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Abstract. Establishing dense semantic correspondences between object
instances remains a challenging problem due to background clutter, sig-
nificant scale and pose differences, and large intra-class variations. In this
paper, we present an end-to-end trainable network for learning semantic
correspondences using only matching image pairs without manual key-
point correspondence annotations. To facilitate network training with
this weaker form of supervision, we 1) explicitly estimate the foreground
regions to suppress the effect of background clutter and 2) develop cycle-
consistent losses to enforce the predicted transformations across multi-
ple images to be geometrically plausible and consistent. We train the
proposed model using the PF-PASCAL dataset and evaluate the perfor-
mance on the PF-PASCAL, PF-WILLOW, and TSS datasets. Extensive
experimental results show that the proposed approach achieves favorably
performance compared to the state-of-the-art. The code and model will
be available at https://yunchunchen.github.io/WeakMatchNet/.

1 Introduction

Dense correspondence matching is an important and active research topic in
computer vision. Optical flow estimation [1,2] and stereo matching [3,4] aim to
estimate per-pixel correspondence to match across images depicting the same
scene or object instance. While correspondence estimation has been extensively
studied, there has been a growing trend to extend the idea of matching the
same objects across images to matching images covering different instances of
an object category. This progress not only attracts substantial attention but
also facilitates many real-world applications ranging from object recognition [5],
object co-segmentation [6–8], to 3D reconstruction [9]. However, due to the pres-
ence of background clutter, ambiguity induced by large intra-class variations, and
the limited scalability of obtaining large-scale datasets with manually annotated
correspondences, semantic matching remains challenging.

Conventional methods for semantic matching rely on hand-crafted descrip-
tors such as SIFT [5] or HOG [10] as well as an effective geometric regularizer.
However, these hand-crafted descriptors cannot be adapted to the given visual
domains, leading to sub-optimal performance of semantic matching. Driven by
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Fig. 1: Comparisons with the state-of-the-art semantic matching algo-
rithm [15]. Existing semantic matching methods often suffer from background
clutter during matching and may produce inconsistent matching results when
swapping the source/target image. Through integrating foreground detection
and cycle-consistent checking into semantic matching, our method produces more
accurate and consistent matching results in both directions.

the recent success of convolutional neural networks (CNNs), several learning-
based approaches have been proposed for tackling the problem of semantic
matching [11–15]. While promising results have been shown, these approaches
still suffer from the following limitations. The methods in [11–14] require a vast
amount of supervised data for training the network. Collecting a large-scale and
diverse data, however, is expensive and labor-intensive. While weakly supervised
methods such as Rocco et al . [15] have been recently proposed to relax the issue,
these approaches implicitly enforce the background features from both images
to be similar. Thus, they often suffer from the unfavorable effect of background
clutter.

In this paper, we address these challenges by performing foreground detection
and enforcing cycle consistency constraints in semantic matching. To suppress
the negative impacts caused by background clutter, we develop a foreground
detection module that allows the model to exclude background regions and fo-
cus on matching the detected foreground regions. As such, the effect of back-
ground clutter can be alleviated. To address the matching difficulties caused by
complex appearance and large intra-class variations, we focus on filtering out
correspondences with geometric inconsistency. Our key insight is that correct
correspondence should be cycle-consistent meaning that when matching a par-
ticular point from one image to the other and then performing reverse matching,
we should arrive at the same spot. To exploit this property, we introduce a cycle-
consistency loss that provides additional supervisory signals for network training.
We further extend this idea to explore transitivity consistency across multiple
images. We build upon the model by Rocco et al . [15] for a weakly-supervised
and end-to-end trainable network and evaluate the effectiveness of the proposed
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approach on three standard benchmarks. Experimental results demonstrate that
our approach improves the baseline model [15], as shown in Fig. 1, and performs
favorably against the state-of-the-art methods.

