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Abstract. Estimating planar projective transform (homography) from
a pair of images is a classical problem in computer vision. In this paper,
we propose a novel algorithm for direct registering two point sets in R2

using projective transform without using intensity values. In this very
general context, there is no easily established correspondences that can
be used to estimate the projective transform, and most of the existing
techniques become either inadequate or inappropriate. While the planar
projective transforms form an eight-dimensional Lie group, we show that
for registering 2D point sets, the search space for the homographies can
be effectively reduced to a three-dimensional space. To further improve
on the running time without significantly reducing the accuracy of the
registration, we propose a matching cost function constructed using local
polynomial moments of the point sets and a coarse to fine approach. The
resulting registration algorithm has linear time complexity with respect
to the number of input points. We have validated the algorithm using
points sets collected from real images. Preliminary experimental results
are encouraging and they show that the proposed method is both efficient
and accurate.

1 Introduction

The importance of 2D projective transforms (planar homographies) in computer
vision stems from the well-known fact that different images of a planar scene are
related by planar projective transforms. For vision applications that deal with
planar objects, examples of which include recognizing hand drawings and traffic
signs, etc., estimating the projective transform between two images is required for
normalizing the image variation due to different cameras. Accordingly, there are
now well-established techniques for automatically recovering planar homography
between images [1]. For these feature-based methods, the idea is to register
two sets of interest points P = {p1, · · · , pk} and Q = {q1, · · · , qk} extracted
from the two images using projective transforms. Intensity values (local intensity
patterns) provide important clues on establishing correspondences across images,
and Direct Linear Transform (DLT) requires only four correspondences in order
to compute a homography. Implicitly, the algorithms define a discrete search
space S that contains a large number of projective transforms (from all possible
correspondences made across the images), and the image intensity pattern is used
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to prune away most part of S that are irrelevant, and the algorithms exhaustively
test each remaining homography according to some matching cost function to
obtain the optimal homography.
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Fig. 1. Four examples for which a direct application of SIFT [2] fails to produce correct
correspondences. The first two images are hand drawings on a whiteboard, and the
others are images of street signs.

In this paper, we study the 2D projective registration problem in its barest
form: using only point sets without intensity values. While DLT requires only
four correct correspondences, there are cases where it is difficult to correctly
determine these correspondences automatically. Figure 1 shows four pairs of such
images that cannot be registered satisfactorily using existing methods. The lack
of salient local intensity patterns often confuses algorithms that match local
feature descriptors. Furthermore, local geometric structure such as curvatures
are not reliable features for computing correspondences since they could vary
wildly under projective transforms. Nevertheless, we can still solve the problem
by sampling a collection of points from each image and register the point sets
using projective transforms1. A set of four points (or more) can be chosen, and a
homography search space S can be defined as consisting homographies generated
by all correspondences for these four points. For each homography in S, its
registration quality can be evaluated by a matching cost function such as

Γ (H; P,Q) =
l∑

j=1

min
i=1,··· ,k

|qj −H(pi)|2. (1)

For point sets containing 500 points, S contains roughly 65 billion homogra-
phies. While this is by no mean a small number, it is still within the capability
of modern hardware to exhaustively search S for the optimal homography. How-
ever, the quartic time complexity makes this approach unattractive since if 5000
points were sampled instead, the search space would increase enormously to the
point that renders the algorithm impotent, even though the two problems do
not different in any essential way other than the number of points (they have
the same images).

The approach advocated in this paper is to abandon the usual paradigm of
defining the search space S using small number of correspondences, which is often
impossible for us anyway. Instead, the search space S should be defined entirely
by the point sets in some global way. The main contribution of this paper is to
show that, under a fairly general assumption on the variability of the homogra-
phies, we can define an effective three-dimensional (discrete) search space S for
projective registration of two point sets in R2. The size of S is independent of
the sizes of the input point sets, and in many cases, it is possible exhaustively
search for the optimal homography in S. Therefore, the time complexity of the

1 Or we can register the binary image obtained from the segmented image as in [3]
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algorithm depends on the complexity of evaluating the matching cost function.
For Γ defined in Equation 1, the complexity is quadratic since it requires the
computation of pairwise distances. However, by using a less expensive matching
cost function constructed from local polynomial moments of the point sets, we
show that it is possible to have an accurate projective registration algorithm
with linear time-complexity.

