
Advances in Visual Tracking

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

November 8, 2010

1 / 135

Tracking in Computer Vision

Castle Point Structure from motion

Stanley

Autonomous robotics

Polar Express

Motion retargeting

Understand geometric correspondences over time

A fundamental problem in computer vision

A challenging and difficult task

Numerous applications

2 / 135

Applications

Motion analysis

Sports medicine

Animation

Surveillance

Autonomous robots

Appearance modeling

Object recognition

Human computer interaction

Games

Video indexing

HCI

ASIMO movie

3 / 135

What to Track?

High-level
Rigid object

position
orientation
bounding box or ellipse
motion parameters: similarity or affine transform

Non-rigid object

parts
pose: 2D or 3D
contour
shape deformation: thin-plate spline [Bookstein, 1989]
fingers, hands, etc.

Mid-level: region, contour

Low-level: feature

4 / 135

Motion Information

How to describe the motion contents:

2D/3D motion
position
scale
rotation
similarity transform
affine transform
dynamics

5 / 135

Feature Tracking

Image features [Shi and Tomasi, 1994]

Interest point operator:

Harris corner detector [Harris and Stephens, 1988]
SIFT (Scale-Invariant Feature Transform) [Lowe, 2004]
SURF (Speeded Up Robust Features) [Bay et al., 2006],
GLOH (Gradient Location and Orientation
Histogram) [Mikolajczyk and Schmid, 2005]

SIFT flow [Liu et al., 2008]

SURFTrac [Ta et al., 2009]

6 / 135

Model-based Tracking

Tracking articulated objects

Digifingers [Rehg and Kanade, 1994]

Articulated hand tracking [Wu et al., 2001]

Model-based 3D tracking [Lepetit and Fua, 2005]

7 / 135

Contour Tracking

Snake [Kass et al., 1987]

Active contour [Caselles et al., 1997, Isard and Blake, 1996,
Cootes et al., 1998]

Level set [Paragios and Deriche, 2000]

Exemplar-based tracker [Toyama and Blake, 2001]

8 / 135

Human Tracking

Near-view

2D card board human [Ju et al., 1996]
[Ioffe and Forsyth, 2001] [Cham and Rehg, 1999]
[Pavlovic et al., 1999] [Hua and Wu, 2004]
3D human model [Bregler and Malik, 1998]
[Sidenbladh et al., 2000] [Deutscher et al., 2000]
[Sminchisescu and Triggs, 2001] [Sigal et al., 2004]
[Urtasun et al., 2006] [Li et al., 2006]

Far-view

Pfinder [Wren et al., 1997]
W4 [Haritaoglu et al., 1998]
Multiple objects [Okuma et al., 2004] [Tao et al., 2002]

9 / 135

Background Subtraction

Facilitate tracking task

Need online update

Representative methods:

Mixture of Gaussians [Stauffer and Grimson, 1999]
Non-parametric model [Elgammal et al., 2000]
[Elgammal et al., 2002]
Fast Gaussian transform [Yang et al., 2004]

10 / 135

Looking at People and Objects

Dudek

Tracking and appearance modeling

Lee walking

3D human tracking

Tom and Jerry

Articulated object tracking

Who, what, where, when, how?

Detect, track, and recognize objects

Need to account for appearance variation

11 / 135

Visual Tracking

Goal:
Locate the object of interest

Object vs feature
Image position
Scale

Estimate object motion

Rigid objects
Non-rigid objects

Challenges:

Appearance variation due to
change in illumination, view
angle, shape, and by occlusions
Camera motion
Articulated objects

David indoor

Figure skating

12 / 135

Conventional Approach

Object representation

Model: Geometric/learning, 2D/3D, etc.
Representation: Feature, appearance, etc.
Invariance: Cope with variation in pose, lighting, etc.

At time t − 1, predict next state

Linear/nonlinear optimization
Sampling and particle filtering

At time t, verify predictions using image observations

Generative model
Discriminative model

13 / 135

State of the Art: Then and Now

Isard

Condensation [ECCV96, IJCV98]

Mean

Mean shift [CVPR00, PAMI03]

Toyama

Exemplar [ICCV01, IJCV02]

Fleet

WSL [CVPR01, PAMI03]

Most require offline training

Most do not have high-level notion (i.e., thing) of object

Most do not update appearance model

14 / 135

In this Talk

Focus on recent advances in visual tracking

See [Yilmaz et al., 2006] [Cannons, 2008] for surveys on
object tracking

See [Forsyth et al., 2006] [Moeslund et al., 2006] for survey
on human motion

Online visual tracking algorithms that

Learn and update appearance model constantly
Handle large illumination and pose variation
Operate with one moving, uncalibrated camera
Have real-time, robust performance

Approach:

Generative algorithm
Discriminative algorithm
Multiple instance learning
Articulated object tracking

Concluding remarks

15 / 135

Tracking: Taxonomy

Obviously numerous ways

High-level, mid-level, low-level

Rigid and non-rigid object

Single or multiple objects

Single or multiple homogeneous/heterogeneous trackers

Color-based or not

Generative and discriminative

Supervised or unsupervised

Real-time or batch-mode

Single or multi-view based

Probabilistic or deterministic

16 / 135

Tracking: Representation

4 A. Yilmaz et al.

Fig. 1. Object representations. (a) Centroid, (b) multiple points, (c) rectangular
patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g)
complete object contour, (h) control points on object contour, (i) object silhouette.

—Articulated shape models. Articulated objects are composed of body parts that are
held together with joints. For example, the human body is an articulated object with
torso, legs, hands, head, and feet connected by joints. The relationship between the
parts are governed by kinematic motion models, for example, joint angle, etc. In order
to represent an articulated object, one can model the constituent parts using cylinders
or ellipses as shown in Figure 1(e).

—Skeletal models. Object skeleton can be extracted by applying medial axis trans-
form to the object silhouette [Ballard and Brown 1982, Chap. 8]. This model is com-
monly used as a shape representation for recognizing objects [Ali and Aggarwal 2001].
Skeleton representation can be used to model both articulated and rigid objects (see
Figure 1(f).

There are a number of ways to represent the appearance features of objects. Note
that shape representations can also be combined with the appearance representations
[Cootes et al. 2001] for tracking. Some common appearance representations in the
context of object tracking are:

—Probability densities of object appearance. The probability density estimates of the
object appearance can either be parametric, such as Gaussian [Zhu and Yuille 1996]
and a mixture of Gaussians [Paragios and Deriche 2002], or nonparametric, such as
Parzen windows [Elgammal et al. 2002] and histograms [Comaniciu et al. 2003]. The
probability densities of object appearance features (color, texture) can be computed
from the image regions specified by the shape models (interior region of an ellipse or
a contour).

—Templates. Templates are formed using simple geometric shapes or silhouettes
[Fieguth and Terzopoulos 1997]. An advantage of a template is that it carries both
spatial and appearance information. Templates, however, only encode the object ap-
pearance generated from a single view. Thus, they are only suitable for tracking
objects whose poses do not vary considerably during the course of tracking.

