
Exploiting Self-Similarities
for Single Frame Super-Resolution

Chih-Yuan Yang Jia-Bin Huang Ming-Hsuan Yang
Electrical Engineering and Computer Science

University of California at Merced
Merced, CA 95343, USA

Abstract. We propose a super-resolution method that exploits self-
similarities and group structural information of image patches using only
one single input frame. The super-resolution problem is posed as learning
the mapping between pairs of low-resolution and high-resolution image
patches. Instead of relying on an extrinsic set of training images as of-
ten required in example-based super-resolution algorithms, we employ a
method that generates image pairs directly from the image pyramid of
one single frame. The generated patch pairs are clustered for training a
dictionary by enforcing group sparsity constraints underlying the image
patches. Super-resolution images are then constructed using the learned
dictionary. Experimental results show the proposed method is able to
achieve the state-of-the-art performance.

1 Introduction

Super-resolution algorithms aim to construct a high-resolution image from one
or multiple low-resolution input frames [1]. They address an important prob-
lem with numerous applications. However, this problem is ill-posed because
the ground truth is never known, and numerous algorithms are proposed with
different assumptions of prior knowledge so that extra information can be ex-
ploited for generating high-resolution images from low-resolution ones. Exist-
ing super-resolution algorithms can be broadly categorized into three classes:
reconstruction-based, interpolation-based, and example-based approaches.

Interpolation-based super-resolution methods assume that images are spa-
tially smooth and can be adequately approximated by polynomials such as bilin-
ear, bicubic or level-set functions [2, 1, 3]. This assumption is usually inaccurate
for natural images and thus over-smoothed edges as well as visual artifacts often
exist in the reconstructed high-resolution images. These edge statistics can be
learned from a generic dataset or tailored for a particular type of scenes. With
the learned prior edge statistics, sharp-edged images can be reconstructed well
at the expense of losing some fine textural details.

For reconstruction-based algorithms, super-resolution is cast as an inverse
problem of recovering the original high-resolution image by fusing multiple low-
resolution images, based on certain assumed prior knowledge of an observation
model that maps the high-resolution image to the low resolution images [4,
5]. Each low-resolution image imposes a set of linear constraints on the un-
known high-resolution pixel values. When a sufficient number of low-resolution
images are available, the inverse problem becomes over-determined and can be
solved to recover the high-resolution image. However, it has been shown that



the reconstruction-based approaches are numerically limited to a scaling factor
of two [5].

For example-based methods, the mapping between low-resolution and high-
resolution image patches is learned from a representative set of image pairs, and
then the learned mapping is applied to super resolution. The underlying assump-
tion is that the missing high-resolution details can be learned and inferred from
the low-resolution image and a representative training set. Numerous methods
have been proposed for learning the mapping between low-resolution and high-
resolution image pairs [6–8, 3, 9–11] with demonstrated promising results.

The success of example-based super-resolution methods hinge on two ma-
jor factors: collecting a large and representative database of low-resolution and
high-resolution image pairs, and learning their mapping. Example-based super-
resolution methods often entail the need of a large dataset to encompass as much
image variation as possible [6–8, 3, 9–11] with ensuing computational load in the
learning process. Moreover, the mapping learned from a general database may
not be able to recover the true missing high-frequency details from the low-
resolution image if the input frame contains textures that do not appear in the
database. For example, the mapping function learned from low-resolution/high-
resolution image pairs containing man-made objects (e.g., buildings or cars) is
expected to perform poorly on natural scenes. Furthermore, the rich image struc-
tural information contained in an image is not exploited. In light of this, Glasner
et al. [12] propose a method that exploits patch redundancy among in-scale and
cross-scale images in an image pyramid to enforce constraints for reconstructing
the unknown high-resolution image.

