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Abstract. Detecting anomalies from trajectory data is an important
task in video surveillance. However, it is difficult to give a precise def-
inition of this term since trajectory data obtained from different cam-
era views may vary in shape, direction, and spatial distribution. In this
paper, we propose trajectory distance metrics based on a recurrent neu-
ral network to measure similarities and detect anomalies from trajec-
tory data. First, we use an autoencoder to capture the dynamic fea-
tures of a trajectory. The distance between two trajectories is defined by
the reconstruction errors based on the learned models. We then detect
anomalies based on the nearest neighbors using the proposed metric.
As such, we can deal with various kinds of anomalies in different scenes
and detect anomalous trajectories in either a supervised or unsupervised
manner. Experiments show that the proposed algorithm performs favor-
ably against the state-of-the-art anomaly detections on the benchmark
datasets.

1 Introduction

Anomaly detection is important in numerous vision tasks including traffic mon-
itoring, motion analysis, and public safety. Trajectories of moving targets are
good representations of object behaviors in video data and useful in detecting
unusual events. On one hand, compared with appearance and low-level motion
features, trajectories can provide object-level long-term information of target
behaviors and motion patterns. On the other hand, compared with raw image
data, trajectories are more compact and require less computational resources for
motion analysis. In addition, thanks to the recent rapid development of object de-
tection and tracking algorithms, fairly accurate trajectories can be extracted and
analyzed for event analysis. Anomalies are usually defined as irregular patterns
that are different from the mainstream. However, in real-world video surveil-
lance scenarios, due to the difference of camera positions, sampling rates, and
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scene structures, the obtained trajectories usually vary in temporal and spatial
characteristics. Therefore, it is challenging to properly define and analyze tra-
jectory properties and detect anomalous patterns. Furthermore, in some cases,
we can obtain a video segment that contains only normal patterns for build-
ing regular models, and yet in other cases, we only have a test video to detect
anomalies without any prior knowledge of normal patterns. A flexible method
that facilitates anomaly detection in both cases is of great interest for numerous
applications. Existing trajectory anomaly detection methods [13, 14, 19] usually
construct statistical path models based on clustering to learn normal patterns
and determine deviated samples as irregular ones. However, when the number
of samples in the dataset is small, it is difficult to construct reliable statistical
models. Other approaches [17, 18, 22] learn regular models based on the normal
distributions and detect outliers. These algorithms usually rely on labeled data
to estimate the distributions. Constructing reliable statistical models usually
require a fair amount of data. In contrast, non-parametric models offer more
flexibility when only scarce and rare samples are at our disposal. If we treat
each normal sample as a single regular model, we can avoid this problem and
detect the anomalies with a k-nearest neighbor based method, as shown in [16]
and [9]. For unlabeled datasets, we can also measure the anomaly level of a tra-
jectory by computing the distance to its nearest neighbor. A similar strategy
is developed in [28]. However, the trajectory distances used in these methods
are less sensitive to some anomalous patterns and thus limit performance and
application scenarios.

In this paper, we use the simple but effective nearest neighbor method to deal
with the trajectory anomaly detection problem in different settings. In order to
obtain robust detection results in challenging scenes, we propose a new trajectory
similarity measure based on an autoencoder constructed from recurrent neural
networks (RNNs) to compute the distances between trajectories and facilitate
the distance-based anomaly detector. Our contributions can be summarized as
follows:

– We propose an RNN autoencoder based similarity measure for two, three or
higher dimensional trajectory data.

– We demonstrate that the proposed similarity measure is effective for distin-
guishing various types of trajectory anomalies.

– We show that the proposed anomaly detection method performs favorably
against the state-of-the-art algorithms in both supervised and unsupervised
settings.

