Supplementary Material **Deep Semantic Matching with Foreground Detection and Cycle-Consistency** Anonymous ACCV 2018 submission Paper ID 632 In this supplementary document, we present additional visual examples for comparing our method with the state-of-the-art semantic matching algorithm [1]. Visual Comparisons Forward-Backward Consistency 1.1 In Fig. 1 \sim Fig. 4, we demonstrate the effectiveness of the proposed forward-backward consistency loss by visualizing the reprojection errors using the esti-mated forward and backward transformations. We uniformly sample 100 pixel coordinates in the source image, i.e., a 10×10 grid **v**, and mark them with red circles. The geometric transformation T_{AB} is learned to match the source image to the target image, while another transformation T_{BA} is derived to match it back. We then apply T_{AB} and T_{BA} in order to each of the sampled points to obtain the reprojected points **u** marked with green circles, namely, $\mathbf{u} = T_{BA}(T_{AB}(\mathbf{v})).$ (1)The yellow line links the red and green circles represents the distance (loss) between the linked points. It can be observed that introducing the proposed forward-backward consistency loss greatly reduces the reprojection errors, hence improving semantic matching.

ACCV2018 #632

ACCV2018 #632

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

5

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6 ACCV-18 submission ID 632

1.2 Image Alignment

We compare the method in [1] and the proposed method for image alignment. For each image pair (I_A, I_B) , each method estimates a geometric transformation T_{AB} which warps image I_A to \tilde{I}_A so that \tilde{I}_A and I_B are well aligned. The alignment results are displayed with the GIF files collected by an html file. Please refer to "warp.html" for the visual results.

1.3 Average Images within Object Category

Let $\mathcal{D} = \{I_i\}_{i=1}^N$ denote a set of images covering object instances of a specific category, where I_i is the i^{th} image and N is the number of images. For each source image $I_A \in \mathcal{D}$, the geometric transformation T_{BA} can be estimated for each other image $I_B \in \mathcal{D}$. We warp each I_B based on the geometric transfor-mation T_{BA} and then compute the average warped image I_{avg} by averaging all the warped images. We present the visual comparisons among three different methods: Average, Baseline [1], and Ours. For the "Average" method, we di-rectly compute the average image over all images $\{I_B\}$ without applying any geometric transformations. As can be seen in Fig. 5 and Fig. 6, the average im-ages by method "Average" do not align the source images. Compared with the competing method [1], our method can better align the given source images, and the resultant average images look sharper.

competing method [1], our method can better align the given source images, and the resultant average images look sharper.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-18 submission ID 632

360 1.4 More Results of Semantic Correspondence

We display more results of semantic matching on the PF-PASCAL dataset in Fig. 7 and Fig. 8, where our method establishes more accurate correspondences than the competing method [1].

ACCV2018 #632

ACCV2018 #632

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

450	References	450
451		451
452	1. I. Rocco, R. Arandjelović, and J. Sivic. End-to-end weakly-supervised semantic	452
453	alignment. In CVPR, 2018.	453
454		454
455		455
456		456
457		457
458		458
459		459
460		460
461		461
462		462
463		463
464		464
465		465
466		466
467		467
468		468
469		469
470		470
4/1		471
472		472
473		473
474		474
475		475
470		470
478		478
479		479
480		480
481		481
482		482
483		483
484		484
485		485
486		486
487		487
488		488
489		489
490		490
491		491
492		492
493		493
494		494