In [10], Yang et al. present a super-resolution algorithm by employing sparse
dictionary learning on high-resolution and low-resolution images. In this algo-
rithm, the low-resolution images are considered as a downsampled version of
high-resolution ones with the same sparse codes. Using a representative set of
image patches, a dictionary (or bases) is learned for sparse coding using both
high-resolution and low-resolution images. Their approach performs well under
the assumption that image patches of the input image are similar to the ones
in the training data, e.g., similar types of images. Existing dictionary learning
algorithms often operate on individual data samples without taking their self-
similarity into account in searching for the sparsest solutions [13]. Observing
this, Mairal et al. [14] recently propose an algorithm exploiting the intuition
that similar patches in an image should admit similar sparse representation over
the dictionary. By enforcing group sparsity, their experimental results on image
denoising and demosaicing demonstrate improvements over existing methods.

We propose a super-resolution method that exploits self-similarities and group
structural constraints of image patches using only one single input frame. In con-
trast to [10], our algorithm exploits patch self-similarity within the image and
introduces the group sparsity for better regularization in the reconstruction pro-
cess. Compared with [14], we exploit not only the patch similarity within scale
but also across scales. In addition, we are the first to show structural sparsity can
be successfully applied to the image super-resolution (which is not a trivial exten-



sion). Different from [12], we enforce constraints in constructing high-resolution
image patches within an image pyramid, and exploit group sparsity and generate
better super resolution images. Experimental results show the proposed method
is able to achieve the state-of-the-art performance for image super resolution
using one single frame.

2 Proposed Algorithm
We present the proposed algorithm in this section. Our approach exploits both
patch similarity across scale and group structural constraint underlying the nat-
ural images. In contrast to existing super-resolution algorithms that resort to
a large data of disparate images, we show that the training patches generated
directly from the input image itself facilitate finding more similar patches.

Our algorithm consists of two main steps in which we exploit self-similarities
among image patches. We first generate high-resolution/low-resolution patch
pairs from one single frame by exploiting self-similarities. To generate high-
resolution/low-resolution patch pairs from one single frame, we create an image
pyramid and build the patch pairs between corresponding high-resolution/low-
resolution images. As shown in [12], the use of an image pyramid provides an
effective method to generate a sufficient number of high-resolution patches from
low-resolution ones.

After creating high-resolution/low-resolution patch pairs, we enforce the group
sparsity constraints among similar patch pairs. The group sparsity constraints
have been shown to be effective for image denoising and demosaicing [14]. In
contrast to [14], we exploit not only the patch similarity within image scale but
also across image scale. In addition, we show that structural sparsity can be
successfully applied to the image super-resolution. We present the details of our
algorithm in the following sections.

2.1 Exploiting Self-Similarities to Generate Example Pairs

In the first step, we generate a set of high-resolution/low-resolution patch pairs
from one single input image. These generated patch pairs are used to construct
the output high-resolution image in the second step. Conventionally, the source
of image pairs for example-based algorithms can be extracted from an extrin-
sic large dataset that encompasses a wide range of scenes or a category-specific
one (e.g., [6, 10]). Alternatively, such image pairs can be extracted intrinsically
from one single frame (e.g., [12]). The advantage of using extrinsic dataset is
the availability of plentiful patch pairs, which may facilitate finding matches
between high-resolution and low-resolution image patches. However, the draw-
back is the ensuing problem with large image variation inherent among image
pairs from diverse sources. Consequently these algorithms may find similar low-
resolution patches from the dataset, but the paired high-resolution patches are
not necessarily suitable for constructing high quality super-resolution images.

To avoid this problem, we generate patch pairs naturally bearing strong sim-
ilarities directly from the input low-resolution image itself. Motivated by the
observations of [12], we build image patch pairs from an image pyramid to pro-
vide highly similar patch pairs.



Assume the relationship between high-resolution image Ih, and low-resolution
image Il is

Il = (Ih ∗B) ↓s, (1)

where ∗ is a convolution operator, B is an isotropic Gaussian kernel, and ↓s is
a subsampling operator with scaling factor s. From an input image I0 shown
in Fig. 1, we first generate low-resolution images Ik (k = −1, . . . ,−n). By well
controlling the scaling factors and the variance parameters of the Gaussian ker-
nels, it is possible to create high-resolution patches by exploiting self-similarity
among the input image and generated low-resolution images. Fig. 1 illustrates
the concept, and Proposition 1 states the relationship between scaling factors
and the corresponding Gaussian variance parameters.

