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Abstract. In this paper, we propose a scene co-parsing framework to as-
sign pixel-wise semantic labels in weakly-labeled videos, i.e., only video-
level category labels are given. To exploit rich semantic information, we
first collect all videos that share the same video-level labels and seg-
ment them into supervoxels. We then select representative supervoxels
for each category via a supervoxel ranking process. This ranking problem
is formulated with a submodular objective function and a scene-object
classifier is incorporated to distinguish scenes and objects. To assign each
supervoxel a semantic label, we match each supervoxel to these selected
representatives in the feature domain. Each supervoxel is then associ-
ated with a series of category potentials and assigned to a semantic label
with the maximum one. The proposed co-parsing framework extends
scene parsing from single images to videos and exploits mutual informa-
tion among a video collection. Experimental results on the Wild-8 and
SUNY-24 datasets show that the proposed algorithm performs favorably
against the state-of-the-art approaches.

1 Introduction

Scene parsing, the task to assign labels for every pixel in images or videos [1,2,3],
has attracted much attention in recent years. Many applications such as 3D lay-
out estimation [4] and auto-driving [5] benefit from the results of scene parsing.
However, existing scene parsing methods typically require large scale pixel-level
annotated training images with fixed semantic categories and fully supervised
[6] or retrieval-based [3,7] methods. Due to the restriction of category numbers
and labor-intensive pixel-level annotations, it is not easy to directly apply these
methods for videos with complex and dynamic scenes.

To relax the dependence on pixel-level annotations, several weakly-supervised
methods [8,9,10] for video object segmentation have been proposed, in which only
video-level semantic labels are given for each video. In these methods, segment-
based classifiers are learned to distinguish objects from the background by ex-
tracting information with relevant and irrelevant frames from videos [8,9]. Object
detectors are also used to help locate potential objects with specific semantics
[10]. However, segment-based classifiers are suspecting to ambiguous training in-
stances, and object detectors are not effective for parsing both scenes and objects
in videos.
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To address the above-mentioned issues, we extend scene parsing from single
images to videos and propose a co-parsing framework to assign semantic labels
in weakly-labeled videos. The proposed weakly-supervised method relaxes the
constraints of large-scale annotations with fixed category numbers, while the
co-parsing framework exploits information among a video collection to alleviate
the ambiguity of individual segments. Considering the temporal consistency, we
first segment each video into supervoxels [11,12]. Here, each supervoxel belongs
to one or more parts of objects or scenes, which are quite different in terms of
the contents (e.g., usually skies are smooth and objects are textured). Hence we
develop a scene-object classifier to understand the contents of each supervoxel.
Compared to previous methods using segment-based classifiers [8,13,14], our
approach aims to learn a generalized scene-object classifier without the need to
know specific semantic categories.

Since using the information within only one video is limited, we develop
a co-parsing method to include videos that share the same labels. For each
semantic category, we first collect all the supervoxels in videos with such label.
We then select representative supervoxels through a submodular optimization
problem guided by the scene-object classifier. These representative supervoxels
selected in each category are further utilized in a matching process, in which we
assign each supervoxel a potential to be a specific category by considering the
similarities between the supervoxel and representative ones. Finally, a category
is assigned to each supervoxel according to the maximum potential obtained
from the matching process.

We demonstrate the effectiveness of the proposed weakly-supervised video co-
parsing algorithm on the Wild-8 [13] and SUNY-24 [15] benchmark datasets. We
first show the effectiveness of the proposed scene-object classifier incorporated
in the submodular function for scene labeling. In addition, we extend the scene-
object classifier to a detailed scene classifier with multiple categories, and show
that the performance can be further improved. Overall, our experimental results
show that the proposed algorithm performs favorably against the state-of-the-art
methods in terms of visually quality and accuracy.

The main contributions of the proposed algorithm are summarized as follows.
First, we propose a scene co-parsing framework for weakly-labeled videos, in
which relations of supervoxels between different videos are exploited. Second, we
formulate a submodular objective function to select representative supervoxels
in semantics guided by a scene-object classifier from a collection of videos. Third,
we propose an effective matching process to re-rank supervoxels in semantics and
obtain final semantic labels in videos.

