

Ω` of layer `. The nonlinear mapping function is defined as

x` = f (X`−1),‖x`‖ ≤ 1. (1)

The function f maps a set of feature vectors from a lower layer to a single feature vector
in the current layer. As a result, the first layer extracts features from small local patches
and the last layer extracts a single feature of the entire image domain. Formally, we have
Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωn = E, where E denotes the entire image domain. For example, the x0

i
denotes a patch extracted from the image at the site i ∈ Ω1 and x1 is the feature of first
layer extracted from a set of image patches defined in Ω1. The base model consists of three
component functions: sparse coding s, salient pooling p and local grouping g. Thus, the
nonlinear function f is composed of a chain: f = g◦ p◦ s.

3.1 Sparse Coding
Given a set of d-dimensional atom signals B = [b1,b2, ...,bk],∈ Rd×k, the sparse coding of
an input signal x ∈ Rd can be found by solving an `1-norm minimization problem,

s(x,B) = argmin
s

1
2
‖x−Bs‖2 + γ‖s‖1, (2)

where ‖ ·‖1 denotes the `1-norm. In this paper, we instead solve the elastic net problem [27]
to improve the stability by integrating the additional `2-norm regularization,

s(x,B) = argmin
s

1
2
‖x−Bs‖2 + γ‖s‖1 +

λ

2
‖s‖2

2. (3)

We reformulate the problem in Eqn. 3 in a quadratic form,

s(x,B) = argmin
s

1
2

s>As− s>h+ γ‖s‖1, (4)

where A = B>B+λ I (I is identity matrix) and h = B>x. The objective function in Eqn. 4
is non-differential. Classic constrained quadratic programming algorithms such as interior
point method do not scale well to high dimensionality [24]. Coordinate descent algorithms
decompose the original problem into subproblems and the solution can be found by sequen-
tially updating each coordinate by fixing the others:

s∗j =

 0 if |µ j−a js j|< γ

(−µ j +a js j + γ)/a j if µ j−a js j > γ

(−µ j +a js j− γ)/a j if µ j−a js j <−γ

, (5)

where µ = As− h and a j = A j j. The computational complexity turns out to be O(kt),
where t is the number of iterations. We need compute sparse coding across the whole image
domain in each layer. Assume that there are nl feature vectors in the lth layer so that the
total computational complexity is O(ktnl). To alleviate this main computational burden,
we adapt the algorithm to parallel computing so that it can run on GPUs. we develop a
coordinate descent method in a way similar to [18]. We compute s∗j in parallel with fixed
other coefficients in the last iteration so that the coordinate direction is d = s∗ − s. The
objective is reduced in the current iteration by doing the line search in the direction d,

s = s+αd, (6)

Citation
Citation
{Zou and Hastie} 2005

Citation
Citation
{Yang, Ganesh, Zhou, Sastry, and Ma} 2010

Citation
Citation
{Raina, Madhavan, and Ng} 2009

YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION 5

where α is the step length. With Eqn. 6, we can update the sparse coefficients of feature
vectors simultaneously on GPUs. Ideally, the computational complexity reduces to O(kt).

The dictionary B is crucial to the base model. The dictionary learning is formulated into
the optimization problem,

argmin
B,si

n

∑
i=1

(‖xi−Bsi‖2
2 + γ‖si‖1 +

λ

2
‖si‖2). (7)

The training data {xi}n
i=1 are randomly sampled from the lower layer. The problem in Eqn. 7

is not convex for the dictionary B and the sparse codes S` = {si}n
i=1 at the same time. We

update the dictionary and sparse codes iteratively,

1. solve the elastic net (Eqn. 3) for each training data by fixing the dictionary B;

2. update the dictionary B by the Lagrange dual method [10] given the sparse codes S`.

Figure 2 shows a typical dictionary learned in the first layer where the atom signals are
similar to Gabor filters. After sparse coding, the set of raw features X`−1 are mapped into a
matrix S` where each column is a sparse code si.