2 Related Work

2.1 Trajectory Anomaly Detection

In order to detect anomalous trajectories, numerous methods aim to learn a
regular model first. Clustering based methods [13–15, 19] learn path models for
normal patterns via grouping trajectory data in an unsupervised manner. Hu
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et al. [13] cluster trajectories based on spatial and temporal information using
Gaussian distributions. For a trajectory sample, if the probabilities under known
patterns are lower than a threshold, it is detected as an anomaly. Jiang et al. [14]
represent trajectories with hidden Markov models (HMMs) and propose a dy-
namic hierarchical clustering method to learn normal patterns. HMMs are also
used in [19] to model activity paths and evaluate the likelihoods of trajectory
samples. However, it is difficult for these methods to handle the ambiguities
that are clustered near the boundaries of normal and anomalous patterns. A few
methods learn regular models when some labeled normal samples are available.
Trajectories that deviate from the learned model are considered as anomalies.
Li et al. [17] use the sparse reconstruction analysis and construct a dictionary
based on normal samples. For a test trajectory, when the reconstruction error on
the normal dictionary is lower than a threshold, it is identified as an anomaly.
In [20] Piciarelli et al. learn the regular model with a one-class SVM and use
the novelty detection method to find anomalies. Additionally, they propose an
approach to tune the SVM parameters without labeled data. A recent method
developed in [18] is based on the concept of tube and droplets. For anomaly detec-
tion, it first constructs thermal transfer fields based on the training set and then
evaluates test samples by the derived droplet vectors. Nearest neighbor based
methods are simple but usually effective for anomaly detection. Such approaches
require few parameters and can be applied to both supervised and unsupervised
settings. Yankov et al. [28] propose an efficient method based on the Euclidean
distance to discover unusual samples in huge unlabeled datasets. This method
performs favorably against the SVM-based scheme by Piciarelli et al. [20]. For
online and sequential anomaly detection, Laxhammar [16] propose a detector
based on the Hausdorff distance, nearest neighbor principle, and non-conformity
measure. The detector can be used with or without supervisory signals. More
recently, Ergezer and Leblebicioğlu [9] apply sparse representations to the near-
est neighbor method based on the covariance trajectory descriptors and achieve
favorable results. In these methods, it is critical to compute sample distances
accurately. Therefore, trajectory similarity measures with better sensitivity to
anomalies are likely to improve the detection performance and studied in this
work.

2.2 Trajectory Similarity Measures

Numerous trajectory distances or similarity measures have been proposed in
the literature. On one hand, warping based distance metrics take the temporal
dimension into consideration. The simplest one is the Euclidean distance that
averages the differences between each pair of corresponding points [21,30]. In this
case, lengths of the two trajectories are required to be the same. In addition,
the DTW [2] and LCSS [25] methods have been used for time sequences to mea-
sure similarities. When these metrics are applied to trajectory data, the distances
between each time steps are computed based on the Euclidean distance. Further-
more, Chen et al. design ERP [4] and EDR [5] distance metrics for time series to
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support local time shifts and deal with data noises. On the other hand, shape-
based distance metrics such as the Hausdorff [11] and Fréchet [1] measures have
been applied to measure the similarities between spatial trajectory sequences. A
more recent shape-based distance metric is the SSPD introduced in [3] for trajec-
tory clustering. Different from these methods, a set of HMM-based distances are
proposed in [21]. The distance between two trajectories is defined with the prob-
abilities of each sample to be generated by the models learned on each other.
Experiments in [21] show that such a model-based distance is able to handle
more unrestricted trajectories and has strong discriminative abilities. However,
distances based on more powerful trajectory models remain unexplored.

2.3 RNN-based Autoencoder

An autoencoder can be seen as a special encoder-decoder architecture where
the target is the same as the input. The autoencoders based on RNNs are in-
troduced in [6] and [24] to address the machine translation problem. The RNN
autoencoders have also been used to construct representations for videos, such
as in [23] and [27]. Hasan et al. [10] use convolutional autoencoders to learn reg-
ularity models in videos and detect anomalies. In addition, the spatio-temporal
autoencoders have been developed for anomaly detection in [7]. These two ap-
proaches use autoencoders as a one-class learning approach and detect frame-
level anomalies based on raw image data, rather than trajectories. In addition,
Yao et al. [29] learn fixed-size representations of geographical trajectories with
sequence-to-sequence autoencoders for clustering. However, to the best of our
knowledge, autoencoders based on RNNs have not been applied to measure tra-
jectory distances for anomaly detection.

3 Proposed Method

3.1 RNN Autoencoder based Trajectory Distance

Consider a trajectory T formed by a moving object in an image sequence, at each
time step t the state of T is represented by the spatial coordinates (x, y). Thus
we have the sequence notation T = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where N is
the time duration. In order to measure the similarity between two trajectories,
we propose a model-based method.