2 Related Work

Video Object Segmentation/Co-segmentation. In general, video object
segmentation methods aim to detect and extract one or more dominant objects
from a number of categories in image sequences [16,17,18,19,20,21,22,23]. These
approaches achieve state-of-the-art performance by tracking segments [17], ex-
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ploiting motion cues [18,24], propagating labels [19] or using spatial-temporal
graph-based models [22]. However, these methods are not exploited to extract
common objects from a video collection. Several video object co-segmentation
methods have been proposed to separate common foreground objects from the
background [25,26,27,28,29]. By analyzing the coherent motion and similar ap-
pearance in different videos, foreground objects from a collection of videos can
be identified. However, these approaches usually assume that common objects
appear in all the input videos, which is rarely true in real-world scenarios. In
addition, these methods have limited capability in separating scenes in videos
due to less motion information and large appearance variations of scenes. In
contrast, the proposed method is able to parse scenes and objects with large
appearance changes.

Object Segmentation in Weakly-labeled Videos. Weakly-supervised meth-
ods have recently been proposed for multi-class video segmentation [8,10,13,14].
Given the videos with video-level category labels, several learning-based ap-
proaches [8,14] use a large set of training samples to learn segment-based clas-
sifiers to distinguish foreground objects. To minimize the effect of ambiguous
instances in the learning-based methods, pre-trained object detectors are incor-
porated to help locate objects [10]. However, object detectors can only locate
instances from a number of known categories, rather than extract scenes in
videos. Liu et al. [13] extend previous methods to a more challenging multi-class
setting including objects and scenes. Based on the assumption that common ob-
jects in multiple videos should be similar in appearance, this method transfers
video-level labels to each supervoxel via a nearest neighbor-based scheme. In
contrast, the proposed algorithm introduces a more general and robust scene-
object classifier without the need of training for specific categories, and considers
the relations between different videos to facilitate the co-parsing task.

Image/Video Scene Parsing. Numerous approaches have been proposed for
scene parsing [1,3,7,30,31,32,33]. These methods address the problem in single
images via dense scene alignment [3], superpixel retrieval [7], neural networks
[1,30] or context information [32]. However, directly applying single image pars-
ing approaches to each video frame does not exploit temporal information and
performs poorly in complex and dynamic scenes. Liu et al. [2] construct a con-
ditional random field model to extract spatial-temporal information for video
scene parsing, in which dense connections on supervoxel level and sparse object-
level potentials are used for labeling. However, this method performs on single
videos and requires manually pixel-wise labeled exemplars for initialization and
propagation. In contrast, the proposed algorithm focuses on the co-parsing task
from a video collection and requires only video-level labels. Recently, Chen et al.
[34] propose a co-labeling task to parse scenes in multiple images, but without
considering temporal connections. In addition, this method requires pixel-wise
training samples and has a limitation that the training and test images should
contain similar scenes. In contrast, the proposed algorithm exploits temporal
consistency via supervoxels in a weakly-supervised fashion from a video collec-
tion.
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3 Proposed Algorithm

3.1 Overview

Given a collection of videos with video-level labels, we aim to assign a seman-
tic label to each pixel in image sequences. We formulate the labeling problem
as a co-parsing task by simultaneously considering a video collection. To this
end, our approach consists of two stages: (1) semantic supervoxel ranking via a
submodular function: In this stage, we aim to discover representative semantic
supervoxels for each category. We first segment weakly-labeled videos into super-
voxels that maintain spatial-temporal consistency. For each semantic category,
we construct a graph to connect the supervoxels collected from videos labeled
with such category. To model the relations between supervoxels, we formulate it
as a submodular optimization problem guided by a scene-object classifier based
on the appearances and semantic information. The most representative super-
voxels for each category are then extracted by solving this proposed submodular
function; (2) scene co-parsing via region-based matching: In this stage, we aim
to assign each supervoxel a semantic label by computing its category potentials.
For each supervoxel, we compute similarities between it and representative ones
for each category as its corresponding category potential. Each supervoxel is
then assigned to a semantic label according to its maximum potential. Fig. 1
shows the main steps of the proposed algorithm.