Figure 2: The first layer dictionary learned from the Caltech101 image database.

3.2 Saliency Pooling
Saliency pooling extracts translation invariant distinctive features from the sparse codes S`.
We first partition the working domain into a set of M disjoint pooling sub-windows based on
the grouping grid, e.g. Ω` =

⋃M
m=1 ∆m. Accordingly, the sparse codes are partitioned into M

subsets {S`
∆m
}m=1,2,...,M . We note that the partition can be operated in multiple scales. The

pooling function works on the subsets of sparse codes in the sub-window ∆m independently.
Typical pooling functions include average, max, and energy. Here we use max pooling due
to its robust statistical characteristics, manifested in recent literature [8][25]. Note that the
pooling function operates row-wise on the matrix of sparse codes S` corresponding to the
same atom signal in B. The max pooling function p is defined as

p(S`
∆) = max(|S`

∆|), (8)

where | · | denotes the point-wise absolute value. Real-world object images almost always
contain some background clutters. As pooling is a process to select features spatially with-
out notion of foreground objects, features extracted from backgrounds may have stronger
responses to the learned dictionary. Thus this operation alone may inevitably introduce noise
into the representation. To cope with this problem, we propose a pooling function weighted
by saliency map to help pooling operation focus on distinctive features and improve the rep-
resentability. Figure 3 illustrates the saliency pooling in the working domain. We compute
the saliency map w` within the working domain Ω`, and the saliency weighted max pooling
function is as follows

p(S`
∆) = max(|S`

∆| ·w`). (9)

Citation
Citation
{Lee, Battle, Raina, and Ng} 2006

Citation
Citation
{Jarrett, Kavukcuoglu, Ranzato, and LeCun} 2009

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

6 YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION

Pooling without saliency map Pooling with saliency map

Figure 3: Illustration of saliency pooling. The yellow marked regions represent the salient
parts. Although the sparse codes in the salient regions are not the maximum, the saliency
pooling helps identify those sparse codes.

For each pooling regions of working domain, we compute the pooled sparse codes z`m =
p(S`

∆m
).

3.3 Local Grouping
After saliency pooling, local invariant features z`m are grouped within working domain for
more structured representation

g : y` = [(z`)>1 ,(z
`)>2 , . . . ,(z

`)>M]>. (10)

Fig. 4 illustrates the local grouping in successive layers. As the size of working domain is in-

Figure 4: Illustration of local grouping in successive layers. The current working domain Ω`

is partitioned into 2× 2 pooling sub-windows ∆`
1,2,3,4. The working domain of the lower

layer Ω`−1 is restricted within pooling sub-windows.

creased Ω`−1 ⊂ Ω`, the grouped features can describe more complex image content. These
grouped features y` are usually high dimensional, and thus we apply a dimensionality re-
duction technique (e.g., principal component analysis) to obtain a low-dimensional compact
representation.

x` = (P`)>y`, (11)

where P` is the PCA projection matrix. This simple yet effective spatial grouping process
is a key component in our base model for constructing low-dimensional structured repre-
sentations. By applying sparse coding, saliency pooling and local grouping sequentially, we
obtain the current layer representation x` that can be fed into the next layer.

4 Learning the Hierarchy
To construct a hierarchical representation, we need to learn the base model layer by layer.
By removing the domain notations for presentation clarity, learning hierarchical image rep-

YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION 7

resentation is defined by a recursive function

xn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

(x0). (12)

In each layer, the base model function f is bounded so as the recursive function. Thus, the
variations of hierarchical representations can be well controlled. Similar to other hierarchical
models, it is not clear how the optimal number of layers can be learned easily. In this paper,
we only use two layers in our HSSL model for object recognition.