Our contributions are summarized as follows. First, we present a weakly-
supervised learning framework that integrates foreground detection into seman-
tic matching. With a module for explicit foreground detection, the proposed net-
work suppresses the unfavorable effect of background clutter. Second, our model
implicitly tackles the ambiguity induced by vast matching space by inferring
bi-directional geometric transformations during matching. With these transfor-
mations, we explicitly enforce the inferred geometric transformations to be cycle-
consistent by introducing the forward-backward consistency loss. In addition, we
explore the property of transitivity consistency and introduce the transitivity
consistency loss to further enhance the matching performance. We train our
network with the image pairs of the PF-PASCAL dataset [16]. We then evaluate
the proposed model on several standard benchmark datasets for semantic match-
ing, including the PF-PASCAL [16], PF-WILLOW [16], and TSS [7] datasets.
Extensive comparisons with existing semantic matching algorithms demonstrate
that the proposed approach achieves the state-of-the-art performance.

2 Related Work

Semantic matching has been extensively studied in the literature. Here, we review
several related topics.

Semantic correspondence. Conventional methods to semantic matching [17–
19] leverage hand-crafted descriptors such as SIFT [5] or HOG [10] along with ge-
ometric matching models. These methods find keypoint correspondences across
images through energy minimization. The SIFT Flow [5] method aligns two
images with SIFT features [5] using a similar formulation as an optical flow
algorithm. Kim et al . [20] compute dense correspondence efficiently using the
deformable spatial pyramid. Ham et al . [16] use the object proposals as the
matching primitives and leverage the HOG descriptors to establish semantic
correspondence. With the use of object proposals, the Proposal Flow method
is robust to scaling and background clutter. Taniai et al . [7] propose a hierar-
chical Markov random field model to jointly recover object co-segmentation and
dense correspondences. However, none of the aforementioned methods learns the
descriptors for semantic matching.

Semantic correspondence via deep learning. Convolutional neural net-
works have been successfully applied to semantic matching. Choy et al . [11] pro-
pose the universal correspondence network (UCN) and a correspondence con-
trastive loss for network training. The UCN method adopts a convolutional
spatial transformer for feature transformations, making their method robust
to scaling and rotations. Kim et al . [13] propose the fully convolutional self-
similarity (FCSS) descriptor and integrate the descriptor into the Proposal Flow
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framework [16] for image matching. The SCNet [12] method learns a geomet-
rically plausible model for semantic correspondence by incorporating geomet-
ric consistency constraints into its loss function. While the methods in [12, 13]
employ trainable descriptors for semantic correspondence, the feature match-
ing is learned at the object-proposal level. Consequently, these methods are not
end-to-end trainable since a fusion step is required to produce the final results.
Rocco et al . [14] present an end-to-end trainable CNN architecture based on es-
timating parametric geometric transformations. While these methods [11–14,16]
perform better than those based on hand-crafted features, the dependency of su-
pervised data (in terms of manually labeled keypoint correspondence) for train-
ing limits the scalability.

Several recent CNN-based methods [15,21,22] have developed weakly super-
vised methods for semantic correspondence. The AnchorNet [21] learns a set
of filters whose response is geometrically consistent across different object in-
stances. The AnchorNet model, however, is not end-to-end trainable due to the
use of the hand-crafted alignment model. The WarpNet [22] learns fine-grained
image matching with small-scale and pose variations via aligning objects across
images through known deformation. Inspired by the inlier scoring procedure of
RANSAC, Rocco et al . [15] propose an end-to-end trainable alignment network
which computes dense semantic correspondence while aligning two images.

Our proposed method differs from these methods [15, 21] in two aspects.
First, our approach further takes into account foreground detection. Our network
learns feature embedding to enhance inter-image foreground similarity while
alleviating the unfavorable effects caused by complex background. Second, our
model simultaneously infers bi-directional transformations. We explicitly enforce
cycle-consistent constraints on the predicted transformations, resulting in more
accurate and consistent matching results.