3.2 Supervoxel Ranking via Submodular Function

Weakly-supervised video segmentation methods [2,13] usually transfer semantic
labels to nearby regions spatially [13] or temporally [2] based on appearance
features. However, globally searching the neighbors from all videos is likely to
introduce redundant information and cause ambiguity when the videos share
multiple semantic labels. In contrast, we start from each semantic label and aim
to select representatives for each category. For each semantic category, we collect
all the videos that share the same label and segment them into supervoxels. We
then construct a graph where supervoxels are considered as nodes. We formu-
late a submodular optimization problem to select nodes that can represent each
semantics.

Graph Construction. Given a collection of weakly-labeled videos V , we denote
the full semantic label set as L = {1, 2, . . . , L}. For each category l ∈ L, we
collect videos containing l and segment them into supervoxels, which are denoted
as O. We construct a graph G = (V, E), in which each element v ∈ V is a
supervoxel from O and the edge e ∈ E represents the pairwise relation between
two supervoxels. To exploit the supervoxels that best represent a target category,
we aim to select a subset A from O.

Submodular Function. We model the supervoxel selection task as a facility
location problem which can be solved by submodularity [35,36]. We design the
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Fig. 1. Overview of the proposed algorithm. Given a collection of weakly-labeled
videos, we aim to assign a semantic label to each pixel in image sequences.
First, we segment each video into supervoxels. The supervoxels are illustrated
by different patterns (e.g., circle represents all the supervoxels in the first video
and rectangle represents the ones in the second video). We collect the supervoxels
in videos that share the same semantic category and construct a graph. Each
category is associated with a unique color (e.g., dark blue represents sky and
green represents grass). We then formulate a submodular optimization problem
to discover representative supervoxels for each category. Next, we match each
supervoxel to the corresponding representatives and compute their similarities
as the category potentials. Finally, a category is assigned to each supervoxel
according to the maximum potential calculated during the matching process.

submodular objective function to find representative supervoxels that meet two
criteria: (1) sharing high mutual similarities; (2) maintaining high probability
to match the target category. To this end, we formulate the objective function
with two terms, i.e., a facility-location term to show similarities among all the
elements [23,37] and a semantic sensitive term to represent the potential of each
element belongs to the target category. The formulation of facility-location (FL)
term is defined by:

F(A) =
1

NV

∑
i∈A

∑
j∈V

wij −
∑
i∈A

φi, (1)

where ωij is the pairwise relation between a potential facility vi and an element
vj . The cost of opening a facility is defined as φi and fixed to a constant σ (i.e.,
1 in this work).

We represent the supervoxel vi by a hierarchical convolutional neural network
(CNN) feature vector fi. For each supervoxel, we first extract CNN features in
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each frame. The CNN features are computed by combining the first three con-
volutional layers [6] (i.e., 448-dimensional features). We then apply an average
pooling method on all the frames and generate a feature vector for each su-
perpixel. As fi is extracted from hierarchical CNN layers which represent both
visually fine-gained details and semantic information, features that share similar
appearance and semantics should have higher mutual similarities.

To meet the first criteria, we define the pairwise relations ωij as the similarity
between facilities and elements in the feature domain. This strategy encourages
to select the node that well presents or is similar to its group elements so that
the selected facilities in A are representative. We define the weight ωij of each
edge eij in (1) as:

ωij = S(vi, vj), (2)

where S(vi, vj) is the inner product of the features fi and fj , i.e., 〈fi, fj〉. The
second term φi with a constant in (1) is to penalize excessive facilities. With
the growth of A, the cost of opening facilities becomes higher and thus it avoids
selecting all the nodes.

However, videos within the same category usually contain various objects
and scenes, and hence introduce large appearance variations and ambiguities
between different categories. Therefore, it is not sufficient to use only facility-
location term to discriminate different semantic information. To this end, we
propose a unary term to represent the category sensitivity of each supervoxel.
We define the proposed semantic sensitive (SS) term by:

U(A) =
∑
i∈A

ψi, (3)

where ψi denotes the potential of supervoxel vi belonging to the target cate-
gory. In the proposed algorithm, we apply classifiers to estimate these poten-
tials. Considering large variations of semantic labels, learning classifiers for each
category as [37] is time-consuming and labor-intensive. Hence we learn a gener-
alized scene-object classifier based on the fully convolutional network (FCN) [6].
For each supervoxel with unknown category, we predict its category probabilities
from the FCN output layer, i.e., scene and object. Then ψi for each supervoxel is
computed in a way similar to the feature generation step, where the probability
is first extracted from each frame and then averaged through all the frames.