The projective registration method proposed in this paper is direct in its
truest sense: the algorithm takes in two point sets, which can be readily gen-
erated from images using low-level image processing, and outputs a projective
transform that matches them. No other extra mid- or high-level processing such
as contour detection or local feature extraction are necessary. Since the algo-
rithm exhaustively evaluates every homography in the search space S, it can
provide a reasonable guarantee on the quality of the registration. We conclude
this introduction with a summary of three main contributions of this paper:

1. We show that the search space S for planar projective matching can be
effectively reduced to a three-dimensional discrete search space, and the re-
sulting algorithm has a quadratic O(n2) time-complexity on the size of the
input point sets, which is a substantial improvement over the existing quartic
complexity.

2. We show that the time-complexity of the matching algorithm can be further
reduced to O(n) by using matching cost function constructed from local
polynomial moments.

3. We develop and implement a coarse to fine registration approach. We vali-
date the proposed method using simple point sets and points sets collected
from real images, and encouraging preliminary results suggest the method’s
potential for future applications.

2 Related Works
Estimating homography from pairs of images has been studied quite extensively
in the literature. In particular, [1] contains a chapter on feature-based methods
using Direct Linear Transform (DLT) and RANSAC [4]. The feature-based algo-
rithms typically extract a large number of interest points from the images, and
the tentative correspondences are computed across images by matching descrip-
tors associated to the interest points. A large number of hypothetical homogra-
phies are generated, each from a small number of tentative correspondences, and
evaluated with some matching cost function. The homography that provides the
best registration result is used as the initial guess in a non-linear optimization
algorithm that form the second refinement step.

While the feature-based methods have become the standard repertoire of
computer vision algorithms, they are clearly inadequate for handling point sets
without the associated intensity values since the tentative correspondences can-
not be established as easily without local intensity patterns. It seems that not
much work has been done on matching points directly using projective trans-
forms. Perhaps the difficulty of the problem is best illustrated by the non-
existence result for finite projective invariants shown in [5]. However, in [6], a set
of infinite projective invariants has been proposed, and some of its implication
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have recently been investigated in the work of [7, 3] on registering binary images.
The method proposed in [3] is very general and it works with binary images ob-
tained from segmented images. The algorithm matches the values of a collection
of integrals, which can then be turned into a collection of independent equa-
tions. The non-linear minimization in [3] is solved using Levenberg-Marquardt
algorithm, which in general, unfortunately, does not guarantee convergence to
the global minimum. Finally, we remark that the affine registration of point sets
have been studied quite thoroughly in the literature e.g., [8–17], and many of
these algorithms have found important applications in vision, graphics and other
areas. In addition, nonrigid point-set registration has also received fair amount
of attention, particularly in the medical imaging community, e.g., [18, 19].

3 2D Projective Registration

Let P = {p1, · · · , pk} and Q = {q1, · · · , ql} denote the two point sets for which
we are seeking a 2D planar homography H

H =

h11 h12 h13

h21 h22 h23

h31 h32 1

 (2)

that will align them. The entry h33 is set to one and it corresponds to the
assumption that the planar homography does not map the origin to the line
at infinity. Assume for the moment that the two point sets have equal number
of points k = l, and the correspondences under H is exact: qi = H(pi), for
1 ≤ i ≤ k. Given H as above, the formulas for computing the transformation
q = H(p) (given p = [px, py], q = [qx, qy]) are

qx =
h11px + h12py + h13

h31px + h32py + 1
, qy =

h21px + h22py + h23

h31px + h32py + 1
. (3)

For a fixed pair of (h31, h32), the above formulas become

qi =
1
αi

A pi +
1
αi

t, (4)

where
A =

(
h11 h12

h21 h22

)
, t =

(
h13

h23

)
,

and the point-dependent constant αi equals the denominator in Equation 3.
When h31 = h32 = 0, ai = 1 for all i and Equation 4 reduces to an affine
transform. For any other pair h31, h32, Equation 4 defines a transform between
the modified point set P̃ = {p1/α1, · · · , pk/αk} and Q that appears superficially
similar to an affine transform except for the non-uniform translation t/αi. The
pair h31, h32, the non-affine components of H, will play an important role in the
following discussion.

The basic question we strive to answer in this paper is:
Suppose the ranges of the two non-affine components are known, σ1 ≤ h31 ≤ σ2

and σ3 ≤ h32 ≤ σ4 for some σ1, σ2, σ3, σ4. How should this information be
utilized in 2D projective registration?