ACM Computing Surveys, Vol. 38, No. 4, Article 13, Publication date: December 2006.

[Yilmaz et al., 2006]

17 / 135

Tracking: Prediction

Tracking: prediction, prediction, prediction

Kalman filter

Maximum likelihood estimation

Multiple hypothesis

Non-parametric model

Particle filter

18 / 135

Optical Flow I

For a pixel at I (x , y , t) that move by δx , δy , and δt between
two frames,

I (x , y , t) = I (x + δx , y + δy , t + δt)

Assume the motion is small, expand it with Taylor series

I (x+δx , y+δy , t+δt) = I (x , y , t)+
δI

δx
δx+

δI

δy
δy+

δI

δt
δt+H.O.T .

Assume brightness constancy, it follows

δI

δx

δx

δt
+
δI

δy

δy

δt
+
δI

δt

δt

δt
= 0

where u v are the x , y component of optical flow and ∂I
∂x , ∂I

∂y

and ∂I
∂t are derivatives of the image at (x , y , t) in the

corresponding directions
19 / 135

Optical Flow II

Thus,
uIx + vIy = −It ∇I> · V = −It

One equation with two unknowns, i.e., aperture problem

Lucas-Kanade method [Lucas and Kanade, 1981]: combining
information from nearby pixels (e.g., template)

uIx (p1) + vIy (p1) = −It(p1)
uIx (p2) + vIy (p2) = −It(p2)

...
uIx (pn) + vIy (pn) = −It(pn)

in matrix form, Au = b

A =

Ix (p1) Iy (p1)
Ix (p2) Iy (p2)

...
Ix (pn) Iy (pn)

 u =

[
u
v

]
b =

−It(p1)
−It(p2)

...
−It(pn)

20 / 135

Optical Flow III

and the least squares solution is u = (A>A)−1A>b

[
u
v

]
=

[∑
i Ix (pi)

2
∑

i Ix (pi)Iy (pi)∑
i Ix (pi)Iy (pi)

∑
i Iy (pi)

2

]−1 [−∑i Ix (pi)It(pi)
−∑i Iy (pi)It(pi)

]

Horn-Schunck method [Horn and Schunck, 1981]: introduce a
global smoothness constraint to solve the aperture problem

E =

∫ ∫
(uIx + vIy + It)2 + α2(|∇u|2 + |∇v |2)dxdy

where α is a regularization constant, and is minimized by

Ix (uIx + vIy + It)− α2∆u = 0
Iy (uIx + vIy + It)− α2∆v = 0

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator. The
equations can be approximated with finite differences and
solved with an iterative scheme

21 / 135

Optical Flow IV

Parametric motion: Lucas-Kanade can be extended to
account for other transforms (e.g., similarity, affine)

Coarse-to-fine estimation with pyramids

Application: motion analysis, layered motion estimation,
registration, video stabilization, etc.

Performance evaluation and database for optical
flow [Barron et al., 1994] [Baker et al., 2007]

See “Lucas-Kanade 20 years and on”
[Baker and Matthews, 2004] for a discussion on alignment,
warp update rule, and gradient descent approximation

Summary:
Pros:

easy to compute
many applications

Cons:

difficult to handle occlusion
use template

22 / 135

Eigentracking I

Main ideas:

Use eigenbasis for representation [Black and Jepson, 1998]:
teat an image as “thing” rather than “stuff”
Use robust statistics
Assume subspace constancy
Multi-scale eigenspace

Collect a set of images for training where each image is
converted to a vector, and find the eigenvectors

Xd×n = [x1, . . . , xn], C =
1

n
XXT , Cui = λiui

where C is the covariance matrix (assume zero mean) and ui

is an eigenvector

23 / 135

Eigentracking II

Each image can be reconstructed from a subspace spanned by
a set of eigenvectors

xd×1 ≈ x̃q×1 =

q∑

i=1

ciui

where ci is computed by taking dot products of x and ui (i.e.,
projection onto each eigenvector)

Use singular value decomposition (SVD) to compute
eigenvectors

X = UΣV>, X = [x1, . . . , xn], U = [u1, . . . ,un]

where U is an orthogonal matrix whose columns are
eigenvectors computed from XX>, Σ is a diagonal matrix
with singular values σ1, . . . , σn and V is an orthogonal matrix
whose columns are eigenvectors computed from X>X

24 / 135

Eigentracking III

Eigen-representation:

With SVD, each image is represented as

xd×1 ≈ x̃q×1 =

q∑

i=1

ciui = Uc

25 / 135

Eigentracking IV

Parameterized optical flow with eigenbasis

I (x + v(x, a)) = Uc(x), ∀x

where v(x, a) = (u(x, a), v(x, a)) represents an image
transformation and u, v represent horizontal and vertical
displacements at a pixel and a are the motion parameters to
be estimated

u(x, a) = a0 + a1x + a2y
v(x, a) = a3 + a4x + a5y

where ci are parameters for affine warp

Robust subspace constancy objective function

E (c, a) =
∑

x

ρ(I (x + v(x, a))− Uc(x), σ)

where ρ(x , σ) is a robust norm function, ρ(x , σ) = x2

σ2+x2

26 / 135

Eigentracking V

Iterative optimization

Fix a, find c (recognition) : matching with robust statistics
Fix c, find a (motion): robust regression approach for optical
flow [Black and Anandan, 1996] based on

E (a) =
∑

x

ρ(I (x + v(x, a), t)− I (x, t + 1), σ)

and change I (x, t + 1) with Uc(x)
σ is gradually reduced

Coarse-to-fine motion estimation with multi-scale eigenspace

27 / 135

Eigentracking VI

Experimental results

7Up can undergoing translation and scale change while
rotating

28 / 135

Eigentracking VII

Summary

Pros:

tracking and recognition (“thing” vs. “stuff”)

subspace constancy

Cons:

iterative optimization

need to collect a training set at fixed views

29 / 135

Template-based Tracking I

Hager and Belehumer [Hager and Belhumeur, 1998]

efficient region tracking using parametric models of geometry
and illumination
use a set of reference templates (e.g., basis images to account
for lighting variation [Belhumeur and Kreigman, 1997])
efficient way to compute Jacobian matrix by factoring it into
two submatrix (one involving image gradient and one motion)
The Jacobian matrix M(µ, t) relate variation in motion
parameters to brightness values1030 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

mj. The collection of the latter for all pixels in the region rep-
resents the motion field defined by the motion parameter mj.
Thus, the change in the brightness of the image location xi

due to the motion parameter mj is the projection of the im-
age gradient onto the motion vector. This also explains why
each pixel in the image contributes only one constraint to
the parameter computation.

More importantly, the methods described above assume
that MtM is full rank. Although, in general, this condition
depends on both the structure of the motion to be com-
puted and the structure of the image itself, the form of (38)
provides some insight into the rank structure of M. In par-
ticular, it follows that for MtM to be rank deficient, there
must exist a g Œ Rn such that

— = £ £=f x xfI i Nt
im4 9g 0 1, . (39)

Geometrically, this condition corresponds to a motion g
such that the displacement of every pixel in the image is
orthogonal to the local image gradient.1 Thus, we can view
the rank deficiency of M as a generalization of the well-
known aperture problem [34] in optical flow.