Fig. 1. Exploiting cross-scale patch redundancy in an image pyramid: I0 is the input
image. I−1 and I−2 are downsampled layers from I0. The pixels of I ′1 and I ′2 are copied
and enlarged from image patches of I0. For a source patch Ps in I0, several similar
patches (P1 and P2) can be found in lower-resolution images (I−1 or I−2). For each
found patch (P1 or P2), a corresponding region (R1 or R2) in I0 are determined.
Similarly, a corresponding region (D1 or D2) are determined by two factors: (1) the
region of source patch Ps, (2) the layer index of the found patch (-1 of I−1 or -2 of
I−2). Finally, the intensity value of R1 are copied to D1 with enlarged area, so as R2

to D2.

Proposition 1. For any two downsampled images Ip = (I0 ∗ Bp) ↓sp and Iq =
(I0 ∗ Bq) ↓sq of the image pyramid, the variances of their Gaussian kernels are
related by σ2

p = σ2
q · log(sp)/ log(sq).

The proof of this proposition is presented in Appendix 1. We assume the input
image I0 is a downsampled result from an unknown high-resolution image Ik
(k ≥ 1), so that we can exploit patch similarity across scales to fill regions in Ik.
We set sk = sk/n (k = −1, . . . ,−n) where s is the expected scaling factor for final
output image and n is the number of low-resolution images. This exponential
setting is critical because our goal is to create high-resolution/low-resolution
patch pairs for second part. Only with this setting described in Proposition 1,
the Gaussian kernel variances between Ik to Ik−n are the same as In to I0.

For a source patch Ps in the input image I0, we use the approximate nearest
neighbor algorithm [15] to find most similar patches in low-resolution images.



Assume two patches are found, i.e., P1 and P2 in Fig. 1, their corresponding
regions (R1 and R2) in I0 have larger size than P1 and P2. Similarly any image
patch Ps of I0 can be assumed to be generated by high-resolution images with
Equation 1, and the corresponding regions in the high-resolution images are
D1 and D2. The relationship between Pk to Rk should be similar as Ps to
Dk, and thus we set Dk to have the same intensity as Rk. However, Ps is not
completely the same as Pk and Rk is not completely the same as Dk. We compute
their weights based on their similarity with exp(−‖Ps−Pk‖2/σ2) to average the
overlapped high-resolution patches, where σ controls the degree of similarity.

Denote the high-resolution images are I ′1 and I ′2 in Fig. 1, they contain many
copied patches but may have some uncovered regions (i.e., some source patches in
I0 may not find similar patches in the image pyramid). We fill the uncovered area
with the back projection algorithm [4] for improving image resolution. Because
the blur kernels are known in our formulation, we generate high-resolution images
by compensating low-resolution images

Ih = I ′′h − (I ′′l − I ′l) ↑s, (2)

where I ′′h is an initial high-resolution image, I ′′l is the image generated by I ′′h in
Equation 1, and I ′l is the images where Dk is copied to. The upsampling operator
↑s we use here is bicubic interpolation. If I ′l has uncovered areas, we ignore these
regions and set their pixel values to to zero. We generate the initial I ′′n with
bicubic interpolation of I0, and compensate I ′n to I0. We summarize the first
step to generate high-resolution/low-resolution image pairs in Algorithm 1.

2.2 Exploiting Group Self-Similarities to Construct High-Resolution
Images

The method presented in Section 2.1 can generate a high-resolution image H, but
the resulting image may contain significant amount of noise. In this section we
propose a method to further refine it by exploiting the group sparsity constraints
among image patches. As the high-resolution image H and low-resolution image
L are known, and the width of the Gaussian kernel σ is also known, we can
generate several high-resolution images from H by the downsampling process
described in Equation 1.

From the first step, we have n + 1 pairs of images between Ik and Ik−n
(k = 0, . . . , n). We form image pairs that every low-resolution patch in Ik−n has
a corresponding high-resolution patch in Ik whose scaling factor is s. We use
all the patch pairs to learn a dictionary with their group sparsity in order to
capture the relationship among all the high-resolution or low-resolution patches,
respectively.