Optimization for Supervoxel Ranking. To ensure that the selected facility
set A shares more similarities with group elements and maintains high semantic
sensitivities, we formulate the proposed submodular objective function of both
facility-location term F(A) of (1) and semantic sensitive term U(A) of (3) by:

max
A
C(A) = max

A
F(A) + λU(A),

s.t. A ⊆ O ⊆ V, NA ≤ N ,
J (Ai) ≥ 0,

(4)
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Fig. 2. Illustration of the proposed submodular function for selecting representa-
tives. For the bird category, we show four supervoxels collected from three videos.
The top two supervoxels are selected as the representatives as birds (denoted as
circles with solid brown color). For each supervoxel, we show energy gain, simi-
larity gain (FL term) and unary gain (SS term). As the video containing birds
are usually accompanied with large sky or water regions, the supervoxels (e.g.,
the bottom two) in the scenes are likely to be similar to other regions and have
high similarity gains. Owning to our scene-object classifier, the supervoxels con-
taining the scenes (e.g., sky and water) are associated with lower unary gain in
the object category (e.g., bird), and hence provide lower energy gains.

where NA is the number of selected facilities in A, and N is the maximum
number of A. We set the energy gain J (Ai) at the i-th iteration during the
optimization as: C(Ai)−C(Ai−1). In addition, λ is the parameter to balance the
contribution of two terms.

As the proposed objective function in (4) is the non-negative linear combi-
nation of two submodular terms, we can maximize C(A) via a greedy algorithm
similar to [23]. We first initialize the facility set A as an empty set ∅. Then the
element a ∈ V \A which leads to the maximum energy gain is added into A. We
iteratively select other elements and this absorbing process stops when either
one of the following conditions is satisfied: (1) the maximum facility number is
reached, i.e., NA > N ; (2) the cost of opening facilities is larger than the gain
from elements, i.e., J (Ai) < 0. In addition, due to the submodularity of the ob-
jective function, the optimization process can be sped up by an evaluation form
as proposed in [38]. The process of selecting representatives for each category
is presented in Algorithm 1 and the effectiveness of our submodular function is
shown in Fig. 2.

3.3 Scene Co-parsing via Region-based Matching

Next, we aim to assign each supervoxel a semantic label by considering its rela-
tions to representatives in each category. Previous approaches generally formu-
late the labeling task as markov random field (MRF) [13] or conditional random
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Algorithm 1 Representatives Selection for Each Category

Input: G = (V, E),N , λ
Initialization: A0 ← ∅, O0 ← V, i← 1
loop
a∗ = arg max

{Ai∈V}
J (Ai), where Ai = Ai−1 ∪ a

if NA > N or J (Ai) < 0 then
break

end if
Ai ← Ai−1 ∪ a∗, Oi ← Oi−1 \ a∗
i = i+ 1

end loop
Output: A ← Ai, O ← Oi

field (CRF) [2] models that require additional optimization process to estimate
category posteriors. In contrast, we propose an efficient way and predict the
potential of each supervoxel by matching them to category representatives. We
then assign each supervoxel a semantic label according to the maximum potential
computed during the matching process.

Region-based Matching. The energy gain in the proposed submodular func-
tion can be utilized to estimate how likely each supervoxel belonging to which
category as proposed in [39]. However, generating energy gains for all the ele-
ments in each category is ineffective. In addition, different submodular functions
for various categories may differ in the graph size, element appearance and se-
mantic distribution, which causes incomparable results when comparing energy
gains between different categories. In this work, we propose to compute the cate-
gory potentials for each supervoxel by a matching process, which is efficient and
can reduce confusions between categories (see Fig. 3).