Cycle consistency. Exploiting cycle consistency property to regularize learn-
ing has been extensively studied. In the context of motion analysis, computing
bi-directional optical flow has been shown to be useful to reason about occlusion
for learning optical flow [23, 24] and enforcing temporal consistency [25, 26]. In
the context of image-to-image translation, enforcing cycle consistency enables
learning mapping between domains with unpaired data [27,28]. Several methods
exploit the idea of cycle consistency for semantic matching. Zhou et al . [29] tackle
the problem of matching multiple images by jointly optimizing feature match-
ing and enforcing cycle consistency. The FlowWeb [30] method learns image
alignment by establishing globally-consistent dense correspondences with cycle
consistency constraints. However, these methods [29,30] employ hand-engineered
descriptors which cannot adapt to an arbitrary object category given for match-
ing. Zhou et al . [31] establish dense correspondences by using an additional 3D
CAD model to form a cross-instance loop between synthetic data and real im-
ages. However, the cycle consistency loss in [31] requires four images at a time. In
contrast, we develop two loss functions to enforce cycle consistency and do not
need additional data to guide the training. Experimental results demonstrate
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Fig. 2: Semantic matching network. Our model is composed of two CNN
modules, including a feature extractor F for extracting features and a trans-
formation predictor G for estimating the geometric transformations between a
given image pair. We train the model with three loss functions, including the
foreground-guided matching loss Lmatching, the forward-backward consistency
loss Lcycle−consis, and the transitivity consistency loss Ltrans−consis (if given 3
input images).

that by exploiting cycle consistency constraints, the proposed method produces
consistent matching results and improves the performance.

3 Proposed Algorithm

In this section, we first provide an overview of our approach. We then describe
each loss in our objective function in detail and the implementation details.

3.1 Framework overview

Let D = {Ii}Ni=1 denote a set of images consists of instances of the same object
category, where Ii is the ith image and N is the number of images. Our goal is to
learn a CNN-based model that can estimate the keypoint correspondences be-
tween each image pair (IA, IB) in D without knowing the object class in advance.
Our formulation for semantic matching is weakly-supervised since training our
model requires only weak image-level supervision in the form of training image
pairs containing common objects. No ground truth keypoint correspondences are
used.

To accomplish this task, we present an end-to-end trainable network which is
composed of two modules: 1) the feature extractor F and 2) the transformation
predictor G. The feature extractor F extracts features for each image in a given
image pair. The transformation predictor G predicts the transformation that
warps an image so that the warped image can better align the other image.

As shown in Fig. 2, the proposed network architecture takes an image pair as
input. For a given image pair (IA, IB), we use the feature extractor F to extract
their feature maps fA and fB , respectively. We then compute correlation from
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fA to fB to generate the correlation map SAB . The other correlation map SBA
is symmetrically obtained. The transformation predictor G then estimates the
geometric transformation TAB which warps IA so that the warped image ĨA
can align IB . In the following section, we describe our objective function used
to optimize the feature extractor F and the transformation predictor G. After
optimizing the objective function, the matching between an image pair (IA, IB)
can be performed via the predicted transformation TAB or TBA.

3.2 Objective function

The overall training objective consists of three loss functions. First, the foreground-
guided matching loss Lmatching minimizes the distance between the correspond-
ing features based on the estimated geometric transformations. Unlike existing
semantic matching methods [14, 15], our model predicts foreground masks to
suppress the effect of background clutter by excluding background matching.
Second, the forward-backward consistency loss Lcycle−consis and the transitivity
consistency loss Ltrans−consis enforce the predicted transformations across mul-
tiple images to be geometrically plausible and consistent. Both losses regularize
the network training. Specifically, our training objective is

L = Lmatching + λC · Lcycle−consis + λT · Ltrans−consis, (1)

where λC and λT are hyper-parameters used to control the relative importance
of the respective loss functions. Below we outline the details of each loss function.