In order to train this dictionary, we first extract features from low-resolution
patches and high-resolution patches similar to [10]. The features we extract from
low-resolution patch are two first-order image gradients and two second-order
image gradients along horizontal and vertical axes, i.e. [1, 0,−1], [1, 0,−1]>,
[−1, 0, 2, 0,−1], [−1, 0, 2, 0,−1]>. For each high-resolution patch, each feature
vector is formed by raster scan of pixel values after subtracting the mean value
of that patch.



Algorithm 1: Construct high-resolution images from single input frame

Data: Input image L, Zooming factor z, Gaussian kernel variance σ2
6 , Number

of similar patches m, Similarity weight parameter σw, Back-projection
loop number lb

Result: High-resolution images I1 to In (n is decided by z)
Set I0 = L with resolution (h0, w0);
for k = 1, . . . , 6 do

Set scaling factor s−k = (1/1.25)k;
Compute convoluted image C−k by convolving I0 with a Gaussian kernel
whose variance σ2

−k = σ2
6 ∗ log(k)/ log(6);

Set h−k = h0 ∗ s−k, and w−k = w0 ∗ s−k (possibly non-integer);
Compute image I−k by subsampling C−k to the resolution (h−k,w−k);

end
for k = 0, . . . , 5 do

for each 5×5 patch Ps in I−k do
Compute the corresponding region Rs in C−(k+1) (boundary
coordinates of Rs are usually non-integer);
Compute Qs by subsampling Rs into a 4× 4 patch;
Save patch pair (Qs, Ps) into patch pair database B;

end

end
Compute number of upsampling image n=roundup(log(z)/ log(1.25));
for k = 1, . . . , n do

Compute image Ik’s resolution as (h0 × (1.25)k, w0 × (1.25)k) ;
for each 5×5 region in Ik do

Compute the corresponding region Rq in Ik−1 (boundary coordinates of
Rq are usually non-integer);
Compute query patch Qq by subsampling Rq into a 4× 4 patch;
Query Qq in database B to find similar patches Q1 ∼ Qm with paired
5× 5 patches P1 ∼ Pm and difference value dt = ‖Qq −Qt‖2;
for t = 1, . . . ,m do

Compute patch weight wm = exp(−dt/σw);
Record each patch P and weight w;

end

end
Compute average image A by weighted average overlapped patches {P} and
weights {w};
Set scaling factor sk = 1.25k;
Compute Gaussian kernel whose variance σ2

k = σ2
6 ∗ log(k)/ log(6);

Set the initial value of back-projected image Y as A;
for t = 1, . . . , lb do

Compute back-projected image Y respect to I0 with Gaussian
projection kernel (variance = σ2

k), downscale and upscale factor sk,
back-projection kernel the same as projection kernel;

end
Set Ik = Y ;
Add patch pairs (Q,P ) to B from image pairs Ik−1 and Ik as above;

end



For each high-resolution/low-resolution patch pair, we compose one concate-
nated feature vector. As the dimensions of low-resolution patch feature and high-
resolution patch feature are different, we normalize both feature vectors inde-
pendently in order to balance their contributions, before concatenating them
into one single vector. All of the concatenated feature vectors are normalized to
unit-norm vectors for dictionary learning with group sparsity constraints. Due to
the feature design, it is possible that both of the high-resolution feature vector
and low-resolution feature vector are zero. In such cases, these feature vectors
are discarded.

To exploit the group similarity among patch pairs, we group pairs with similar
feature vectors into clusters by K-means clustering. The feature we choose is the
image gradient generated by low-resolution patches regardless of high-resolution
patches because the low-resolution patches are more reliable than high-resolution
patches.

With a given dictionary D, we solve the group sparse coefficients for each
cluster Ui as

min
Ai

‖Ai‖1,2 s.t. ‖Yi −DAi‖F ≤
√
niδ, (3)

where ‖A‖1,2 =
∑n

k=1 ‖Rk‖2 and Rk is A’s k-th row. In the equation above,
Yi is the column-wise feature vector in cluster Ui, ni is the column number
of Yi, ‖ · ‖F is the Frobenius norm, and δ is a threshold controlling how similar
the reconstructed feature vectors should be constructed from the original feature
vectors. We use the SPGL1 package [16] to solve the above optimization problem.