Finally, (38) suggests how our techniques can be used to
perform structured motion estimation without an explicit
parametric motion model. First, if the changes in images
due to motion can be observed directly (for example, by
computing the differences of images taken before and after
small reference motions are performed), then these can be
used as the motion templates which comprise M. Second, if
a one or more motion fields can be observed (for example, by
tracking a set of fiducial points in a series of training im-
ages), then projecting each element of the motion field onto
the corresponding image gradient yields motion templates
for those motion fields. The linear estimation process de-
scribed above can be used to interpret time-varying images
in terms of those basis motions.

3 ILLUMINATION-INSENSITIVE TRACKING

The systems described above are inherently sensitive to
changes in illumination of the target region. This is not sur-
prising, as the incremental estimation step is effectively
computing a structured optical flow, and optical flow

1. Note that one possibility is that the gradient at a point is zero, in which
case this is true of any motion.

methods are well-known to be sensitive to illumination
changes [34]. Thus, shadowing or shading changes of the
target object over time lead to bias, or, in the worst case,
complete loss of the target.

Recently, it has been shown that a relatively small num-
ber of “basis” images can often be used to account for large
changes in illumination [19], [18], [17], [37]. Briefly, the rea-
son for this is as follows. Consider a point p on a Lamber-
tian surface and a collimated light source characterized by a
vector s Œ R3, such that the direction of s gives the direction
of the light rays and isi gives the intensity of the light
source. The irradiance at the point p is given by

E = an ◊ s, (40)

where n is the unit inward normal vector to the surface at p
and a is the nonnegative absorption coefficient (albedo) of
the surface at the point p [34]. This shows that the irradi-
ance at the point p, and hence the gray level measured by a
camera, is linear on s Œ R3.

Therefore, in the absence of self-shadowing, given three
images of a Lambertian surface from the same viewpoint
taken under three linearly independent light source direc-
tions, one can reconstruct the image of the surface under a
novel lighting direction by a linear combination of the three
original images [37], [38]. In other words, if the surface is
purely Lambertian and there is no shadowing, then all im-
ages under varying illumination lie within a 3D linear sub-
space of RN, the space of all possible images (where N is the
number of pixels in the images).

A complication comes when handling shadowing: All
images are no longer guaranteed to lie in a linear subspace
[19]. Nevertheless, as done in [17], we can still use a linear
model as an approximation: A small set of basis images can
account for much of the shading changes that occur on
patches of nonspecular surfaces. Naturally, we need more
than three images (we use between eight and 15) and a
higher than three-dimensional linear subspace (we use four
or five) if we hope to provide good approximation to these
effects.

Returning to the problem of region tracking, suppose
now that we have a basis of image vectors B1, B2, º, Bm

where the ith element of each of the basis vectors corre-
sponds to the image location xi Œ 5. To accommodate
changes in contrast, we choose the first basis vector to be
the template image itself, i.e., B1 = I(0, t0). To model bright-

 (a) (b) (c) (d)

Fig. 1. The motion templates of a human face for four canonical motions. (a) X translation. (b) Y translation. (c) Rotation. (d) Scale.

Motion template (a)(b) x , y -translation (c) rotation (d) scale

30 / 135

Template-based Tracking II1034 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

illumination, empirical results suggest that a small number
of basis images of a face gathered under different illumina-
tions is sufficient to accurately account for most gross
shading and illumination effects [17]. At the same time, the
depth variations exhibited by facial features are small
enough to be well-approximated by an affine warping
model. The following experiments demonstrate the ability
of our algorithm to track a face as it undergoes changes in
pose and illumination, and under partial occlusion.
Throughout, we assume the subject is roughly looking to-
ward the camera, so we use the rigid motion plus scaling
(RM+S) motion model. Fig. 1 shows the columns of the
motion matrix for this model.

5.3.1 Geometry
We first performed a test to determine the accuracy of the
computed motion parameters for the face and to investigate
the effect of the illumination basis on the sensitivity of those
estimates. During this test, we simultaneously executed two
tracking algorithms: one using the rigid motion plus scale
model (RM+S) and one which additionally included an
illumination model for the face (RM+S+I). The algorithms
were executed on a sequence which did not contain large

changes in the illumination of the target. The top row of
Fig. 3 shows images excerpted from the video sequence. In
each image, the black frames denote the region selected as
the best match by RM+S and the white frames correspond
to the best match computed by RM+S+I. For this test, we
would expect both algorithms to be quite accurate and to
exhibit similar performance unless the illumination basis
significantly affected the sensitivity of the computation. As
is apparent from the figures, the computed motion pa-
rameters of both algorithms are extremely similar for the
entire run—so close that in many cases one frame is ob-
scured by the other.

In order to demonstrate the absolute accuracy of the
tracking solution, below each live image in Fig. 3 we have
included the corresponding rectified image computed by
RM+S+I. The rectified image at time zero is the reference
template. If the motion of the target fit the RM+S motion
model, and the computed parameters were exact, then we
would expect each subsequent rectified image to be identi-
cal to the reference template. Despite the fact that the face is
nonplanar and we are using a reduced motion model, we
see that the algorithm is quite effective at computing an
accurate geometric match.

Fig. 3. Top row, excerpts from a sequence of tracked images of a face. The black frames represent the region tracked by an SSD algorithm using
no illumination model (RM+S) and the white frames represent the regions tracked by an algorithm which includes an illumination model (RM+S+I).
In some cases the estimates are so close that only one box is visible. Middle row, the region within the frame warped by the current motion esti-
mate. Bottom, the residuals of the algorithms expressed in gray-scale units per pixel as a function of time.

Without lighting change

1036 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 10, OCTOBER 1998

we again executed two algorithms labeled RM+S and
RM+S+I. As the algorithms were operating, a light was pe-
riodically switched on and off and the face moved slightly.
The results appear in Fig. 6. In the residual graph, we see
that the illumination basis clearly “accounts” for the shad-
ing on the face quite well, leading to a much lower fluctua-
tion of the residuals. The sequence of images shows an ex-
cerpt near the middle of the sequence where the RM+S al-
gorithm (which could not compensate for illumination
changes) completely lost the target for several frames, only
regaining it after the original lighting was restored. Since
the target was effectively motionless during this period, this
can be completely attributed to biases due to illumination
effects. Similar sequences with larger target motions often
cause the purely geometric algorithm to lose the target
completely as shown in Fig. 7.

5.3.4 Tracking With Outliers
Finally, we illustrate the performance of the method when
the image of the target becomes partially occluded. We
again track a face. The motion and illumination basis are

the same as before. In the weighting matrix calculations, the
pixel gray-scale variance was set to five (about what is ob-
served in our camera) and the outlier threshold was set to a
conservative value of five variance units.