3.3 Foreground-guided matching loss

To reduce the effect of background clutter and enforce only foreground re-
gions to be similar, our model minimizes the foreground-guided matching loss
Lmatching. Given an image pair (IA, IB), the feature extractor F extracts their
respective feature maps fA ∈ RhA×wA×d and fB ∈ RhB×wB×d, where d is the
number of channels. We correlate fA with fB to generate the correlation map
SAB ∈ RhA×wA×hB×wB . Each element SAB(i, j, s, t) = SAB(p,q) records the
normalized inner product between the feature vectors stored at two spatial lo-
cations p = [i, j]> in fA and q = [s, t]> in fB . The other correlation map
SBA ∈ RhB×wB×hA×wA can be computed symmetrically. The correlation map
SAB is reshaped to a three-dimensional tensor with dimensions hA, wA, and
(hB×wB), i.e., SAB ∈ RhA×wA×(hB×wB). As such, the reshaped correlation map
SAB can be interpreted as a dense hA × wA grid with (hB × wB)-dimensional
local features. We apply the reshaping operation to SBA as well. With the re-
shaped SAB , we use the transformation predictor G [14] to estimate a geometric
transformation TAB which warps IA to ĨA so that ĨA aligns well to IB .

Since the correlation map SAB(p,q) records the normalized inner product
between two feature vectors located at p in fA and q in fB . Our model estimates
the foreground mask MA ∈ RhA×wA by

MA(p) = max
q

(SAB(p,q)). (2)
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Note that both the correlation maps SAB and SBA are compiled through a
rectified linear unit (ReLU) to eliminate negative matching values in advance.
Therefore, the value of the estimated foreground masks at each pixel will be
bounded between 0 and 1. Intuitively, the mask MA(p) has a low value (i.e.,
location p is likely to belong to background) if none of the feature vectors in
fB matches well with fA(p). The mask MB can be obtained following a similar
procedure.

With the estimated geometric transformation TAB , we can identify and filter
out geometrically inconsistent correspondences. Consider a correspondence with
endpoints (p ∈ PA,q ∈ PB), where PA and PB are the sets of all spatial
coordinates of fA and fB , respectively. The distance ‖TAB(p) − q‖ represents
the projection error of this correspondence with respect to transformation TAB .
Following Rocco et al . [15], we introduce a correspondence maskmA to determine
if the correspondences are geometrically consistent with transformation TAB .
Specifically, mA is of the form

mA(p,q) =

{
1, if ‖TAB(p)− q‖ ≤ ϕ,
0, otherwise.

, for p ∈ PA and q ∈ PB , (3)

where ϕ = 1 is the number of pixels.
Given the geometric transformation TAB and the correspondence mask mA,

we compute matching score of each spatial location p ∈ PA as

sA(p) =
∑

q∈PB

mA(p,q) · SAB(p,q). (4)

To suppress the effect of background clutter, we incorporate the estimated
foreground masks to focus on matching the detected foreground regions. We
define the foreground-guided matching loss Lmatching as

Lmatching(IA, IB ;F ,G) = −
( ∑

p∈PA

sA(p) ·MA(p) +
∑

q∈PB

sB(q) ·MB(q)

)
. (5)

Note that the negative sign in (5) is used in the objective function, since
maximizing the matching score corresponds to minimizing the foreground-guided
matching loss Lmatching.

3.4 Cycle consistency

For a pair of images IA and IB , the transformation predictor G estimates a
geometric transformation TAB which maps pixel coordinates from IA to IB .
However, the large capacity of the transformation predictor G often leads to a
circumstance where various transformations can warp IA to ĨA such that ĨA
aligns IB very well. This phenomenon implies that using the foreground-guided
matching loss Lmatching alone is insufficient to reliably train the transformation
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predictor G in the weakly supervised setting since no ground truth correspon-
dences are available to constrain the learning of predicting transformations. We
address this issue by simultaneously estimating TAB and TBA and enforce the
predicted transformations to be geometrically plausible and consistent across
multiple images. As such, exploiting the cycle consistency constraint greatly re-
duces the feasible space of transformations and can serve as a regularization
term in training the transformation predictor G. To this end, we develop two
loss functions where cycle-consistency checking is performed in conjunction with
the proposed method such that the model is end-to-end trainable. The developed
loss functions are described in the following.