For the input video collection V , we denote all the supervoxels as B =
{b1, . . . , bM}, where M is the number of supervoxels. The corresponding video-
level labels of B are denoted as Y = {y1, . . . , yM}, where yi is a semantic label
set according to the video that bi belongs to. For instance, yi is identical to yj
if they belong to the same video. For each supervoxel bi, we aim to compute its
category potentials with respect to all the semantic labels L. Hence we generate
a M by L matrix P , where each element pli denotes the potential of a super-
voxel bi belonging to a category l. To ensure that potentials between different
categories are comparable, we compute P in the feature domain. For each cat-
egory l, the pli is computed as the average similarity between the feature fi of
supervoxel bi and feature f lj of category representatives alj in Al, where Al is
the corresponding facility set:

pli =


1

Nl

∑
al
j∈Al

〈fi, f lj〉 l ∈ yi,

−∞ l /∈ yi,
(5)
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Fig. 3. Illustration of the proposed region-based matching process. Given a video
with weakly-supervised labels (e.g., bird and grass), we first extract its super-
voxels (e.g., A and B with red boundaries). We then compare them with rep-
resentative supervoxels for each category and compute category potentials. By
comparing these potentials, we can further assign a label to each supervoxel cor-
responding to the category with the maximum one (bottom row). In contrast,
using the energy gain for comparing scores and assigning labels may produce
wrong results, due to incomparable gains in different categories (upper row).
Note that categories of the potential scores are associated with different colors.

where Nl denotes the number of representatives in Al. Note that if the video
does not contain the target category l, pli is assigned as the value −∞, meaning
that supervoxels in this video do not share any similarities with category l.

Scene Label Assignment. After matching supervoxels to representatives in
each category, we assign a semantic label for each supervoxel bi based on its
category potential vector Pi = [p1i , . . . , p

L
i ] as:

ci = argmax
l∈L

Pi(l). (6)

Hence all the pixels within a supervoxel have the same assigned label ci. The
proposed region-based matching strategy to assign labels is illustrated in Fig. 3.
Note that if there are existing multiple semantic labels with the same potential,
we use their submodular energy gains for further comparisons. In addition, all
the video-level labels in each video should be at least assigned to one of the
supervoxels. For those labels that are not assigned to any supervoxel in the
video, we ensure that at least top K (i.e., 15) supervoxels with high category
potentials are re-assigned to that label.

4 Experimental Results

We evaluate the proposed scene co-parsing algorithm on the Wild-8 [13] and
SUNY-24 [15] datasets with comparisons to the state-of-the-art methods, in-
cluding CRANE [8], MIN [40], SVM [14], MIL [41] and WILD [13]. We use the
same metrics in [13] for evaluation including average accuracy of each class,
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Table 1. Video scene co-parsing results on the Wild-8 dataset. We measure the
average accuracy of each class, average per category accuracy (aveAcc) and mean
average precision (mAP). The highest score is marked in bold and the second
highest score is marked with underlines.

Category MIL SVM MIN CRANE WILD
Ours Ours Ours

(similarity) (generalized) (detailed)

bird 31.5 42.5 48.1 47.8 53.0 35.8 41.5 66.2
water 79.3 74.5 75.2 76.5 77.3 60.5 72.5 82.6
sky 85.4 86.9 87.2 89.5 93.8 78.3 96.0 98.2
tree 41.1 45.5 36.7 42.8 50.1 93.0 93.0 95.5
grass 78.3 74.0 74.1 73.7 76.5 81.0 72.4 68.3
lion 2.1 16.6 15.4 19.3 21.3 47.1 95.8 91.5
sand 55.2 42.1 43.3 43.2 60.1 35.0 44.7 75.3

elephant 5.5 12.3 13.2 16.8 28.1 51.8 87.1 73.4

aveAcc 47.3 49.3 49.2 51.2 57.5 60.3 75.4 81.4

mAP 41.8 41.0 42.1 43.9 52.4 59.6 68.6 78.6

Table 2. Comparisons of using energy gains and region-based matching process
for assigning final semantic labels on the Wild-8 dataset. We show two sets of
results using different classifiers and measure the average per category accuracy
(aveAcc) and mean average precision (mAP). The results consistently show the
effectiveness of the proposed matching strategy. The highest scores are marked
in bold.