As the group sparse coefficients are solved within separated cluster and the
dictionary is given before solving the above equation, we need to update the
dictionary for overall optimization. We denote A as the union of all coefficients
Ai, and Y as the union of all feature vectors Yi. The dictionary D is updated by
the K-SVD algorithm [13],

D = arg min
D
‖Y −DA‖F s.t. ‖Dj‖2 = 1 ∀ j, (4)

where Dj is the j-th column of D. We iteratively solve group sparse coefficients
in Equation 3 and Equation 4 until both A and D converge. The product of
dictionary D and coefficient A contains the resulting feature vectors by patch
similarity not only within each cluster but also among all clusters. We use these
feature vectors to generate the output high-resolution image. We summarize the
process of this step in Algorithm 2.

3 Experimental Results
In this section, we describe the experimental setups and present the results
using the proposed method and other algorithms. For all the experiments, we
set the number of support low-resolution image n = 6, the number of nearest
neighbor m = 9, variance of Gaussian blur kernel σ2 = 0.8, scaling factor s
= 3, and group sparse coding threshold δ = 0.05. For a color input image, we
convert it to YCbCr space and apply our algorithm only on luma component Y,
and simply bicubic interpolate chroma components CbCr since human eyes are
much more sensitive to luma rather than chroma. To compare with the state-
of-the-art example-based algorithms, we use the original code provided by [10],



Algorithm 2: Refine image through group sparse coding

Data: Image Pyramid {Ik} k = −6, . . . , n , Zooming factor z, Gaussian kernel
variance σ2

6 , Low-resolution patch size m, Cluster number c, Group
sparsity threshold δ, Dictionary size d, Dictionary update loop number K

Result: Refined high-resolution image H
for k=0, . . . , 6 do

Denote low-resolution image Lk = I−k;

Compute expected scaling factor s = 1.25−k ∗ z and index
t =roundup(log(s)/ log(1.25));
Denote upsampled image Is = It;
Set σ2 = σ2

6 ∗ 6 ∗ log(1.25)/ log(s);
Compute Ic by convolving Is with a Gaussian kernel whose variance is σ2;
Set expected resolution (hh, wh) = (s ∗ h0, s ∗ w0) where (h0, w0) is I0’s
resolution;
Compute Hk by subsampling Ic to resolution (hh, wh) ;

for each m×m patch P l
i on Lk do

Set patch Ph
i = the corresponding mz ×mz patch of P l

i on Hk;

Compute high-resolution feature vector fh,r
i = Ph

i −mean(Ph
i );

Compute low-resolution feature vector f l,r
i with gradient vectors P l

i ;

Normalize feature vector fh,r
i to fh,n

i and record the norm value vhi ;

Normalize feature vector f l,r
i to f l,n

i ;

Concatenate vectors fh,n
i and f l,n

i to single vector fc
i ;

Normalize vector fc
i to vector yi, and save fc

i ’s norm value vci ;

end

end

Cluster all {f l,r
i } by K-means clustering to get c clustering sets {Uj}, j = 1 . . . c,

from vector set. Each Uj contains several indexes of similar f l,r;
Denote Y as all vectors {yi} and set initial dictionary D0 = first d non-repeated
yi vectors;
for k=1 , . . . , K do

For every cluster Uj , find the coefficient set Aj by Equation 3;

Denote Ak as all coefficient sets {Aj} j = 1, . . . , c and compute residual
rk = ‖Y −Dk−1Ak‖F ;

for each m×m patch P l
i on l0 do

Reconstruct yri = D · ai, where ai is yi’s coefficients in Aj ;

De-normalized ydi = yri · vci ;
Reconstruct normalized high-resolution feature vector
fh,r
i = de-concatenatehigh(ydi );

Reconstruct de-normalized feature vector fh,d
i = fh,r

i · vhi ;

Reconstruct high-resolution intensity patch Ph,r
i = fh,d

i + mean(Ph
i )

where Ph
i is P l

i ’s corresponding mz ×mz patch on Hk;

end

Compute Hk = average of overlapped Ph,r
i ;

Update dictionary Dk from Dk−1 by Equation 4;

end

Set H = Hk, where k = arg min{rk} ;



and implement the algorithm of [12]1. More results and MATLAB code can be
found on http://eng.ucmerced.edu/people/cyang35.