Forward-backward consistency loss. Consider the correlation maps SAB
and SBA generated from images IA and IB . The forward consistency states that
property TBA(TAB(p)) ≈ p holds for any p ∈ PA. By the same token, the
backward consistency means TAB(TBA(q)) ≈ q for any q ∈ PB . The resultant
forward-backward consistency loss Lcycle−consis is then defined by

Lcycle−consis(IA, IB ;F ,G) =
∑

p∈PA

‖TBA(TAB(p))− p‖

+
∑

q∈PB

‖TAB(TBA(q))− q‖,
(6)

where ‖TBA(TAB(p)) − p‖ is the reprojection error between coordinate p and
the reprojected coordinate TBA(TAB(p)).

Transitivity consistency loss. We further extend the forward-backward con-
sistency between a pair of images to the transitivity consistency across multi-
ple images. Considering the case of three images IA, IB , and IC , we first es-
timate three geometric transformations TAB , TBC , and TAC . Transitivity con-
sistency in this case states that the coordinate transformation from IA to IC
should be path invariant. That is, for any coordinate p ∈ PA, the property,
TBC(TAB(p)) ≈ TAC(p), holds. We can thus introduce the transitivity consis-
tency loss Ltrans−consis as

Ltrans−consis(IA, IB , IC ;F ,G) =
∑

p∈PA

‖TBC(TAB(p))− TAC(p)‖

+
∑

q∈PB

‖TAC(TBA(p))− TBC(q)‖.
(7)

3.5 Network selection and initialization

We adopt the semantic matching network proposed by Rocco et al . [15] as our
feature extractor F due to its state-of-the-art performance for image alignment.
The network employs the ResNet-101 [32] model. The extracted features are
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those generated by layer conv4-23. For the transformation predictor G, we use
the same architecture as that in [14]. The transformation predictor G is a cascade
of two modules predicting an affine transformation and a thin plate spline (TPS)
transformation. Given an image pair, the model first estimates an affine trans-
formation with 6 degrees of freedom to obtain a rough alignment. The model
then performs a second-stage geometric estimation based on the roughly aligned
image pair to predict TPS transformation for alignment refinement. Similar to
Rocco et al . [14], we use a uniform 3 × 3 grid of control points for TPS, which
corresponds to 3 × 3 × 2 = 18 degrees of freedom. We initialize the feature ex-
tractor F and the transformation predictor G from the parameters pre-trained
in [15] and fine-tune the feature extractor F and the transformation predic-
tor G by using the proposed objective function. We note that there may exist
degenerate solutions to the foreground-guided matching loss Lmatching since no
annotated correspondences are used to guide the network training. In this work,
we build our model upon Rocco et al . [15], which is pre-trained on a large-scale
synthetic dataset. The pre-trained model provides good enough initialization for
predicting the geometric transformations, reducing the chance of falling into de-
generate solutions. In addition, the foreground-guided matching loss Lmatching

and the cycle-consistency losses work jointly. The three adopted loss terms reg-
ularize the network training and avoid degenerate solutions.

4 Experimental Results

Experiments are conducted in this section. Here, we first describe the imple-
mentation details and the experimental setting. We evaluate and compare the
proposed approach with the state-of-the-art, following analyzing the relative
contributions of individual components in the proposed model.

4.1 Implementation details

We implement our model using PyTorch. We use the training and validation
image pairs from the PF-PASCAL dataset [16]. All images are resized to the
resolution of 240 × 240. We perform data augmentation by horizontal flipping,
random cropping the input images, and swapping the order of images in the
image pair. We train our model using the ADAM optimizer [33] with an initial
learning rate of 5× 10−8. For transitivity consistency loss, the input triplets are
randomly selected within a mini-batch. We sample 10× 10 = 100 spatial coordi-
nates for computing the forward-backward consistency loss and the transitivity
consistency loss. The training process takes about 2 hours on a single NVIDIA
GeForce GTX 1080 GPU.