The sequence is an “office” sequence which includes
several “intrusions” including the background, a piece of
paper, a telephone and a soda can. As before we executed
two versions of the tracker, the nonrobust algorithm from
the previous experiment (RM+S+I) and a robust version
(RM+S+I+O). Fig. 8 shows the results. The upper series of
images shows the region acquired by both algorithms (the
black frame corresponds to RM+S+I, the white to
RM+S+I+O). As is clear from the sequence, the nonrobust
algorithm is disturbed significantly by the occlusion,
whereas the robust algorithm is much more stable. In fact, a
slight motion of the head while the soda can is in the image
caused the nonrobust algorithm to mistrack completely. The
middle series of images shows the output of the warping
operation for the robust algorithm. The lower row of im-
ages depicts the weighting values attached to each pixel in
the warped image. Dark areas correspond to “outliers.”

Fig. 6. Top, an excerpt from a tracking sequence containing changes in both geometry and illumination. The black frame corresponds to the algo-
rithm without illumination (RM+S) and the white frame corresponds to the algorithm with an illumination basis (RM+S+I). Note that the algorithm
which does not use illumination completely loses the target until the original lighting is restored. Bottom, the residuals, in gray-scale units per pixel, of
the two algorithms as a light is turned on and off.

Fig. 7. A run combining illumination and geometry in which the algorithm without illumination compensation (black frame) loses the target while the
algorithm with illumination compensation (white frame) does not.

With lighting change and motion

See an efficient direct method that computes warping
parameters of thin-plate spline model for non-rigid motion
[Lim and Yang, 2005]

31 / 135

Template-based Tracking III

Template update problem for reducing
drifts [Matthews et al., 2004]

Use Lucas-Kanade algorithm to estimate warping parameters

Neither of these strategies are very good. With the first strategy,

the template eventually, and inevitably, becomes out-of-date and

no longer representative of the appearance of the object being

tracked. With the second strategy, the template eventually drifts

away from the object. Small errors in the warp parameters pn mean

that the new template InðWðx;pnÞÞ is always a slighted shifted

version of what it ideally should be. These errors accumulate and,

after a while, the template drifts away from the object that it was

initialized to track. See Fig. 1 for an example of the template

drifting in this way. Note that simple variants of this strategy such

as updating the template every few frames, although more robust,

also eventually suffer from the same drifting problem.
How can we update the template every frame and avoid it

wandering off? One possibility is to keep the first template T1ðxÞ
around and use it to correct the drift in Tnþ1ðxÞ. For example, we

could take the estimate of Tnþ1ðxÞ computed in Strategy 2 and then

align Tnþ1ðxÞ to T1ðxÞ to eliminate the drift. Since Tnþ1ðxÞ ¼
InðWðx;pnÞÞ, this is the same as first tracking in image InðxÞ with

template TnðxÞ and then with template T1ðxÞ. If the nonlinear

minimizations in (2) and (3) are solved perfectly, this is

theoretically exactly the same as just tracking with T1ðxÞ. The

nonlinear minimizations are solved using a gradient descent

algorithm, however, and, so, this strategy is actually different. Let

us change the notation slightly to emphasize the point that a

gradient descent algorithm is used to solve (3). In particular,

rewrite (3) as:

pn ¼ gd min
p¼pn�1

X
x2Tn

InðWðx;pÞÞ � TnðxÞ½ �2; ð4Þ

where gdminpn�1
means “perform a gradient descent minimiza-

tion” starting at p ¼ pn�1. To correct the drift in Strategy 2, we

therefore propose to compute updated parameters:

p�
n ¼ gdmin

p¼pn

X
x2T1

InðWðx;pÞÞ � T1ðxÞ½ �2: ð5Þ

Note that this is different from tracking with the constant template

Tn ¼ T1 using:

gd min
p¼pn�1

X
x2T1

InðWðx;pÞÞ � T1ðxÞ½ �2 ð6Þ

because the starting point of the gradient descent is different. It is

pn rather than pn�1. To correct the drift, we use p�
n rather than pn

to form the template for the next image. In summary (see also

Fig. 2), we update the template using:

Strategy 3: Template Update with Drift Correction

If kp�
n � pnk � �; then Tnþ1ðxÞ ¼ InðWðx;p�

nÞÞ
else Tnþ1ðxÞ ¼ TnðxÞ;

where � > 0 is a small threshold that enforces the requirement that

the result of the second gradient descent does not diverge too far

from the result of the first. If it does, there must be a problem and

so we act conservatively by not updating the template in that step.

A minor variant of Strategy 3 is to perform the drift-correcting

alignment using the magnitudes of the gradients of the image and

the template rather than the raw images to increase robustness to

illumination variation.

2.2 Qualitative Comparison

We now present a qualitative comparison of the strategies. Although

we only have room to include one set of results, these results are

typical. A quantitative evaluation is included in Section 2.4.
We implemented each of the three update strategies above and

ran them on a 972 frame video of a car being tracked using the

2D similarity transform in (1). Sample frames are shown in Fig. 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004 811

Fig. 1. A qualitative comparison of update Strategies 1, 2, and 3. With Strategy 1, the template is not updated and tracking eventually fails. With Strategy 2, the template

is updated every frame and the template “drifts.” With Strategy 3, the template is updated every frame, but a “drift correction” step is added. With this strategy, the object

is tracked correctly and the template updated appropriately across the entire sequence.(top) no update (center) update template every frame (bottom)

update template every frame but use first frame for correction

Apply similar idea for update with active appearance model

32 / 135

Blob Tracker I

Birchfield [Birchfield, 1998]

use image gradients and color histograms
two modules aim to complete each other
enclose the head region with ellipse

S∗ = arg max
Si∈S

φ̄g (Si) + φ̄c (Si)

where φ̄g and φ̄c are normalized matching scores using image
gradients and color histograms

Simultaneous translation, occlusion, and out-of-plane rotation

Complete occlusion of the subject by another person

Zooming and rotation

Three people trying to steal the ellipse from the subject

Figure 6: Demonstration of the tracker’s performance in various situations. These and other MPEG sequences are available
from http://vision.stanford.edu/˜birch.

the background, all simultaneously.
Template- and neural network-based trackers [6, 9, 11,

18], as well as trackers based on facial color [4, 5, 9, 15,
16, 18], cannot handle severe out-of-plane rotation because
such a rotation causes the face to disappear. The color-
based techniques also tend to have difficulty with skin-
colored objects or other people in the background.

Trackers utilizing some form of background differenc-
ing [5, 10, 11, 12, 18, 19, 20] either require a static camera
or restrict the camera’s motion to rotation about its fo-
cal point.3 Moreover, many of these techniques perform
motion-based figure-ground segmentation, which tends to
fail when the camera zooms or when multiple objects move

3In [10], the camera may move occasionally but not continuously.

in the scene.

Reliable tracking was reported by combining a template-
based tracker with stereo depth [14]. However, besides the
additional hardware, it is not clear whether this system
would be able to handle multiple people at a similar depth
as the subject.