Indicator
Energy gain Matching Energy gain Matching
(generalized) (generalized) (detailed) (detailed)

aveAcc 70.2 75.4 78.0 81.4

mAP 64.0 68.6 75.3 78.6

average per category accuracy (aveAcc), and mean average precision (mAP).
More experimental results can be found in the supplementary material and the
MATLAB codes will be made available to the public.

4.1 Experimental Settings

We use the streamGBH algorithm [12] at the fifteenth level with the default
parameters to generate supervoxels in videos, For optimizing the submodular
function in (4), the maximum number N of each category is set to 10, and the
parameter λ is set to 1. For matching representatives in (5), we use the top-5
ranked supervoxels as Al.

To learn the scene-object classifier, we finetune a fully convolutional network
(FCN) [6], which is a state-of-the-art algorithm for semantic segmentation. We
follow the same setting used in [42] for collecting training images in the LMSun
dataset [7], but merging all the categories into scene and object categories. The
parameters are fixed in all the experiments.
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1

(a) Input (b) Ground truth (c) WILD (d) Ours

Fig. 1. Sample results of the proposed method (with the generalized scene-object clas-
sifier) and the WILD [?] method on the Wild-8 dataset. The results show that the
proposed algorithm generates more complete and accurate results than WILD, espe-
cially on objects (lion and elephant). Each color indicates a semantic label and the
legend is shown on the bottom. Best viewed in color with enlarged images.

Fig. 4. Sample results of the proposed method (with the generalized scene-object
classifier) and the WILD [13] method on the Wild-8 dataset. The results show
that the proposed algorithm generates more complete and accurate results than
WILD, especially on objects (lion and elephant). Each color indicates a semantic
label and the legend is shown on the bottom.

4.2 Wild-8 Dataset

The Wild-8 dataset consists of 100 weakly-labeled videos, and 33 of them are
with pixel-level annotations. It contains 8 categories including scenes (sky, tree,
grass, sand and water) and objects (bird, lion and elephant). Each video is
associated with multiple video-level labels and contains 30 frames with 640 ×
480 resolution.

We first evaluate the contribution of the scene-object classifier in the submod-
ular function. Table 1 shows that the proposed algorithm with the generalized
scene-object classifier (second column from the right) significantly improves the
performance of the state-of-the-art methods (e.g., more than 15% gain in terms
of aveAcc and mAP). In addition, the scene-object classifier improves results
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1

(a) Input (b) Ground truth (c) Ours (d) Ours (detailed)

Bird Sky Water Tree Lion Sand

Fig. 1. Sample results of the proposed method with di↵erent classifiers on the
Wild-8 dataset. The results in (c) and (d) are generated by the proposed method
with the generalized and detailed scene-object classifier. The results show that
the detailed scene classifier further improves the performance on both object
(e.g, bird) and scene (e.g., sand) categories. Each color indicates a semantic
label and the legend is shown on the bottom. Best viewed in color with enlarged
images.

Fig. 5. Sample results of the proposed method with different classifiers on the
Wild-8 dataset. The results in (c) and (d) are generated by the proposed method
with the generalized and detailed scene-object classifier. The results show that
the detailed scene classifier further improves the performance on both object
(e.g, bird) and scene (e.g., sand) categories. Each color indicates a semantic
label and the legend is shown on the bottom.

in most categories compared with only using the similarity term (third column
from the right).

Overall, the proposed algorithm performs favorably on both object (e.g.,
lion and elephant) and scene (e.g., sky and tree) categories. The MIL method
[40] achieves high accuracy in categories of water and grass since it uses the
max-margin strategy, which contributes more to categories with larger regions
while usually ignoring small objects (e.g., lion and elephant). The WILD scheme
[13] performs well in the bird and sand categories. However, when objects and
scenes have similar appearances, the smoothness assumption used in [13] may
introduce ambiguity and thus it leads to low accuracy (e.g., lion, elephant and
tree). In contrast, the proposed algorithm not only considers similarities between
supervoxels but also utilizes a scene-object classifier, which is able to guide the
submodular function for separating scenes and objects. Fig. 4 shows some results
generated by the WILD method [13] and proposed algorithm with the generalized
scene-object classifier. As the codes and results of the WILD method [13] are
not available, we use the reported results from the original paper for illustration.
The parsing results of the proposed algorithm are more complete and accurate,
especially on object regions (lion and elephant). The results also demonstrate
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the usefulness of the proposed scene-object classifier as it helps analyze video
contents and discriminate objects from various scenes.