4.2 Evaluation metric and datasets

We conduct the evaluation on the PF-PASCAL [16], PF-WILLOW [16], and
TSS [7] benchmark datasets.
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Table 1: Per-class PCK on the PF-PASCAL dataset with τ = 0.1.
Method aero bike bird boat bottle bus car cat chair cow d.table dog horse moto person plant sheep sofa train tv mean

HOG+PF-LOM [16] 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5

UCN [11] 64.8 58.7 42.8 59.6 47.0 42.2 61.0 45.6 49.9 52.0 48.5 49.5 53.2 72.7 53.0 41.4 83.3 49.0 73.0 66.0 55.6

VGG-16+SCNet-A [12] 67.6 72.9 69.3 59.7 74.5 72.7 73.2 59.5 51.4 78.2 39.4 50.1 67.0 62.1 69.3 68.5 78.2 63.3 57.7 59.8 66.3

VGG-16+SCNet-AG [12] 83.9 81.4 70.6 62.5 60.6 81.3 81.2 59.5 53.1 81.2 62.0 58.7 65.5 73.3 51.2 58.3 60.0 69.3 61.5 80.0 69.7

VGG-16+SCNet-AG+ [12] 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2

VGG-16+CNNGeo [14] 79.5 80.9 69.9 61.1 57.8 77.1 84.4 55.5 48.1 83.3 37.0 54.1 58.2 70.7 51.4 41.4 60.0 44.3 55.3 30.0 62.6

ResNet-101+CNNGeo(S) [14] 83.0 82.2 81.1 50.0 57.8 79.9 92.8 77.5 44.7 85.4 28.1 69.8 65.4 77.1 64.0 65.2 100.0 50.8 44.3 54.4 69.5

ResNet-101+CNNGeo(W) [15] 84.7 88.9 80.9 55.6 76.6 89.5 93.9 79.6 52.0 85.4 28.1 71.8 67.0 75.1 66.3 70.5 100.0 62.1 62.3 61.1 74.8

Ours 85.6 89.6 82.1 83.3 85.9 92.5 93.9 80.2 52.2 85.4 55.2 75.2 64.0 77.9 67.2 73.8 100.0 65.3 69.3 61.1 78.0

Evaluation metric. We evaluate the performance of the proposed method on
a semantic correspondence task. To assess the performance, we adopt the per-
centage of correct keypoints (PCK) metric [34] which measures the percentage
of keypoints whose reprojection errors are below the given threshold. The re-
projection error is the Euclidean distance d(φ(p),p∗) between the locations of
the warped keypoint φ(p) and the ground truth keypoint p∗. The threshold is
defined as τ ·max(h,w) where h and w are the height and width of the annotated
object bounding box on the image, respectively.

PF-PASCAL [16]. The PF-PASCAL dataset is selected from the PASCAL
2011 keypoint annotations [35] containing 1,351 semantically related image pairs
from 20 object categories. For images of a category, they contain different ob-
ject instances of that category with similar poses but different appearances. In
addition, the presence of background clutter makes it a challenging dataset on
semantic matching. We divide the dataset into 735 pairs for training, 308 pairs
for validation, and 308 pairs for testing. Manually annotated correspondences
are provided for each image pairs. However, under the weakly supervised set-
ting, we do not use the keypoint annotations for training. The annotations are
used only for evaluation. We compute the PCK for each object category with τ
equals to 0.1.

PF-WILLOW [16]. The PF-WILLOW dataset is composed of 100 images
with 900 image pairs divided into four semantically related subsets: car, duck,
motorbike, and wine bottle. Each subset contains images with large intra-class
variations and background clutters. For each image, there are 10 keypoint an-
notations. We follow Han et al . [12] and compute the PCK at three different
thresholds with τ equals to 0.05, 0.1, and 0.15, respectively.

TSS [7]. The TSS dataset comprises 400 semantically related image pairs di-
vided into three groups, including FG3DCar, JODS, and PASCAL. FG3DCar
contains 195 image pairs of automobiles. JODS is composed of 81 image pairs
of airplanes, cars, and horses. There are 124 image pairs of trains, cars, buses,
bikes, and motorbikes form the group of PASCAL. Ground truth flows for each
image pair are provided. Following Taniai et al . [7], we compute the PCK over
foreground object by setting τ to 0.05.
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Table 2: Ablation experiments on
PF-PASCAL with τ = 0.1.