Also, promising results have been achieved using a
shape-based contour tracker [1] that is more sophisticated
than ours because it allows the shape to deform over time.
However, in its present implementation the tracking crite-
rion is the gradient magnitude alone, which will probably
fail with quick movements in cluttered scenes.

Finally, it must be mentioned that some of the systems
cited above contain multiple modules. However, it is of-

33 / 135

Blob Tracker II

Active blobs [Sclaroff and Isidoro, 1998]

Spatiograms vs. histograms [Birchfield and Rangarajan, 2005]

34 / 135

Kernel-based Tracking I

Mean-shift tracker
[Comaniciu et al., 2000, Comaniciu et al., 2003]

Non-parametric estimation with kernel density
Feature histogram-based representation with spatial masking
and isotropic kernels
Gradient-descent optimization to see
modes [Comaniciu and Meer, 2002]
Use Bhattacharyya coefficient as similarity measure
More effective when color features are used

football 1 football 2

35 / 135

Kernel-based Tracking II

Scale-space blob [Collins, 2003]: Adapt scale-space
theory [Lindeberg, 1998] with difference of Gaussian
mean-shift kernel for blob tracking through scale space

(A)

(B)

(C)

Figure 5: Tracking examples. (A) Using a fixed-scale mean-shift kernel. The person is tracked through the sequence, but
localization is poor when the person’s size increases. (B) Using the plus or minus 10 percent scale adaptation method (see
text). The kernel soon shrinks too much, leading to tracking failure. (C) Using the scale-space mode-tracking method
presented in this paper. The person is tracked well, both spatially and in scale.

References

[1] Bradski, G.R., “Computer Vision Face Tracking for
Use in a Perceptual User Interface,”IEEE Workshop
on Applications of Computer Vision,Princeton, NJ,
1998, pp.214-219.

[2] Bretzner, L. and Lindeberg, T., “Qualitative Multi-
scale Feature Hierarchies for Object Tracking,”Jour-
nal of Visual Communication and Image Representa-
tion, Vol 11(2), June 2000, pp.115-129.

[3] Cheng, Y., “Mean Shift, Mode Seeking, and Cluster-
ing,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence,Vol 17(8), August 1995, pp.790-799.

[4] Comaniciu, D., Ramesh, V. and Meer, P., “Real-Time
Tracking of Non-Rigid Objects using Mean Shift,”
IEEE Computer Vision and Pattern Recognition,Vol
II, 2000, pp.142-149.

[5] Comaniciu, D., Ramesh, V., Meer, P., “The Variable
Bandwidth Mean Shift and Data-Driven Scale Selec-
tion,” International Conference on Computer Vision,
Vol I, pp.438-445.

[6] Fukanaga, K. and Hostetler, L.D., “The Estimation
of the Gradient of a Density Function, with Applica-

tions in Pattern Recognition,”IEEE Trans. Informa-
tion Theory,Vol 21, 1975, pp.32-40.

[7] Hildreth, E.C., “The Detection of Intensity Changes
by Computer and Biological Vision Systems,”Com-
puter Vision, Graphics and Image Processing,Vol
22(1), April 1983, pp.1-27.

[8] Lindeberg, T., “Feature Detection with Automatic
Scale Selection,”International Journal of Computer
Vision,Vol 30(2), November 1998, pp.79-116.

(a) no scale adaption (b) 10% scale adaption (c) scale-space blob

36 / 135

Sequential Kernel-based Approximation I

Parametric methods such as mixture of Gaussians are often
compact (with fixed number of modes) but less effective

Non-parametric models are often flexible but memory intensive

Idea: approximate multimodal density function with a mixture
of Gaussians with kernel density
approximation [Han et al., 2008]

modes are found by variable-bandwidth mean
shift [Comaniciu, 2003]
covariance of each Gaussian derived by fitting the curvature
around its mode
for tracking, use mean-shift to detect new modes with efficient
sequential update

37 / 135

Sequential Kernel-based Approximation II

Comparisons

(L) original (M) kernel density estimation (R) kernel density approximation

(L) original (M) kernel density estimation (R) kernel density

EM with MoG of (L) 4 (M) 5 (R) 6 components

(L) original (M) kernel density estimation (R) kernel density approximation

38 / 135

WSL I

Learning robust, adaptive appearance model
[Jepson et al., 2003]

Mixture of Gaussian at each pixel of target

W: wandering motion information
S: stable model
L: outlier (“lost”) component

Identity stable properties of appearance and weigh them
heavily for motion estimation

Three components, W, S, and L are combined

p(dt |qt ,mt , dt−1) = mwpw (dt |dt−1) +msps(dt |qt) +mlpl (dt)

where m = (mw ,ms ,ml) are the mixing probabilities, and
qt = (µs,t , σ

2
s,t) contains the mean and variance of the stable

component

Online EM algorithm to adapt appearance model parameters

39 / 135

WSL II

Wavelet-based appearance model: use phase structure of filter
response

Denote the appearance (phase) data from previous frame by
Dt−1 ≡ {dx,t−1}x∈Nt−1 Observation density for a target region
Nt where each datum is dx,t−1 ≡ d(x, t − 1)

With warp parameters ct , the current data Dt is warped back
to the previous frame of reference by d̂x,t ≡ d(w(x; ct), t)
Dt = {dx,t}x∈Nt

L(Dt |At−1,Dt−1, ct) =∑
x∈Nt−1

log[msps(d̂x,t |q) + mwpw (d̂x,t |dx,t−1) + mlpl]

where At−1 is the appearance model at t − 1

40 / 135

WSL III

Components

Experimental results

41 / 135

WSL IV

42 / 135

WSL V

Failure case

Summary:
Pros:

online update
mixture model

Cons:

large ellipse of pixels
adaption
occlusion

43 / 135

Kalman Filter I

See also [Welch and Bishop, 1995] for an introductory article

Optimal solution for linear dynamic system with Gaussian
noise

Extended Kalman filter (EKF) can handle nonlinear and
non-Gaussian by linearizing the process and measurement
model with first-order approximation

Unscented Kalman filter (UKF) provides a better approximate

Both EKF and UKF estimate and propagate a unimodal
Gaussian over time

44 / 135

Particle Filter I

Problem: difficult to deal with high dimensional state-space

Extension:

annealed particle filter [Deutscher et al., 2000]
sampling methods [MacCormick and Isard, 2000]
[Sullivan and Rittscher, 2001] [Sminchisescu and Triggs, 2001]
piecewise Gaussian [Cham and Rehg, 1999]
Rao-Blackwellized particle filter [Khan et al., 2004]
nonlinear dimensionality reduction [Lin et al., 2004]
density approximation [Han et al., 2009]

45 / 135

Particle Filter II

Data association problem: When tracking multiple objects
using Kalman or particle filters, one first need to associate
measurement for a particular object to that object’s
state [Bar-Shalom, 1992]