We first train an RNN autoencoder model for each trajectory sample in a
sequence-to-sequence manner. The autoencoder consists of an encoder and a
decoder while the network input and the decoding target are identical. In the
encoder part, we use a GRU-based RNN [8] to capture the dynamic characteris-
tics of the input trajectory sequence. In practice, the state of the input sequence
at each time step can be multi-dimensional. To emphasize the sequential infor-
mation, we explicitly embed a time axis starting from 0 to the input sequence
during training. Thus at each time step k, the state of a sequence is denoted as
(xk, yk, tk). The final hidden states of the encoder are fed to the decoder network
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as initial hidden states. In the decoder part, we use a GRU layer and a linear
layer to reconstruct the input sequence along the time dimension. The two parts
of the autoencoder model are trained together by minimizing the reconstruction
error. Since the output sequence and the target are in the same dimensions, we
use mean squared error (MSE) as the loss function. The training stage ends when
the loss is small enough (we use a threshold of 10−5). In addition, we normalize
the data values of the input sequence to [0, 1] for a better convergence perfor-
mance. We define the distance between two trajectories based on the trained
models. For a pair of trajectory sequences Ta and Tb, we denote the autoencoder
models learned from each trajectory as Ma and Mb. When we take trajectory
Tb as the input of model Ma, we compute the reconstruction error e(Tb,Ma).
Therefore, the one-way distance from Ta to Tb can be computed by:

d(Ta, Tb) = |e(Tb,Ma)− e(Ma)|, (1)

where e(Ma) denotes the final loss of model Ma during training. Conversely, the
one-way distance d(Tb, Ta) from Tb to Ta can be computed by |e(Ta,Mb)−e(Mb)|.

From the definition above we know that d(Ta, Tb) > 0 and d(Ta, Ta) = 0.
However, due to the randomness and noise during model training, we cannot
obtain d(Ta, Tb) = d(Tb, Ta). To have a symmetric distance measure, we define
the bidirectional dissimilarity between trajectory pair Ta and Tb as:

D(Ta, Tb) = |e(Tb,Ma) + e(Ta,Mb)− e(Ma)− e(Mb)|. (2)

Since RNN models can process sequences with variable time steps, trajectories
Ta and Tb need not be of the same lengths.

Furthermore, considering that the autoencoder model can be trained with a
batch of samples at the same time, we can expand the application of this model
to computing the distance from a cluster of trajectories CT to a query trajectory
Tq. Similarly, this one-way distance can be defined as:

DC(CT , Tq) = |e(Tq,MC)− e(MC)|, (3)

where MC denotes the model learned from the cluster of trajectories.
The set of distances defined above can be naturally applied to the nearest

neighbor based anomaly detection depending on different data settings.

3.2 Distance based Anomaly Detection

In trajectories obtained from surveillance videos, anomalies tend to show irreg-
ular motion patterns. However, it is difficult to differentiate between anomalies
and samples with noise. When there is a training set indicating the normal pat-
terns as a limited supervision, it is easier to define and detect the anomalies.
Instead of the statistical methods that may require a lot of training samples, we
use a nearest neighbor detector based on the proposed one-way autoencoder dis-
tance (Eq. 1). Considering each training sample as an individual normal model,
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the anomaly score can be defined by the directional distance of a test sample
from its nearest training sample.

However, labeled data are not always available. In unsupervised scenes, re-
searchers usually use novelty detection methods to find anomalies. A nearest
neighbor based detector can still perform by measuring the deviation of a trajec-
tory sample to its neighbors. We use the bidirectional distance definition (Eq. 2)
in this case to obtain a symmetric distance matrix. Since the proposed trajec-
tory similarity measure is sufficiently robust, we use the one-nearest neighbor
distance as the anomaly score for a test trajectory.

4 Experimental Results

4.1 Comparison of Distances on Different Trajectory Patterns

In order to evaluate the sensitivity of a trajectory distance to different kinds of
anomalies, we measure the similarities of several trajectory pattern pairs inspired
by [21]. In a surveillance video scene, an anomalous object trajectory may be
different from the normal ones in several aspects including position, orientation,
and speed. Therefore, we list six pattern pairs including: Translation, Deviation,
Opposite, Loop, Wait, and Speed, as shown in Fig. 1.

(a) Translation (b) Deviation (c) Opposite

(d) Loop (e) Wait (f) Speed

Fig. 1. Different pattern pairs illustrating various types of anomalies

For each pair of trajectories Ta and Tb, considering Ta as a normal sample
and Tb as an anomaly, we compute the distance D(a, b) between them. We then
construct another pair of trajectories Ta and Tc, where Tc is built by adding Ta
with a Gaussian noise. The distance D(a, c) between this pair is computed as a
baseline. Therefore, we can evaluate the distance sensitivity Spattern to a certain
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pattern by computing the ratio between D(a, b) and D(a, c) as:

Spattern = D(a, b)/(D(a, c) + ε), (4)

where ε is the machine epsilon for avoiding division by zero. A ratio close to 1.0
indicates that it is difficult for the distance to distinguish a pattern from noises.
On the other hand, a higher ratio value indicates that the similarity measure is
more sensitive to this pattern.