We use images in the Berkeley segmentation dataset [17] for experiments.
As shown in Fig. 2-7, the proposed algorithm generates shaper images with less
artifacts than the ones obtained by the example-based super-resolution algo-
rithm [10]. Due to space limitation, we cannot present the full resolution images
in this manuscript and these images are best viewed on high-resolution displays
(additional results with high resolution images can be found in the supplemen-
tary material). For example, the super-resolution images generated by [10] have
more artifacts along vertical strips or regions with intensity discontinuity, e.g.,
the horse legs in Fig. 2, the swimmer’s cap in Fig. 4, the gentleman’s collar in
Fig 5, and the stripes in Fig. 7. In addition, the proposed algorithm outperforms
the conventional super-resolution algorithm using bicubic interpolation. The re-
sults can be explained by the assumption of example-based super-resolution
algorithm which entails the need to find matches between low-resolution and
high-resolution image pairs from a large training set. However, this assumption
does not always hold when the training set contains disparate images which are
not directly relevant to the test image (i.e., the trade-off between generality and
specialty). In contrast, our algorithm does not have this problem because the
training set is constructed directly from the input frame rather than a fixed
dictionary.

Compared with the results generated by [12], the super-resolution images by
our method also have fewer artifacts, e.g., along antlers of the deer in Fig. 3 and
facial regions around eyes and mouth in Fig. 6. The success of [12] depends on
whether there are plentiful similar patches in the image pyramid generated by
the input frame. For images with numerous repetitive patterns (e.g., sunflower
fields or butterfly wings), this algorithm tends to work well. This algorithm is not
expected to perform well for an image containing a unique object, e.g., a human
standing in a natural scene as shown in Fig. 6. As this unique object occupies a
relatively small region, this algorithm is not able to find a sufficient number of
similar patches in the natural image using the low-resolution patches from the
unique object (e.g., faces), and consequently produce improper high-resolution
patches (i.e., generate super-resolution image patches of foreign objects). The
resulting effects are especially noticeable as these unique objects are usually
the focus of attention in these images. Our proposed algorithm does not have
such artifacts because we exploit both of group similarity and patch similarity
rather than mere patch similarity in [12]. Although the patches on human faces
are few, they can be included in similar groups to maintain the similarity in
the dictionary learning. Consequently, they produce much fewer artifacts in the
super-resolution images.

1 This is based on our best efforts to implement the algorithm by Glasner et al. [12]
with their help and suggestions as the authors do not release their code. The results
may not be exactly the same as their reported results due to parameter settings.



(a) Bicubic (b) Yang et al. [10] (c) Proposed

Fig. 2. Horse (results best viewed on a high-resolution display) Our result shows
sharper edge than bicubic interpolation and less artifacts than [10] along the fence
and the front legs.

4 Concluding Remarks
In this paper we propose an example-based super-resolution algorithm by ex-
ploiting self-similarities using one single input image. We exploit self-similarities
on two fronts: both in generating image pairs and learning dictionary with group
sparsity. Experimental results show our algorithm is able to achieve the state-of-
the-art super-resolution images. Our future work will focus on algorithms that
take the geometrical relationships among image patches into account for efficient
and effective dictionary learning.

Acknowledgments
We would like to thank Daniel Glasner and Oded Shahar for numerous discus-
sions regarding implementation details of their super-resolution algorithm.

Appendix
Proof of Proposition 1: Assume s2 = sn1 , where n is a natural number and the
subsample operator ↓ does not decrease image quality, then Iin ∗B2 is equivalent
to ((((Iin ∗B1) ↓s1) ∗B1) ↓s1 · · · ∗B1) ↓s1 .