Two widely used methods for data association:

joint probability data association filtering
(JPDAF) [Bar-Shalom, 1992] [Rasmussen and Hager, 2001]

multiple hypothesis
tracking [Reid, 1979] [Cham and Rehg, 1999]

46 / 135

Online Feature Selection I

Pose the tracking problem as an online feature selection
problem Collins and Liu [Collins and Liu, 2003]

Aim to find pixel-based discriminant features that best
separate foreground object from the background

Find the weight for color channels of each pixel

F1 = {w1R + w2G + w3B,wi ∈ [−2,−1, 0, 1, 2]}

3.1 Feature Spaces

In principle, a wide range of features could be used for
tracking, including color, texture, shape and motion. Each
potential feature space typically has dozens of tunable pa-
rameters, and therefore the full set of potential features that
could be used for tracking is enormous. In this work, we
represent target appearance using histograms of color filter
bank responses applied to R, G, B pixel values within lo-
cal image windows. This representation is chosen since it is
relatively insensitive to variations in target appearance due
to viewpoint, occlusion and non-rigidity. Although we only
consider color features in this paper, the approach can be
extended to incorporate other cues such as texture.

The set of candidate features is composed of linear
combinations of camera R,G,B pixel values. Specifically,
for our experiments, we have chosen the following set of
feature-space candidates

F1 � fw1R+w2G+w3B j w� 2 [�2;�1;0;1;2]g (1)

that is, linear combinations composed of integer coeffi-
cients between -2 and 2. The total number of such can-
didates would be 53, but by pruning redundant coeffi-
cients where(w0

1;w
0

2;w
0

3) = k(w1;w2;w3), and by disallow-
ing (w1;w2;w3) = (0;0;0), we are left with a pool of 49
features. This set of candidate features is chosen because:
1) the features are efficient to compute (only integer arith-
metic is involved); 2) the features approximately uniformly
sample the set of 1D subspaces of 3D RGB space; and 3)
some common features from the literature are covered in the
candidate space, such as raw R, G and B values, intensity
R+G+B, approximate chrominance features such as R-B,
and so-calledexcesscolor features such as 2G-R-B.

All features are normalized into the range 0 to 255, and
further discretized into histograms of length 2b, whereb is
the number of bits of resolution. We typically discretize
to 5 or 6 bits, yielding feature histograms with 32 or 64
buckets. This discretization is performed for efficiency, and
for defeating the “curse of dimensionality” when trying to
estimate feature densities from small numbers of samples.

3.2 Evaluating Feature Discriminability

If both object and background were uni-colored, then a
plausible argument could be made that variation in apparent
color of pixels would lead to Gaussian distributions in color
space. In this case, Linear Discriminant Analysys (LDA)
could be used to find the subspace projection yielding the
least overlap (i.e. maximum separability) between object
and background. However, we must be able to handle tar-
gets and backgrounds that have multi-modal distributions of
colors. These violate LDA’s Gaussian assumption, and thus
invalidate its analytic solution.

Our approach is to empirically evaluate all candidate fea-
tures to determine which ones yield good class separability.
For a given feature, we measure separability between the
object and background classes by 1) estimating the distri-
butions of object and background pixels with respect to the
feature; 2) computing the log likelihood ratio of these dis-
tributions; and 3) applying avariance ratiomeasure to the
distribution of likelihood values from object vs background.
Figure 2 illustrates this process.

Figure 2: Empirical evaluation of a candidate feature, demon-
strated on an IR image of a truck. Histograms of (possibly multi-
modal) feature values for object and background pixels are used to
compute a log likelihood function in which object pixels have uni-
modally positive values and background pixels have unimodally
negative values. When mapped back into image space, the result
is a 2D “likelihood” image that can be used to track the object. The
variance ratio is computed from histograms of these likelihood val-
ues for object and background pixels to determine separability of
the two classes, which correlates well with suitability of the likeli-
hood image for tracking.

We use a “center-surround” approach to sampling pix-
els from the object and the background. That is, a com-
pact set of pixels (e.g. rectangle or ellipse) covering the ob-
ject is chosen to represent the object pixels, while a larger
surrounding ring of pixels is chosen to represent the back-
ground. This is a conservative strategy that leads to dis-
criminative features that separate object from background
regardless of which direction the object maneuvers in the
image. Of course, we could sample background appearance
in other ways. For example, we could bias selection of pix-
els from the area of the image that we expect the object to
traverse in the future, given its recent trajectory.

Given a featuref , let Hob j(i) be a histogram of that fea-
ture’s values for pixels on the object, andHbg(i) be a his-
togram for pixels from the background sample, where index
i ranges from 1 to 2b, the number of histogram buckets. We
form an empirical discrete probability densityp(i) for the
object, and densityq(i) for the background, by normalizing
each histogram by the number of elements in it.

Use linear discriminant analysis for feature selection

47 / 135

Online Feature Selection II

Use mean-shift to compute 2D location

Figure 4: Sample video frames with ranked likelihood images.
Left column: frame with labeled object (green box) and back-
ground pixels (red box) pixels. Second-fourth columns: likelihood
images corresponding to the highest ranked, median, and lowest
ranked features, respectively. We can see that rank ordering fea-
tures by two-class variance ratio correlates well with intuition re-
garding which features would be best to use for tracking the object.

the experiments shown in the next section). Due to the
continuous nature of video, the distribution of object and
background features in the next frame should remain sim-
ilar to the current frame, and thus the most discriminative
features should still be valid. A local mean-shift process is
initialized in each of theN new likelihood images. These
processes perform gradient ascent to find the nearest local
mode in their respective likelihood images. These mean-
shift processes converge toN estimates of the 2D location
of the object in the frame, which are combined to yield a
new estimate of object location.

The algorithm iterates through each subsequent frame of
the video, extracting new samples of object and background
pixels, and choosing new sets of discriminative features. In
this way, both the features used for tracking and the appear-
ance models of object and background classes evolve to-
gether over time. Adaptively updating appearance models
in this manner raises the specter ofmodel drift, a classic
problem in adaptive tracking. Model drift builds up grad-
ually over time as misclassified background pixels start to
“pollute” the foreground model, leading to further misclas-
sification and eventual tracking failure. To avoid this prob-
lem, we enforce our empirical object density function at the
current frame to be a combination of the current observed
density and the original training density from the first frame,
which is assumed to be uncontaminated. This allows the

median

...

...

2 N

Location estimates

New Location

Likelihood Maps

1
Current Frame
Samples from

MeanShift

 RankingOBJ

BG
Feature Space

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

MeanShiftMeanShift

��
��
��

��
��
��
��
��
��
��

Figure 5:Overview of tracking system with on-line, adaptive fea-
ture selection. Samples of object and background pixels in the
current frame guide evaluation of candidate features, leading to a
rank ordering of features based on discriminative ability. The top
N best features are applied to the next frame to compute likelihood
images. A mean-shift process is applied to each likelihood image
to compute a 2D location estimate. These estimates are pooled to
determine the best location of the object in the new frame, and the
procedure iterates.

object appearance model to expand to adapt to current con-
ditions, while keeping the overall density anchored to the
original training appearance of the object. This heuristic ap-
proach assumes that the object appearance will not change
drastically over the tracking sequence.