We generate a synthetic dataset consisting of 100 pair examples for each
pattern. The length of each normal trajectory sample is set to 50. Due to the
pattern definition, in the last three cases Loop, Wait, and Speed, the lengths of
anomalous samples are different from those of the normal ones. This inequality
also contributes to the data variety. In addition, a Gaussian white noise is added
to each sample for a better simulation of real situations.

We use nine trajectory distances to compare with the proposed method.
They are: Euclidean, DTW [2], LCSS [25], ERP [4], EDR [5], Hausdorff [11],
Fréchet [1], SSPD [3], and the HMM-based distance [21]. Experimental results
are shown in Table. 1.

From the table we can know that most of the distances cannot identify the
temporal anomalies Wait and Speed, while non-directional distances SSPD and
Hausdorff (undirected) are not sensitive to the Opposite case. Among these, the
ERP metric performs well over all the patterns. Compared to other distances,
our method is sensitive to all the six anomalous pattern cases.

Table 1. Sensitivity scores of different trajectory distances on the six anomaly patterns.

4.2 Anomaly Detection Performances

Based on the proposed trajectory distance, we implement the anomaly detection
task with the nearest neighbor detector as described in Sec. 3.2. In order to
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Table 2. Dataset properties: a brief view.

Datasets Supervision Dataset size Scene number Data source

CROSS [19] Yes Big 1 Synthetic
TRAFFIC [18] Yes Small 1 Realistic
VMT [12] No Big 1 Realistic
DETRAC [26] No Medium 31 Realistic

show the wide applicability of our method, we conduct experiments on four
datasets that are under quite different configurations, as summarized in Table 2.
Since the anomaly detection results vary with different threshold values, we use
the Receiver Operating Characteristic (ROC) curve and the Area Under Curve
(AUC) to evaluate the overall performance of the detector.

CROSS Dataset. This is a widely used dataset for motion pattern learning and
anomaly detection under a cross-traffic scene, introduced in [19]. The training
set contains 1900 traffic trajectory samples divided to 19 classes. The test set has
9700 samples while 200 of them are labeled as anomalous. In order to make a fair
comparison and reduce noise effects, trajectory data in this and the following
experiments are normalized to the same length of 12 points using least-squares
cubic spline curves approximation [17,22].

First, we compare the performances of several different trajectory distances
using the same nearest neighbor anomaly detector. Since there exists a training
set, we use the one-way distance as defined in Eq. 1. In order to make use of
the class labels, we construct 19 normal models with the average trajectory of
each class. The anomaly score is defined with the distance of a test sample from
the nearest normal model. With the scores obtained, we can vary the threshold
and draw ROC curves as shown in Fig. 2. The AUC scores are summarized in
Table 3. The distances compared are the same as those in Sec. 4.1. We can see
that the proposed distance metric performs favorably against the others when
applied to anomaly detection.

Table 3. AUCs of anomaly detectors based on different trajectory distances on the
CROSS dataset. The best result is in bold and the second best results are underlined.

Methods Euclidean DTW SSPD LCSS EDR ERP Fréchet Hausdorff HMM Ours

AUCs 0.9985 0.9976 0.9520 0.9916 0.9920 0.9985 0.9923 0.9961 0.8600 0.9996

Then, the comparison with several state-of-the-art methods is shown in Ta-
ble 4. Since the available results in the literature are evaluated by the detection
rates (DR) and abnormality false positive rates (FPR) [18,19], we report our re-
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(a) (b)

Fig. 2. ROC curves of anomaly detection based on different trajectory distances on
the CROSS dataset. Sub-figure (b) is the zoomed out version of the left top part of (a)

sults under the same metrics. The results are obtained directly from [18]. From
Table 4 we can know that our method achieves a significantly low false alarm
rate while keeping a high detection rate. It is worth mentioning that the listed
methods [12, 18, 19] are not specially designed for anomaly detection, so their
results may not seem competitive.

Table 4. Comparison of anomaly detection results on the CROSS dataset.