5 Experiments
In this section, we present implementation details of our HSSL model and experimental re-
sults on object recognition using several benchmark datasets, with comparisons to reported
findings in the literature. More analysis and results can be found in the supplementary mate-
rial. All the experiments are carried out on a 2.8 GHz desktop computer with MATLAB and
GPU implementation.

5.1 Caltech 101
We first validate our HSSL model with object categorization experiments using the Caltech
101 image database. All the 8,677 images of 101 object categories are used in our experi-
ments.

Whitening. The images from the Caltech101 dataset are normalized similarly to [8]. First
each input image is converted to grayscale and resized by bicubic interpolation so that the
largest dimension is 151 pixels while preserving its aspect ratio. Each image is then locally
normalized over 9× 9 neighborhoods. That is, each pixel is subtracted by the mean pixel
value in a 9×9 window centered at that pixel and divided by the standard deviation of this
window, if it is greater than the standard deviation of the whole image. Finally, each image is
zero-padded to have 143×143 pixels. Hereinafter, we will use the same whitening method
to pre-process the images.

First layer. We randomly extract 100,000 8× 8 patches from the pre-processed images
and train a dictionary with 64 atom signals. For each input image, we compute the local
sparse codes of 8× 8 patches with a sift of one pixel over the entire image. This results in
136×136 64-dimensional feature maps. We pool the sparse features within each 4×4 non-
overlapping window with max operator and generate 34×34 64-dimensional feature maps.
Note that saliency is not used to weight pooling in this layer since the working domain is
small the saliency does not influence the pooling significantly. We group the pooled features
within each 4×4 window to form the 1024-dimensional feature vectors. These features are
computed at each pixel and thus we have 31× 31 1024-dimensional feature vectors. The
feature vectors are then projected down to a 96-dimensional subspace spanned by the largest
principal components.

Second layer. In this layer, we train a dictionary of 2048 bases using a set of 100,000 features
randomly selected from the first layer. As a result, we obtain 31× 31 2048-dimensional
feature vectors. Next, we use a variant of [1] to compute saliency map of 31×31 dimensions.
The max pooling operator is performed on the saliency map within 1× 1, 2× 2 and 4× 4
sub-windows, and they are grouped into a single feature vector of 43,008 dimensions.

Citation
Citation
{Jarrett, Kavukcuoglu, Ranzato, and LeCun} 2009

Citation
Citation
{Achanta, Hemami, Estrada, and Susstrunk} 2009

8 YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION

Classification. We follow the same protocol commonly adopted in experiments with the
Caltech101 dataset. In each experiment, we use a training set of either 15 and 30 images
randomly selected from each category and test all the other images. We train linear support
vector machines (SVMs) with one-versus-all paradigm for multi-class classification using
LIBSVM [2]. Experimental results (average classification accuracy per category) are re-
ported by repeating 10 trials with different random selection of training samples.

We first compare our method with biologically-inspired [21] [14] [17] and deep learning
methods [8] [11] [26]. Using 30 training samples per class, our HSSL model outperforms the
state-of-the-art biologically inspired method by 9%, and outperforms the best deep learning
methods by 9.2%. We also compare HSSL with SIFT-based methods [9] [25]. The proposed
method outperforms the leading mehod [25] by almost 3%. The results are summarized in
Table 1. For the sensitivity analysis of algorithm parameters, please refer to the supplemen-
tary materials.

Table 1: Experimental results with Caltech 101 dataset.
Method 15 samples 30 samples