4. Experiments
In this section we present two challenging track-
ing examples that illustrate the benefits of com-
bining on-line feature selection with object track-
ing. For mpeg videos of these examples, please see
http://www.cs.cmu.edu/�rcollins/Pub/iccv03.html.

The first video is low-contrast aerial footage of a car driv-
ing through patches of sunlight and shadow. Watching the
video frame-by-frame, it is challenging even for a human
observer to delineate the position of the car when it passes
through shadow regions. Despite the difficulties, the tracker
presented here smoothly tracks the car through the chang-
ing illumination conditions, and through partial occlusion
caused by trees lining the road. Figure 6 presents a trace
showing which 5 features out of 49 were chosen as most dis-
criminative for each frame of the tracked sequence. We see
that many of the same features are selected through most of
the video (horizontal bars in the picture represent the same
features being chosen again and again), and many features
were never selected (empty rows). At a coarse level of de-
scription, the feature history can be broken into five blocks
of frames, where roughly the same set of features were cho-
sen consistently within each block, and the discontinuity
between blocks is marked by a switch to a different set of
features. Figure 6 also shows representative frames from
within each of these five coarsely segmented time blocks.
For the first, middle and last block, the car is predominantly

Some results against mean-shift tracker

driving through sunny road or dappled patches of shadow.
The second block delineates a subsequence where the car
plunges into an area of deep, extended shadow. The fourth
block denotes a subsequence where the car travels over a
small bridge that has color properties similar to the car.

Figure 7A illustrates failure of a standard mean-shift
tracker [4] on this section of the video. Standard mean-shift
tracking is based only on an appearance model of the ob-
ject. When the car passes over a small bridge, the color of
the top of the bridge rail is nearly identical to the color of the
specular highlight on top of the car. The mean-shift tracker
gets sidetracked by this similar color, leading to tracking
failure. Figure 7B shows the results of our adaptive tracker.
Because this tracker maintains a model of both object AND
background color distributions, it detects that a color in the
background is similar to a color in the model, and automat-
ically down-weights those pixels. The tracker is therefore
not attracted to the bridge railing, and tracking proceeds.

(A)

(B)

Figure 7: (A) The traditional mean-shift tracker is attracted to
background pixels that have the same color as part of the tracked
car, leading to tracking failure. (B) By modeling both object AND
background color distributions, our tracking approach automati-
cally down-weights shared colors, thus avoiding temptation.

A second example video is depicted in Figure 8. The
object being tracked is a flag, blowing non-rigidly in the
wind. The camera viewpoint continually changes, causing
the scene background to vary. The flag is sometimes seen
as a bright object against dark trees, and sometimes seen
as a darker object backlit by the bright sky. Nonetheless,
the tracker successfully follows the flag through the entire
minute-long sequence. Figure 8 presents a trace showing
which 5 features out of 49 were chosen as most discrimina-
tive for each frame of the tracked sequence. Again we see
that many of the same features are selected through most
of the video. However, we also note that these are differ-
ent features than the ones chosen in the earlier car tracking
example. There is a lot of variation in background clutter
and illumination conditions throughout this sequence, and

coarsely segmenting the feature selection trace into time
blocks, as we did in the earlier example, is difficult. Instead,
we show a few sample frames from the tracked sequence,
with an indication of where they occur.

5. Summary
Although object tracking based on color histogram appear-
ance models can achieve real-time tracking performance,
tracking success or failure depends primarily on how distin-
guishable the object is from its surroundings. Surprisingly,
most tracking applications are conducted using a fixed fea-
ture space, determined apriori. These approaches ignore the
fact that it is the ability to distinguish between object and
background that is most important, and that the appearance
of both the object and the background will change as the
target object moves from place to place.

This paper presents an effective method for continuously
evaluating multiple feature spaces while tracking, and for
adjusting the set of features used to improve tracking per-
formance. We develop an on-line feature ranking mech-
anism based on the two-class variance ratio measure, ap-
plied to log likelihood distributions computed with respect
to a given feature from samples of object and background
pixels. This feature ranking mechanism is embedded in a
tracking system that adaptively selects the top-ranked fea-
tures for tracking. The result is a system in which the fea-
tures used for tracking and the appearance models of object
and background co-evolve over time. The experimental re-
sults demonstrate successful tracking performance even on
challenging video sequences.

Although the variance ratio is a computationally efficient
mechanism for selecting features, it does not take into ac-
count the spatial distribution of values in the likelihood im-
age. A good likelihood image for tracking should contain a
blob of high likelihood values (centered on the object), sur-
rounded by a ring of low likelihood values, to ensure that
the tracker does not get misled. Our future work will focus
on methods that ensure this spatial consistency, while still
being computationally efficient.

References

[1] Bishop, Neural Networks for Pattern Recognition,Claren-
don Press, 1997.

[2] Blackman, S. and Popoli, R.Design and Analysis of Modern
Tracking Systems,Artech House, 1999.

[3] Bradski, G.R., “Computer Vision Face Tracking for Use in a
Perceptual User Interface,”IEEE Workshop on Applications
of Computer Vision,Princeton, NJ, 1998, pp.214-219.

[4] Comaniciu, D., Ramesh, V. and Meer, P., “Real-Time Track-
ing of Non-Rigid Objects using Mean Shift,”IEEE Com-
puter Vision and Pattern Recognition,pp.142-149, 2000.

(top) mean-shift algorithm (bottom) [Collins and Liu, 2003]

48 / 135

Incremental Learning for Robust Visual Tracking

Generative model

Learn a compact appearance model online
Track thing (structure information) rather than stuff
(collection of pixels)
Simultaneously track and update appearance model

With incremental update

Adapt to handle variation in lighting, pose, etc.

Particle filter

Sampling rather than optimization

Operate with moving, uncalibrated cameras with low
resolution images

49 / 135

PCA Representation

Recall from Principal Component Analysis (PCA),

xd×1 ≈ x̃q×1 =

q∑

i=1

ciui

(assume zero mean) where ui are eigenvectors and λi are
eigenvalues from covariance matrix

Xd×n = [x1, . . . , xn], C = 1
nXX

T , Cui = λiui

Interpret in a generative model with probabilistic PCA, where
the subspace is spanned by ui

Compute with Singular Value Decomposition (SVD)

50 / 135

Visual Tracking as Statistical Inference

Observation: A raster scan vector of a small image patch

ot denotes an observation at time t and Ot = {o1, . . . , ot}
denotes a set of observations up to time t

Assuming a Markovian state transition,
p(st |Ot) =k p(ot |st)

∫
p(st |st−1)p(st−1|Ot−1)dst−1

where k is a constant,

p(st |st−1): Dynamic model
Model dynamics with Brownian motion

p(ot |st): Observation model
Model appearance with a generative model using PCA

51 / 135

Dynamic Model: p(st |st−1)