Next, we extend the scene-object classifier to a detailed scene classifier with
multiple categories. To achieve this, we carry out another finetuned FCN by
using the same training set as mentioned before, but keeping different scene
categories (without merging to a single scene category). Here, we still keep a
single object category due to the fact that objects usually vary a lot in different
scenes while there are common scene categories appearing in different videos.

Table 1 (rightmost column) shows that the proposed algorithm with the
detailed scene classifier achieves highest accuracy in terms of aveAcc (i.e., 81.4%)
and mAP (i.e., 78.6%) when compared to all the other methods. As the detailed
scene classifier provides more discriminative information for each scene category,
the proposed algorithm further improves results in most categories, especially in
bird and sand classes, which are significantly improved from 41.5% to 66.2% and
from 44.7% to 75.3%, respectively. Fig. 5 shows sample results of the proposed
algorithm guided by the proposed two classifiers, i.e., the generalized scene-object
classifier and the detailed one.

Furthermore, we validate the effectiveness of the proposed region-based match-
ing process by comparing it with directly using the energy gain obtained from the
submodular optimization. When iteratively selecting supervoxels into the facility
set in the submodular function for a target category, each supervoxel is associ-
ated with an energy gain to represent the potential to be the target category
(see Fig. 3 for an illustration). Table 2 shows that compared with the method
using energy gain, the matching process consistently improves the results with
both generalized and detailed scene-object classifiers.

4.3 SUNY-24 Dataset

We also evaluate the proposed method on the challenging SUNY-24 dataset [15],
which contains 24 categories and 8 videos. Each video is taken in one scene with
motion of camera or objects, and contains 70 to 88 frames with pixel-level anno-
tations. Each single video usually contains multiple categories with small seman-
tic regions and complex scenes (see Fig. 6). The mutual information among the
video collection is insufficient and ambitious. These factors make this dataset
even challenging. We compare our method with the generalized and detailed
scene-object classifiers to the CRANE [8] and WILD [13] methods. Fig. 6 shows
the challenge in the SUNY-24 dataset and demonstrates the effectiveness of the
proposed method with the generalized and detailed scene-object classifiers. Ta-
ble 3 shows that the proposed method performs favorably on this challenging
dataset. The results are improved with more than 7% gains in terms of aveAcc
using the proposed generalized model, and more than 20% gains using the de-
tailed scene classifier.
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(a) Input (b) Ground truth (c) Ours (d) Ours (detailed)

Sky WaterTreeGrass RoadBuildingVoid Boat

Fig. 1. Sample results of the proposed method with di↵erent classifiers on the SUNY-
24 dataset. The results in (c) and (d) are generated by the proposed method with
the generalized and detailed scene-object classifiers. The results show the challenges in
the SUNY-24 dataset, i.e., some semantics in the video are small (e.g., building, grass
and road) and the scenes are various and complex (e.g., the sample video contains 6
di↵erent scene labels). The proposed method with the generalized scene-object classifier
successfully labels some of the semantics (e.g., void and water), and the performance is
further improved by the detailed one (e.g., boat, water and sky). Each color indicates
a semantic label and the legend is shown on the bottom. Best viewed in color with
enlarged images.

Fig. 6. Sample results of the proposed method with different classifiers on the
SUNY-24 dataset. The results in (c) and (d) are generated by the proposed
method with the generalized and detailed scene-object classifiers. The results
show the challenges in the SUNY-24 dataset, i.e., some semantics in the video
are small (e.g., building, grass and road) and the scenes are various and complex
(e.g., the sample video contains 6 different scene labels). The proposed method
with the generalized scene-object classifier successfully labels some of the se-
mantics (e.g., void and water), and the performance is further improved by the
detailed one (e.g., boat, water and sky). Each color indicates a semantic label
and the legend is shown on the bottom.