Our main observation, which motivates our approach, is that for a fixed pair
of h31, h32, registration using Equation 4 can be effectively reduced to a search
problem on a compact and closed one-dimensional subset Oh31,h32 of GL(2,R).
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This is a straightforward generalization of a well-known result for affine trans-
forms described below. Now armed with this result, our method is very easy to
described: Given the range of the two non-affine components and some specified
precision requirement for the homography matrix, we can form a 2D grid H of
values for h31, h32. For each (h31, h32) ∈ H, we can also discretize its correspond-
ing one-dimensional set Oh31,h32 , and this provides us with a three-dimensional
discrete search space S ≡ { sijk } such that each sijk ∈ S corresponds to a 2D
projective transform. Our algorithm simply does an exhaustive search on S to
locate the optimal homography.

3.1 Special Case of Affine Transforms
For an affine registration, qi = Api + t, the translation component t satisfies
the relation mQ = AmP + t, where mQ,mP are the centers of mass of P,Q,
respectively. Once the points are centered:

pi → pi −mP, qi → qi −mQ,

we have only the linear component qi = Api. The affine transform must
match the two covariance matrices

SP =
1
k

k∑
i=1

pip
t
i, SQ =

1
k

k∑
i=1

qiq
t
i , and SQ = ASPAt.

Since both SP, SQ are positive-definite, their square roots exist, and the equation
above implies that

I2×2 = (S−
1
2

Q AS
1
2
P )(S−

1
2

Q AS
1
2
P )t.

That is, the matrix S
− 1

2
Q AS

1
2
P is an orthogonal matrix, i.e., a rotation. In par-

ticular, under the coordinates transform pi → S
− 1

2
P pi, and qi → S

− 1
2

Q qi, the
transformed point sets are now related by an orthogonal transform. Note that
the transformed point sets now have the identity matrix as their covariance
matrices.

The significance of this result in the context of affine registration is that
after the two-steps normalization that turns each point set into a point set
with zero mean and unit variance, the affine registration is reduced to a rigid
registration: finding an orthogonal transform (rotation) in O(2), which is a one-
dimension subset (subgroup as well) of GL(2,R). Essentially, this normalization
step requires that the affine transform exactly matches the linear and quadratic
moments of the two point sets [7], and this constraint reduces the original 4D
problem to an 1D problem, which is considerably easier to solve. Once the rota-
tion has been determined, we can ”unwrap” it to get the full affine transform.

This result can be generalized directly to the projective case, and the main
complication comes from the non-uniform translation in Equation 4. The basic
idea is still the same in that the transform specified in Equation 4 should match
the linear and quadratic moments of the two point sets. The result of this more
general reduction will still be an one-dimensional subset of GL(2,R), but not a
subgroup. Nevertheless, it can be effectively parameterized using trigonometric
functions, and hence efficiently discretized as well.
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3.2 1D Reduction
The main result of this subsection is the following proposition
Proposition 1. Suppose P,Q are two sets of points in R2 related exactly by a
projective transform. There exist coordinates transforms

pi → p̃i, qi → q̃i, (5)
and a vector t, a matrix E, a diagonal matrix D and constants β1, · · · , βk de-
termined entirely by P,Q such that the new sets of transformed points P̃, Q̃ are
related by the following transform

q̃i = Ap̃i + βit, (6)

where the matrix A satisfies the following equation

ADAt + AE + EtAt + ttt = I2×2. (7)

Proof: We will prove this proposition in a somewhat leisure way by exhibiting
all the steps involved in the coordinates transforms, pi → p̃i, qi → p̃i. Suppose
the unknown projective transform is given by Equation 4. We can make the
transform pi → 1

αi
pi to absorb the constant 1

αi
:

qi = Api +
1
αi

t. (8)

Taking the average of both sides gives mQ = AmP+αt, where α = 1
k

∑k
i=1 α

−1
i .

Combining the two equations above yields qi = Api + βi(mQ − AmP), where
βi = 1/(ααi).