Bio-inspired
Serre [21] 42%

Mutch [14] 51.0% 56%
Pinto [17] 67%

Deep Learning

Jarrett [8] 65.5%
Lee [11] 57.7% 65.4%

Zeiler [26] 58.6±0.7% 66.9±1.1%
HSSL 68.7± 0.4% 76.1± 1.3%

SIFT-based
Lazebnik [9] 54.0% 64.6±0.8%

Yang [25] 67.0±0.45% 73.2±0.54%

5.2 Caltech 256
The Caltech 256 dataset contains 30,607 images of 256 object categories and one clutter
background. The minimum number of images in any category is 80. Compared with the
Caltech 101 dataset, it contains much more intra-class variability in terms of object size,
appearance and location. In the first layer, We train a dictionary of 64 atom signals and use
the same parameters as in the experiment of Caltech101 to perform saliency pooling and
local grouping. In the second layer, we train a large dictionary of 6144 atom signals to cope
with large variations between and within categories. Following the common setup, we test
our method with 15, 30, 45 and 60 training samples per class, respectively. As shown in
Table 2, our HSSL model consistently outperforms the SIFT-based methods.

Table 2: Experimental results with Caltech 256 dataset.

Methods 15 samples 30 samples 45 samples 60 samples
Griffin [4] 28.3% 34.1%
Yang [25] 27.8±0.51% 34.0±0.35% 37.5±0.55% 40.1±0.91%

HSSL 29.8± 0.4% 35.4± 0.4% 38.7±0.3% 41.6± 0.3%

5.3 Oxford Flowers
The Oxford Flowers dataset [15] includes 17 different categories of flowers with 80 images
for each class. These images have large scale, pose and illumination variation, and some
flowers are visually very similar. The smallest width or height of any image is 500 pixels. In

Citation
Citation
{Chang and Lin} 2001

Citation
Citation
{Serre, Wolf, Bileschi, Riesenhuber, and Poggio} 2007

Citation
Citation
{Mutch and Lowe} 2008

Citation
Citation
{Pinto, Cox, and Dicarlo} 2008

Citation
Citation
{Jarrett, Kavukcuoglu, Ranzato, and LeCun} 2009

Citation
Citation
{Lee, Grosse, Ranganath, and Ng} 2009

Citation
Citation
{Zeiler, Krishnan, Taylor, and Fergus} 2010

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Serre, Wolf, Bileschi, Riesenhuber, and Poggio} 2007

Citation
Citation
{Mutch and Lowe} 2008

Citation
Citation
{Pinto, Cox, and Dicarlo} 2008

Citation
Citation
{Jarrett, Kavukcuoglu, Ranzato, and LeCun} 2009

Citation
Citation
{Lee, Grosse, Ranganath, and Ng} 2009

Citation
Citation
{Zeiler, Krishnan, Taylor, and Fergus} 2010

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Griffin, Holub, and Perona} 2007

Citation
Citation
{Yang, Yu, Gong, and Huang} 2009

Citation
Citation
{Nilsback and Zisserman} 2006

YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION 9

our experiments, we resize the images so that have the largest dimension is 300 pixels and
zero-padding them to have canonical 300× 300 pixels. The dictionaries for the first layer
and the second layer have 64 and 2048 atom signals, respectively. Similarly, the max pooling
operator is performed on the saliency map within 1×1, 2×2, 4×4 and 8×8 sub-windows.
Table 3 presents the results using our HSSL model and two leading methods [15][23]. In
Nilsback’s work, they use 40 images per class for training, 20 images per class for validation,
and the remaining 20 images for tests. For fair evaluation, we first compare our method with
Varma’s work [23] without using the validation set. In this setting, we obtain an average
classification accuracy of 69.7%, which is better than any single feature results in his work.
Next we compare our method with Nilsback’s work [15]. Without using a validation set for
parameter selection, we add the validation set into the training set (i.e., 60 training samples
per class). Our method achieves accuracy of 76.2% which is better than Nilsback’s work with
single features (73.7%). In the reported experiments, segmentation prior are used to extract
flower regions from images [23][15], whereas we do not use this prior. Both Nilsback [15]
and Varma [23] exploit feature fusion for better results. When different types of features are
effectively combined, the classification accuracy can be further improved.