Methods DR (%) FPR (%)

tDPMM [12] 91.0 23.3
3SHL [19] 85.5 23.5
3D Tube [18] 91.3 23.5
Ours 96.0 9.9

TRAFFIC Dataset. This dataset is introduced in a recent work [18]. It contains
300 trajectories collected from a real-world cross-traffic scene. As shown in [18],
the small sample number, large data variations, and oblique camera view all
make the TRAFFIC dataset challenging, especially for learning reliable normal
models. We also use the nearest neighbor detector based on our RNN autoen-
coder distance measure to handle this situation. We keep the same experimental
settings with [18], namely: equally dividing the dataset into training/test sets
and running the random division for four times to obtain an average score. For
each test trajectory, we compute the nearest one-way distance from the training
samples as the anomaly score. Since the results are averaged, we do not present
ROC curves. The average AUCs computed from different distances are shown in
Table 5. From the experimental results, we can know the best performing dis-
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tance metrics are Hausdorff, Fréchet and ours. This indicates that the anomalies
in the TRAFFIC dataset are best distinguished by shape features.

Table 5. AUCs of anomaly detectors based on different trajectory distances on the
TRAFFIC dataset.

Methods Euclidean DTW SSPD LCSS EDR ERP Fréchet Hausdorff HMM Ours

AUCs 0.9987 0.9987 0.9977 0.9937 0.9909 0.9987 1.0000 0.9999 0.9922 1.0000

VMT Dataset. In order to evaluate our method on more real-world data, we
employ the Vehicle Motion Trajectory (VMT) dataset [12] that contains 1500
trajectory samples. Since the dataset is not labeled with anomalies, we manually
label 24 anomalous trajectories that deviate from the others in spatial or shape
features. Some examples of labeled anomalies are shown in Fig. 3. We do not
label normal data and directly run our method in an unsupervised manner.

As discussed in Sec. 3.2, we use the symmetric version of the proposed dis-
tance metric (Eq. 2) in this experiment. The ROC curves of different trajectory
distances are shown in Fig. 4 and AUCs are summarized in Table 6. Due to
the fact that the anomalies in this dataset are more difficult to distinguish, we
can see that the overall results are not so good, but the detector based on our
distance metric still performs the best.

Fig. 3. Illustration of some anomalous trajectory samples in the VMT dataset

DETRAC Dataset. This is a video dataset originally introduced as a large-scale
real-world benchmark for object detection and multi-object tracking [26]. We
generate trajectories based on the tracking ground-truth of the training set. We
divide the behaviors of vehicle trajectories to several types including Driving
through, Changing lane, Turn, Wait and some ambiguities. In order to define a
proper amount of anomalous samples, we label the trajectories with Turn and
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Fig. 4. ROC curves of anomaly detectors based on different trajectory distances on
the VMT dataset.

Table 6. AUCs of anomaly detectors based on different trajectory distances on the
VMT dataset.

Methods Euclidean DTW SSPD LCSS EDR ERP Fréchet Hausdorff HMM Ours

AUCs 0.9339 0.9261 0.7300 0.7734 0.7744 0.9339 0.7871 0.8049 0.8246 0.9608
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Wait behaviors as anomalies. Finally, there are 31 scenes labeled with anomalies
out of the 60 training videos. The number of trajectory samples in each scene
ranges from 8 to 89 and there are 3 anomalies out of 43 trajectories in each
scene on average. Therefore, the labeled trajectory dataset is challenging due to
the sparse data, different vehicle behaviors and various scenes. For this dataset,
we use the nearest neighbor based anomaly detector without the supervision
of normal data. The AUCs of the nearest neighbor detector based on different
distances are listed in Table 7. The results are averaged over the 31 scenes
of the dataset. Overall, the HMM-based distance metric performs the best on
this dataset. The Euclidean distance and our method also achieve comparable
results. The experimental results above show that our method is suitable for

Table 7. AUCs of anomaly detectors based on different trajectory distances on the
DETRAC dataset.

Methods Euclidean DTW SSPD LCSS EDR ERP Fréchet Hausdorff HMM Ours

AUCs 0.8956 0.9044 0.8981 0.8976 0.8979 0.8956 0.8557 0.8572 0.9071 0.9022

both supervised and unsupervised anomaly detection and sufficiently flexible
to obtain satisfactory results on datasets with various properties. The results
indicate the robustness and wide applicability of our RNN autoencoder based
trajectory distance. All the source code and datasets will be made available to
the public.

5 Conclusion

In this paper, we present trajectory distance metrics based on an RNN-based
autoencoder to measure the similarity between trajectories and apply them to
anomaly detection. Experimental results show that the proposed metrics are sen-
sitive to anomalies and perform favorably in the trajectory anomaly detection
task when incorporated in a nearest neighbor based detector. We also demon-
strate an anomaly detector based on our metrics is flexible and effective under
various dataset configurations. In practice, the proposed distance metrics can
also be applied to other distance-based detectors. We will address these issues
in our future work.
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