Make another transform pi → pi − βimP, we have qi = Api + βimQ. Let

SP, SQ denote the covariance matrices, and the transforms pi → S
− 1

2
P pi and

qi → S
− 1

2
Q qi turn the above equation into

qi = S
− 1

2
Q AS

1
2
P pi + βiS

− 1
2

Q mQ ≡ Api + βit,

where we have let A = S
− 1

2
Q AS

1
2
P and t = S

− 1
2

Q mQ.
Since now

∑k
i=1 qiq

t
i is the identity, we have I2×2 = ASAt+AE+EtAt+ttt

where S =
∑k
i=1 pip

t
i, and E =

∑k
i=1 βipit

t. Furthermore, since S is symmetric
and positive semi-definite, it has an eigen-decomposition S = UDUt. Where D
is a diagonal matrix with non-negative entries and U is an orthogonal matrix. If
we define A ≡ AU, which is equivalent to the coordinates transform pi → Utpi,
we have finally

ADAt + AE + EtAt + ttt = I2×2,

where E ≡ UtE.
For each pair of h31, h32, the set of matrices A satisfying Equation 7 is the

set Oh31,h32 mentioned earlier. The following proposition will show that it is a
one-dimensional subset of GL(2,R). As is clear from the above derivation, the
matrices E,D, the vector t and the constants βi, all can be immediately com-
puted from the input points given h31, h32. Once the transformed point sets have
been registered using Equation 6 with A satisfying Equation 7, it is straight-
forward to unwrap the above steps to recover the homography matrix for the
original point sets exactly as in the affine case. What is left now is an effective
parameterization for the matrices A that satisfy Equation 7, which is given by
the following Proposition.
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Proposition 2. The components of the matrix A =
[
a b
c d

]
are determined by

the matrices E, D, T = ttt and θ, θ:

a =
rP cos θ − E

r
, b =

sP sin θ − F
s

, c =
rP cos θ −G

r
, d =

sP sin θ −H
s

, (9)

where E =
[
E G
F H

]
, T =

[
R T
T S

]
, D =

[√
r 0

0
√
s

]
and P = 1−R+ E2

r + F 2

s , Q = 1− S + G2

r + H2

s .

The two angles θ, θ satisfy cos(θ − θ) = (GEr + FH
s − T )/PQ.

Proof: The proof is straightforward. Expanding the matrix equation (Equa-
tion 7), we have

1 = ra2 + sb2 + 2aE + 2Fb+R, (10)

1 = rc2 + sd2 + 2cG+ 2dH + S, (11)
0 = rac+ sbd+ cE + dF + aG+ bH + T (12)

Completing the squares in the first two equations gives

(
√
ra+

E√
r

)2 + (
√
sb+

F√
s

)2 = 1−R+
E2

r
+
F 2

s
≡ P

(
√
rc+

G√
r

)2 + (
√
sd+

H√
s

)2 = 1− S +
G2

r
+
H2

s
≡ Q (13)

This gives the four equations in Equation 9. Equation 12 gives the relation
between θ, θ: Substituting the four equations in Equation 9 into Equation 12
and collecting terms, we have

PQ cos θ cos θ + PQ sin θ sin θ − GE

r2
− FH

s2
+ T = 0,

which implies that

cos(θ − θ) = cos θ cos θ + sin θ sin θ =
GE
r2 + FH

s2 − T
PQ

. (14)

The two propositions together provide us with an efficient way to define
the three-dimensional search space S mentioned earlier. For a given fixed S, the
complexity of the algorithm depends on the matching cost function. For example,
Equation 1 gives a quadratic time complexity algorithm since it requires the
computations of pairwise distances. To further reduce the time complexity in
our current setup, a computationally less expensive matching cost function is
required.

3.3 Matching Cost Function Using Local Moments
Inspired by the recent works on using moments for registration [7, 20], we pro-
posed a simple and efficient matching cost function constructed directly from
local polynomial moments. The (square) region containing the target point set
Q is divided into four subregions R1, R2, R3, R4. We compute a vector descriptor
DnQ(Ri) for each region Ri using the averaged value of monomials of degree n
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evaluated at the points of Q lying in Ri. For example, using the two linear mono-
mials, the descriptor D1

Q(Ri) = 1
Ni

[
∑
j xj ,

∑
j yj ]. The sum is over all qi ∈ Ri and

Ni is the number of points in Ri. The two components are the linear moments,
and for quadratic moments, we have D2

Q(Ri) = 1
Ni

[
∑
j x

2
j ,
∑
j xjyj ,

∑
j y

2
j ]. In

general, for degree-n moments, the corresponding descriptor vector has n + 1
components DnQ(Ri) = 1

Ni
[
∑
j x

n
j , · · · ,

∑
j x

k
j y
n−k
j , · · · ,

∑
j y

n
j ].

The descriptors can be defined for any point set, and in particular, we can
defined a matching cost function based on comparing these four local moments,
Γn(H; P,Q) =

∑4
i=1 |DnQ(Ri) − DnH(P)(Ri)|

2. Where H(P) denotes the image of
P under H. For example, with linear moments, the matching algorithm will try
to match the center of mass of the points lie in each region.