Also assuming the subsample operator can be ignored, it implies Iin ∗ B2 =
((Iin ∗ B1) ∗ B1) · · · ∗ B1 n times. Using the associative law of a convolution
operator in the discrete domain, i.e., (f ∗ g) ∗h = f ∗ (g ∗h), it follows Iin ∗B2 =
Iin ∗ (B1 ∗ · · · ∗B1), and B2 = B1 ∗ · · · ∗B1 n times.

Because we use Gaussian blur kernel and the convolution of two Gaussian
kernels is still a Gaussian kernel whose variance is the sum of the two variances,
i.e., σ2

2 = n · σ2
1 as B2 = B1 ∗ · · · ∗B1. With these equation together, σ2

2 = n · σ2
1

and s2 = sn1 , it follows that σ2
1 = σ2

2 · log(s1)/ log(s2) ut.



(a) Glasner et al. [12] (b) Yang et al. [10] (c) Proposed

Fig. 3. Deer (results best viewed on a high-resolution display). Compared with result
generated [12], our super-resolution image has fewer artifacts (e.g., the antler region
is smoother).Compared with result generated by [10], our super-resolution image has
fewer artifacts (e.g., the antler region).

(a) Glasner et al. [12] (b) Yang et al. [10] (c) Proposed

Fig. 4. Swimmer (results best viewed on a high-resolution display). Compared with
result generated by [12], our result has fewer artifacts (e.g., muscle and rib regions).
Compared with result generated by [10], our result has fewer artifacts (e.g., around the
head region).

(a) Glasner et al. [12] (b) Yang et al. [10] (c) Proposed

Fig. 5. Gentleman (results best viewed on a high-resolution display). Compared with
result generated by [12], our result has less artifacts (e.g., on the forehead). Compared
with result generated by [10], our result has less artifacts (e.g., on the collar region).



(a) Original (b) Proposed

(c) Yang et al. [10] (d) Glasner et al. [12]

Fig. 6. Boy (results best viewed on a high-resolution display). Compared with result
generated by [12], our super-resolution image has fewer artifacts (e.g., several blotches
in the facial and collar regions). Compared with result generated by [10], our super-
resolution image has fewer artifacts (e.g., several large blotches in the lip and contour
regions).

(a) Bicubic (b) Yang et al. [10] (c) Proposed

Fig. 7. Young Man (results best viewed on a high-resolution display). Our result shows
sharper edge than bicubic interpolation and less artifacts than [10] along the collar and
the stripes.



References

1. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: A
technical overview. IEEE Signal Processing Magazine (2003) 21–36

2. Morse, B., Schwartzwald, D.: Image magnification using level set reconstruction.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
(2001) 333–341

3. Fattal, R.: Image upsampling via imposed edge statistics. In: SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers, ACM (2007)

4. Irani, M., Peleg, S.: Improving resolution by image registration. Computer Vision,
Graphics and Image Processing 53 (1991) 231–239

5. Lin, Z., Shum, H.Y.: Fundamental limits of reconstruction-based superresolution
algorithms under local translation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26 (2004) 83–97

6. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE
Computer Graphics and Applications (2002) 56–65

7. Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch
priors. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. Volume 2. (2003) 729–736

8. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding.
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(2004) 275–282

9. Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient pro-
file prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. (2008)

10. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse rep-
resentation of raw image patches. Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (2008)

11. Xiong, X., Sun, X., Wu, F.: Image hallucination with feature enhancement. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
(2009)

12. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (2009) 349–356

13. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation. IEEE Transactions on Signal Pro-
cessing 54 (2006) 4311–4322

14. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models
for image restoration. Proceedings of IEEE International Conference on Computer
Vision (2009) 2272–2279

15. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimen-
sions. In: SODA ’93: Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete algorithms. (1993) 271–280

16. Berg, E.v., Friedlander, M.P.: SPGL1: A solver for large-scale sparse reconstruction
(2007) http://www.cs.ubc.ca/labs/scl/spgl1.

17. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proceedings of IEEE International Conference on Com-
puter Vision. (2001) 416–423