Table 3: Experimental results with Oxford Flowers dataset.
Varma [23] Ours Nilsback [15] Ours

Segmentation Yes No Yes No
Training Samples 40 40 60 (40 training + 20 validation) 60

Test Samples 20 20 20 20
Feature Color Shape Texture HSSL Color Shape Texture HSSL

Aver. Classif. Acc. 59.7 68.9 59.0 69.7 73.7% 71.8% 55.5% 76.2
±2.0% ±2.0% ±2.1% ±2.7% ±3.8%

6 Conclusions
In this paper, we present a deep learning model for hierarchical image representation in
which we build the hierarchy by stacking up the base models layer by layer. We exploit three
basic structures of visual data: sparsity, saliency and locality in our base model. We evalu-
ate the proposed HSSL model in the task of object categorization. The experimental results
show that our HSSL model is able to extract effective feature hierarchy from unlabeled im-
ages. Plus a linear SVM classifier, the learned features outperform the state-of-the-art deep
learning methods. Our model learns representation directly from the image data, without
using hand-crafted feature descriptors. In this sense, our model is more adaptive to different
vision tasks even when lack of expert knowledge.

References
[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, and Sabine Susstrunk. Frequency-

tuned salient region detection. In CVPR, 2009.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[3] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing, 15(12):3336–3745, 2006.

[4] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Technical
Report TR-2007-001, California Institute of Technology, 2007.

Citation
Citation
{Nilsback and Zisserman} 2006

Citation
Citation
{Varma and Ray} 2007

Citation
Citation
{Varma and Ray} 2007

Citation
Citation
{Nilsback and Zisserman} 2006

Citation
Citation
{Varma and Ray} 2007

Citation
Citation
{Nilsback and Zisserman} 2006

Citation
Citation
{Nilsback and Zisserman} 2006

Citation
Citation
{Varma and Ray} 2007

Citation
Citation
{Varma and Ray} 2007

Citation
Citation
{Nilsback and Zisserman} 2006

http://www.csie.ntu.edu.tw/~cjlin/libsvm

10 YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION

[5] Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep belief nets. Neural
Computation, 18:2006, 2006.

[6] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.

[7] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for
rapid scene anaysis. PAMI, 20(11):1254–1259, 1998.

[8] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In ICCV, 2009.

[9] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, 2006.

[10] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding algorithms.
In NIPS, 2006.

[11] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.

[12] David Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–110,
2004.

[13] David Marr. Vision: A Computational Investigation into the Human Representation and Process-
ing of Visual Information. W. H. Freeman and Company, 1982.

[14] Jim Mutch and David G. Lowe. Object class recognition and localization using sparse features
with limited receptive fields. IJCV, 80(1):45–57, 2008.

[15] Maria-Elena Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In
CVPR, 2006.

[16] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy em-
ployed by v1? Vision Research, 37(23):3311–3325, 1997.

[17] Nicolas Pinto, David D. Cox, and James J. Dicarlo. Why is real-world visual object recognition
hard? PLoS Computational Biology, 4(1):e27+, 2008.

[18] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised learning using
graphics processors. In ICML, 2009.

[19] Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised learning
of invariant feature hierarchies with application to object recognition. In CVPR, 2007.

[20] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cor-
tex. Nature Neuroscience, 2(11):1019–1025, 1999.

[21] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio. Robust
object recognition with cortex-like mechanisms. PAMI, 29(3):411–426, 2007.

[22] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. PAMI, 22(8):888–905,
1997.

[23] Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance trade-off. In
ICCV, 2007.

YANG, YANG: LEARNING HIERARCHICAL IMAGE REPRESENTATION 11

[24] Allen Y. Yang, Arvind Ganesh, Zihan Zhou, S. Shankar Sastry, and Yi Ma. A review of fast
l1-minimization algorithms for robust face recognition, 2010. http://arxiv.org.

[25] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching
using sparse coding for image classification. In CVPR, 2009.

[26] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolutional net-
works. In CVPR, 2010.

[27] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B, 67:301–320, 2005.