Unfortunately, the linear moments, while very easy to compute, do not encode
much geometric information, and matching them provides the weakest constraint
for the registration. However, moments of higher-degree, such as quadratic and
cubic moments, offer several possibilities, and matching them in the least-squares
sense as above provide an informative and inexpensive way to compare the point
sets locally. We remark that, because the moments defined above are averaged
values, they are generally insensitive to the change in the number of points.
Finally, it is clear that without computing pairwise distances, the matching cost
function Γn has a linear time complexity.

3.4 Determine the Range for h31, h32

Ideally we would like to determine the range for h31, h32 automatically from the
point sets. Unfortunately, we are not aware of any method that can accomplish
this. However, since our method is geared towards vision applications, we propose
to estimate the ranges empirically using two different methods. First, we gather
many pairs of images and manually select correspondences and compute the
homographies. The range for h31, h32 can be determined directly from these
empirical data.

For the second method, we use the formula for homographies developed in [1]
(page 327). For two cameras with camera matrices C1 = K[ I | 0 ], and C2 =
K ′[ R | t ] and a plane π with homogeneous coordinates [nt d]t. The homography
matrix is given by the formula H = K ′(R− tnt/d)K−1. Where d is the distance
between the plane π and the first camera. We can sample with respect to different
matrices K,K ′ using different focal lengths and also different rotations.

Further simplifications can be done by assuming that d >> |t|, and the
homography matrix is approximated as H ≈ K′RK−1. This gives the infinite
homography between the two cameras [1]. In our simulation with 100, 000 sam-
ples, we randomly sample over a range of focal lengths (from 200 to 1000) and
rotation matrix R, while keeping the cameras’ skew to zero and principal points
at the origin. The simulation shows that less than 0.1% of h31, h32 have absolute
values greater than one. This contrasts sharply with the results for other com-
ponents such as h11, which has about 50% with magnitude greater than one.
The simulation shows that for applications that require registrations of point
sets using homographies that is close to infinite homographies, the search range
for h31, h32 can be reasonable set to be between −5 and 5.
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3.5 Refinement
Although the 1D reduction method proposed in sectin 3.2 make the exhaustive
homography estimation possible, it consumes a significant amount of time in
order to obtain a very precise homography estimation. Therefore, we propose
to use looser intervals of h31, h32 to have an approximate estimation first. The
exhaustive homography estimation in this phase yields a new points set P′ =
H(P) which is reasonably close to the target points set Q. In the refinement
phase, we take advantage of this geometry constraint to try to correspond a
point q in Q only to points from P′ in its local neighborhood.

To build the correspondences, we first compute the normalized orientation
histograms of points in Q and P′. These normalized histograms are used as local
shape descriptor and used to compute the similartiy between a point in Q and
its local neighboors in P′. A normalized orientation histogram is computed as
follows. For a point p in a points set P, we apply Principle Component Analysis
on it local neighborhood points set N( circles in Figure 2), which is a subset of P.
The principle component vector c of the local neighborhood surrounding p give
us the major direction (green lines in Figure 2) in which the points are spreaded.
We then build the orientation histogram based on the angle between vector c
and vector pj , where pj is the vector formed by point p and the j-th point in
N. In our experiments, we used six bins for orientation histogram. Building the
histogram based on the angle between the vector pj and the principal component
instead of x axis provides a rotationally invariant measurement between points
in Q and P′.

As shown in Figure 2, straight lines do not provide discriminative information
for estimating homography. The points with histogram entropy values e less than
0.8 are omitted to speed up the correspondences building process. Entropy is
calculated using e = −Σ6

i=1h(i)log(h(i)), where h is the normalized histogram.
After phase 1, points set Q, and P′ = H(P) should be resonalbly close.

Therefore the histogram of a point q in Q is only compared to its local neigh-
booring points pi from P′. The similarity of q and pi is measured by using the
L2 distance of their histograms. A point pi is said to be corresponding to q if
i = arg min

i
‖hq − hpi

‖, where hq and hpi
are the histograms of q and pi, re-

spectively. After obtaining a collection of correspondences, we utilize RANSAC
to estimate the refined homography (Hr). The matching cost function in the
RANSAC process is the Hausdorff distance [21] between Q and P′.