Method mean

Rocco et al. [15] 74.8
Rocco et al. [15] + Lmatching 75.5
Rocco et al. [15] + Lcycle−consis 77.4
Rocco et al. [15] + Ltrans−consis 77.6
Ours 78.0
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Fig. 3: PCK curves on the PF-
PASCAL dataset.

Fig. 4: Semantic correspondence results on the PF-PASCAL dataset.
The matched coordinates are linked with color lines.

4.3 Experimental results on the PF-PASCAL dataset

In the following, we compare the performance of the proposed method with
the state-of-the-art approaches. Note that many of the existing methods require
manually annotated correspondences while our model can be trained using only
image-level supervision.

Performance evaluation. We compare our method with the Proposal Flow [16],
the UCN [11], different versions of the SCNet [12], the CNNGeo [14] with
different feature extractors, and a weakly supervised approach proposed by
Rocco et al . [15]. Table 1 presents the experimental results for the PF-PASCAL
dataset. Our results show that the proposed approach compares favorably against
state-of-the-art methods, achieving an overall PCK of 78.0% (outperforming the
previous best method [15] by 3.2%). The advantage of incorporating foreground
detection and enforcing cycle consistency constraints can be observed by compar-
ing our method with ResNet-101+CNNGeo(W) [15] since both methods utilize
the same feature descriptor and are trained with image-level supervision only.
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15.18
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Fig. 5: Visualization of the effect of each component. Given an image
pair, existing methods often suffer from the negative impacts due to background
clutter. Integrating foreground detection into semantic matching alleviates the
unfavorable effects of background clutters. Enforcing cycle consistency improves
the matching result. Our method integrates foreground detection and exploits
cycle-consistency property in semantic matching, resulting in more accurate re-
sults. The bottom right corners display the errors, namely the average distances
between the predicted keypoints and the ground truth.

Fig. 4 presents the qualitative results of semantic correspondence on the PF-
PASCAL dataset. To further highlight the importance of each component of the
proposed method, we present an ablation study of our method.

Ablation study. To analyze the importance of each loss function, we conduct
ablation experiments on the PF-PASCAL [16] dataset. Table 2 presents the mean
PCK value of the variants of our approach evaluated on the PF-PASCAL dataset
with τ equals to 0.1. Our results show that both Lcycle−consis and Ltrans−consis
substantially improve the performance when comparing with Rocco et al . [15].
We visualize the effect of each component in Fig. 5. To demonstrate the effec-
tiveness of forward-backward consistency property, we visualize an example in
Fig. 7 where the red points indicate the key points and the green points repre-
sent the reprojected points. The length of the yellow line represents the distance
(loss) between the corresponding points. We observe that enforcing cycle con-
sistency effectively encourages the network to produce geometrically consistent
predictions. However, the performance gain of using only the foreground-guided
matching loss Lmatching is modest. We believe that the reason is due to the eval-
uation protocol of datasets considers only the matching on the foreground re-
gion. Namely, matching a background pixel in the source image to a foreground
pixel in the target image will not be penalized. To demonstrate the effect of
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Fig. 6: Effect of using the foreground-guided matching loss Lmatching.

Table 3: Results on PF-WILLOW.
Method τ = 0.05 τ = 0.1 τ = 0.15

SIFT Flow [5] 0.247 0.380 0.504
DAISY w/SF [36] 0.324 0.456 0.555
DeepC w/SF [37] 0.212 0.364 0.518
LIFT w/SF [38] 0.224 0.346 0.489
VGG w/SF [39] 0.324 0.456 0.555
FCSS w/SF [13] 0.354 0.532 0.681
LOM HOG [16] 0.284 0.568 0.682
UCN [11] 0.291 0.417 0.513
DSFM [40] - 0.680 -
SCNet-A [12] 0.390 0.725 0.873
SCNet-AG [12] 0.394 0.721 0.871
SCNet-AG+ [12] 0.386 0.704 0.853
ResNet-101+CNNGeo(S) [14] 0.448 0.777 0.899
ResNet-101+CNNGeo(W) [15] 0.477 0.812 0.917
Ours 0.491 0.819 0.922

Table 4: Results on TSS. Marker ∗ in-
dicates that the method uses extra images
from the PASCAL VOC 2007 dataset.
Method FG3DCar JODS PASCAL Avg.