Table 3. Video scene co-parsing in terms of the average per category accuracy
(aveAcc) on SUNY-24.

Indicator CRANE WILD Ours (generalized) Ours (detailed)

aveAcc 13.8 14.1 21.6 35.42

5 Concluding Remarks

In this paper, we propose a scene co-parsing framework to assign semantic pixel-
wise labels in weakly-labeled videos. We first extract representative supervox-
els for different categories by a supervoxel ranking scheme. To relax the con-
straints of large-scale annotations with fixed category numbers, we incorporate
the generalized scene-object classifier into the submodular objective function
which provides guidance in distinguishing the contents of objects and scenes. By
iteratively optimizing the submodular function, we select representatives that
share mutual similarities and maintain higher probabilities to match the target
category. To exploit semantic information among the video collection, we predict
category potentials and assign semantic labels for each supervoxel by matching it
to the selected representatives. Experimental results on the Wild-8 and SUNY-
24 datasets show that the proposed algorithm performs favorably against the
state-of-the-art approaches in terms of visual quality and accuracy.
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25. Rubio, J.C., Serrat, J., López, A.: Video co-segmentation. In: Proceedings of the
11th Asian Conference on Computer Vision. (2012) 3

26. Chiu, W.C., Fritz, M.: Multi-class video co-segmentation with a generative multi-
video model. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. (2013) 3

27. Fu, H., Xu, D., Zhang, B., Lin, S.: Object-based multiple foreground video co-
segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition. (2014) 3

28. Guo, J., Cheong, L.F., Tan, R.T., Zhou, S.Z.: Consistent foreground co-
segmentation. In: Proceedings of the 12th Asian Conference on Computer Vision.
(2014) 3

29. Zhang, D., Javed, O., Shah, M.: Video object co-segmentation by regulated max-
imum weight cliques. In: Proceedings of the 13th European Conference on Com-
puter Vision. (2014) 3

30. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural
language with recursive neural networks. In: Proceedings of the 28th International
Conference on Machine Learning. (2011) 3

31. Munoz, D., Bagnell, J.A., Hebert, M.: Stacked hierarchical labeling. In: Proceed-
ings of the 11th European Conference on Computer Vision. (2010) 3

32. Yang, J., Price, B., Cohen, S., Yang, M.H.: Context driven scene parsing with
attention to rare classes. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition. (2014) 3

33. Xu, J., Schwing, A.G., Urtasun, R.: Tell me what you see and I will show you
where it is. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. (2014) 3

34. Chen, X., Jain, A., Davis, L.S.: Object co-labeling in multiple images. In: Pro-
ceedings of IEEE Winter Conference on Applications of Computer Vision. (2014)
3

35. Galvão, R.D.: Uncapacitated facility location problems: contributions. Pesquisa
Operacional 24 (2004) 7–38 4



Weakly-supervised Video Scene Co-parsing 17

36. Lazic, N., Givoni, I., Frey, B., Aarabi, P.: Floss: Facility location for subspace
segmentation. In: Proceedings of IEEE International Conference on Computer
Vision. (2009) 4

37. Zhu, F., Jiang, Z., Shao, L.: Submodular object recognition. In: Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition. (2014) 5, 6

38. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
(2007) 7

39. Yang, F., Jiang, Z., Davis, L.S.: Submodular reranking with multiple feature
modalities for image retrieval. In: Proceedings of the 12th Asian Conference on
Computer Vision. (2014) 8

40. Siva, P., Russell, C., Xiang, T.: In defence of negative mining for annotating weakly
labelled data. In: Proceedings of the 12th European Conference on Computer
Vision. (2012) 9, 12

41. Vezhnevets, A., Ferrari, V., Buhmann, J.M.: Weakly supervised semantic segmen-
tation with a multi-image model. In: Proceedings of IEEE International Conference
on Computer Vision. (2011) 9

42. Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Yang, M.H.: Sky is not the limit:
Semantic-aware sky replacement. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH) (2016) 10


	Weakly-supervised Video Scene Co-parsing
	Guangyu Zhong12, Yi-Hsuan Tsai1, Ming-Hsuan Yang1