4 Experiments and Results

We applied our proposed method on the points sets collected from two different
types of images:
Planar Shapes: In the first set of experiments, we drew several shapes on a
typical classroom whiteboard. A pair of images were taken for each shape with
different camera viewpoints (and focal lengths as well). Adaptive thresholding
method [22] is applied to segment the images, and the point sets are then ran-
domly sampled from the foreground pixels of resulting binary images. Three
other pairs of images were taken from street scenes and are shown in the first
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Fig. 2. The normalized orientation histogram of a point is built based on the angles
between vectors pj and its principle component c (green lines). The two bar charts are
the normalized orientation histograms for points A and B, respectively. Points with low
normalized histogram entropy value, point B for example, are omitted in the process
of building correspondences.

three rows in Figure 4. Canny edge detector is applied to compute edges. Point
sets were then randomly sampled from the resulting edges.
Complex scene: Instead of gathering points sets from the contours of planar
shapes or simple hand-drawing shapes, we also applied SIFT [2] on the graffiti
images (Figure 3) to gather points. We adjusted threshold values such that the
number of SIFT points from the two images are similar. We then applied our
algorithm on the gathered points sets to estimate the homography matrix.

We implemented the proposed algorithm using C++. We first search the
optimal h31 and h32 from −5 to 5 with ∆d = 0.1, ∆θ = 1◦. Once an optimal
pair of (h31, h32) has been found, we apply the refinement algorithm on the
points sets Q and H(P). We define local neighborhood to be a range of radius 25
pixels (circles in Figure 2) around a point for calculating orientation histogram
and for building correspondences between Q and H(P).

4.1 Results

Our experiments were conducted using a computer with an Intel T7300 2.0 GHz
Core 2 Duo processor. The average time taken for estimating the homography in
phase 1 are 33.51 seconds. The fourth column in Figure 4 and Figure 3 demon-
strates the comparisons of the points sets Q and H(P). The first row of Table 1
shows the errors (Hausdorff distance [21]) in pixel between Q and H(P) (with
images size 800×600). The average time taken in phase 2 - the refined homogra-
phy estimation is 43.20 seconds. The last column in Figure 4 demonstrates the
comparisons of points set Q and Hr(H(P)), where Hr is the refined homogra-
phy estimation obtained in phase 2. These images clearly demonstrate that the
proposed method in phase 2 is able to obtain a more accuate estimation. The
results in the third row of Table 1 also suggest a siginificant imporvement.

Table 1. The errors in pixels after phase 1 and 2 of the points sets listed in Figure 4.

RCY TRN DSB ARW FOX CAR HUS PCM FSH

phase 1 10.49 10.47 13.25 7.85 6.77 5.49 8.92 6.30 9.86
phase 2 4.26 5.25 6.93 1.30 1.72 2.76 3.00 1.60 2.29
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5 Conclusion and Future Work

We have proposed a novel registration algorithm for matching 2D point sets
related by an unknown planar projective transform. From the two input point
sets and the specified range for the two non-affine components of the homography
matrix, the proposed algorithm defines a discrete three-dimensional space of
homographies that can be searched exhaustively for the optimal homography
transform. We also showed that a matching cost function can be constructed
using local polynomial moments, and the resulting registration algorithm has
linear time-complexity with respect to the size of the point sets.

To increase the efficiency, we chose a slightly coarse search range for h in phase
1. The homography estimated in phase 1 was able to efficiently bring the two
points sets reasonably close to each other. Utilizing the orientation histograms,
we were able to identify feature points and to build the correspondences between
Q and P′. The homography between these two points sets was then estimated us-
ing RANSAC. Preliminary experimental results are encouraging, and they have
shown the proposed algorithms are indeed capable of efficiently and accurately
estimating the projective transform directly from the point sets without other
extra inputs such as intensity values.

We plan to further investigate in the new direction we have proposed in this
paper. In particular, we will investigate in more details the sensitivity of the
algorithm with respect to the sampling intervals (∆d,∆θ), and also the possi-
bility of a GPGPU implementation since the code can be highly parallelizable.
However, the most pressing unresolved issue is the question of whether it is pos-
sible to determine, in some meaningful way, the range for the two non-affine
components directly from the input point sets. Perhaps the infinite projective
invariants proposed in [6] can provide some clues on how to solve this difficult
problem.

Fig. 3. The original pairs of images are shown in the first two columns. Column 3 dis-
plays the comparisons of the point sets of two images. Column 4 shows the comparisons
of the transformed points set and the points of the images in second column. Column
5 shows the blending of the transformed image of the first column and the image in
the second column.
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