HOG+PF-LOM [16] 0.786 0.653 0.531 0.657
HOG+TSS [7] 0.830 0.595 0.483 0.636
FCSS+SIFT Flow [13] 0.830 0.656 0.494 0.660
FCSS+PF-LOM [13] 0.839 0.635 0.582 0.685
HOG+OADSC [41]∗ 0.875 0.708 0.729 0.771
FCSS+DCTM [42] 0.891 0.721 0.610 0.740
VGG-16+CNNGeo [14] 0.835 0.656 0.527 0.673
ResNet-101+CNNGeo(S) [14] 0.886 0.758 0.560 0.735
ResNet-101+CNNGeo(W) [15] 0.892 0.758 0.562 0.737
Ours 0.898 0.768 0.560 0.742

foreground-guided matching loss Lmatching, we compute the percentage of cor-
rectly warped pixels (i.e., pixels in the foreground/background regions that are
correctly warped into foreground/background region) over the entire dataset. As
shown in Fig. 6, our method effectively reduces the errors in matching pixels from
foreground to background and vice versa. The improvement here is important
in real-world applications but is not reflected in the metric used in the standard
datasets. We also note that our method may not produce a clear figure-ground
separation when the background contains visually similar regions to the fore-
ground object in the other image. However, this case is also challenging for most
methods.

The ablation study shows that all of the proposed components play crucial
roles in producing accurate matching results. From Fig. 3, we observe that the
proposed method outperforms the best competitor [15] with a significant margin
at multiple thresholds.

4.4 Experimental results on the PF-WILLOW and TSS datasets

To evaluate the generalization capability, we apply the learned model trained on
the PF-PASCAL dataset to test directly on the PF-WILLOW and TSS datasets
without finetuning on these two datasets.

Results on the PF-WILLOW dataset. Table 3 presents the quantitative
results for the PF-WILLOW dataset. We compare the performance with several
recent methods [11–15] as well as conventional approaches [5,36–39] using hand-
crafted features. The results are directly taken from [12] except [14,15]. For [14]
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Source image Target image Rocco et al . [15] Ours

Fig. 7: Cycle consistency property. We present the visualization that demon-
strates the effect of forward-backward consistency loss where the red points indi-
cate the keypoints while the green points denote the reprojected points. Yellow
line represents the distance (loss) between the linked points.

and [15], we run the code provided by the authors to obtain the results. From
Table 3, we observe that our model achieves the state-of-the-art performance
with all three thresholds.

Results on the TSS dataset. We also evaluate the performance on the TSS
dataset. Table 4 presents the quantitative results. We observe that our method
achieves the state-of-the-art performance on two of the three groups of the TSS
dataset: FG3DCar and JODS. Our results are slightly worse than that in [41] in
the PASCAL group. However, the method in [41] uses additional images from
the PASCAL VOC 2007 dataset. We report their results for completeness. Under
the same experimental settings, the proposed method performs favorably against
existing approaches.

5 Conclusions

In this work, we present an effective approach to improve semantic matching. The
core technical novelty of our approach lies in the explicit modeling of a foreground
detection module to suppress the effect of background clutter and exploiting the
cycle consistency constraints so that the predicted geometric transformations
are geometrically plausible and consistent across multiple images. The network
training requires only training image pairs with image-level supervision and thus
significantly alleviates the cost of constructing and labeling large-scale training
datasets. Experimental results demonstrate that our approach performs favor-
ably against existing semantic matching algorithms on several standard bench-
marks. Moving forward, we believe that the semantic matching network can be
further integrated to other computer vision tasks, e.g., supporting 3D semantic
object reconstruction and fine-grained visual recognition.
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