Model object motion using similarity or affine transform

State: st = [xt , yt , rt , κt] describes the translation, rotation,
and scaling in similarity transform

State transition: Factorized Gaussians for Brownian motion,
p(st |st−1) = N (xt ; xt−1, σ

2
x) N (yt ; yt−1, σ

2
y) N (rt ; rt−1, σ

2
r)

N (κt ;κt−1, σ
2
κ)

Can use other methods to learn complex motion, e.g.,
auto-regression and moving average (ARMA) models

52 / 135

Observation Model: p(ot |st)

Use probabilistic PCA to model image observation process

Compute the probability of the image patch ot being
generated from the current eigenbasis based on
distance-to-subspace, dt , and distance-within-subspace, dw

p(ot |st) = pdt (ot |st) pdw (ot |st) = N (ot ;µdt
,UUT + εI)

N (ot ;µdw
,UΣ−2UT)

53 / 135

Incremental Subspace Update

Update model with new observations to account for
appearance variation

Learn a compact representation while tracking

Almost all subspace update methods, e.g.,
R-SVD [Golub and Van Loan, 1996] and sequential
Karhunen-Loeve [Levy and Lindenbaum, 2000], assume fixed
or zero sample mean

Propose an efficient algorithm w.r.t. running
mean [Ross et al., 2008]

See also [Hall et al., 1998]

54 / 135

R-SVD Algorithm

Let old data be X = UΣV T and newly arrived data be Y

To compute SVD of Z = [X Y] = U
′′

Σ
′′
V
′′T efficiently

Scatter matrix: SZ = ZZT = SX + SY

Decompose Y into its projection on the subspace spanned by
U and its complement, L = UTY ,H = Y −UL = (I −UUT)Y

Let Y = UL + JK where JK = QR(H), JT J = I

Now, Z = [X Y] = [U J]

[
Σ L
0 K

] [
V 0
0 I

]T

Compute SVD of a much smaller matrix

[
Σ L
0 K

]
= U

′
Σ
′
V
′T

Then SVD of Z = U
′′

Σ
′′
V
′′T where

U
′′

= [U J]U
′
, Σ

′′
= Σ

′
, V

′′
=

[
V 0
0 I

]
V
′

55 / 135

Efficient R-SVD with Updated Mean

Lemma: Let X = {x1, . . . , xn}, Y = {xn+1 , . . . , xn+m}, and
Z = {x1, . . . , xn, xn+1, . . . , xn+m}. Denote the means and
the scatter matrices of as µX , µY , µZ , and SX , SY , SZ

respective, then

SZ = SX + SY +
nm

n + m
(µX − µY)(µX − µY)T

Let X̂ = X − µX I , Ŷ = Y − µY I ,

SZ =
[
X̂ Ŷ

√
nm

n+m (µX − µY)
]

X̂

Ŷ√
nm

n+m (µX − µY)

Same update formula except adding a correction term

Important for methods that rely on sample means (e.g., Fisher
linear discriminant)

56 / 135

Put All Together

1 Initialize the location of the target

2 Draw sample state: p(st |st−1)

3 Predict the most likely state: p(st |Ot)

4 Update eigenbasis with the most likely observation

5 Goto Step 2

57 / 135

Experimental Setups

Videos recorded at 15 fps with 320× 240 gray scale images

Use 6 affine motion parameters

15 eigenvectors

Normalize image patches to 32× 32 pixels

600 particles with forgetting factor of 0.95

Update every 5 frames

7.5 frames per second with MATLAB and MEX
implementation on a 2.8 GHz machine

Code and data sets available on the web

58 / 135

Does Incremental Update Work Well?

Compute subspace of 605 images using

Incremental update (every 5 frame)
Conventional (batch mode) PCA

30% faster than another related method [Hall and Martin 02]

59 / 135

Experimental Results

David indoor Trellis Car

First panel: Tracking result

Second panel (from left to right): Mean, tracked image,
residue, reconstruction results

Third panel: Top 10 eigenvectors

60 / 135

Comparisons with State of the Art

David indoor Dudek Sylvester

Yellow box: Our tracker, ellipse: WSL
tracker [Jepson et al., 2001], dashed green box: Mean shift
tracker [Comaniciu et al., 2000]

Simultaneously track and update appearance model

More qualitative/quantitative comparisons
in [Ross et al., 2008]
Can be explained with

View-based eigenbasis for object recognition (handling pose
variation) [Murase and Nayar, 1995]
Illumination cone (handling illumination
variation) [Belhumeur and Kriegman, 1998]

61 / 135

Generative Model and Distance Metrics

Background patches may be confused with foreground ones

A generative model with Gaussian noise σ

Recall p(ot |st) = pdt (ot |st) pdw (ot |st) =
N (ot ;µdt

,UUT + εI) N (ot ;µdw
,UΣ−2UT)

The joint log likelihood of U, µ, and σ depends on

xTC−1x = xTUΣ−1UTx︸ ︷︷ ︸
Mahalanobis distance

+
1

σ2
xT (I − UUT)x

︸ ︷︷ ︸
distance to subspace

where x = x− µ

Small σ ⇒ weigh more on distance to subspace dt

Large σ ⇒ weigh more on Mahalanobis distance dw

62 / 135

Adaptive Discriminative Generative Model

Discriminative generative model: Find the optimal classifier
V ∗ to separate positive/negative examples of two classes

Sampling: Draw a set of samples that are likely to “fool” the
generative model, and treat these as negative examples

Maximizing log likelihood of (V , U, µ, and σ) where U is the
orthonormal basis of the generative model [Ross et al., 2008]

Imperative to update the means of between-scatter matrix Sb

and within-scatter matrix Sw

V ∗ = arg max
V

|VSbV T |
|VSw V T |

Learn both appearance (i.e, U) and projection matrix (i.e., V)

63 / 135

Experimental Results

Pedestrian Dudek Joyce

Use particle filter as incremental visual tracker

First row of second panel: Positive examples

Second row of second panel: Negative examples

Some negative examples may be similar to positive ones

64 / 135

Discussion

Subspace: Orthonormal basis can also be computed efficiently
using the Gram-Schmidt algorithm

Distance metric: Uniform `2 norm [Ho et al., 2004]

First order vs. second order statistics for object tracking

Better sampling scheme

For certain applications, it suffices to locate object positions

Treat visual tracking as a object detection problem

Exploit ensemble of weak classifiers and local features

65 / 135

Support Vector Tracking I

Integrate support vector machine (SVM) classifier with optical
flow [Avidan, 2004]

Instead of minimizing intensity difference, SVT maximizes the
SVM classification score

Given a data set {xi , yi} of n examples xi with labels
yi ∈ {−1,+1}, the SVM classifier is

n∑

j=1

yjαjk(I , xj) + b (1)

where xj are support vectors, yj is the label, and αj are
Lagrange multiplier, k(I , xj) is the kernel

66 / 135

Support Vector Tracking II

Optical flow

Ifinal = Iinit + uIx + vIy (2)

where Ix , Iy are the image gradients in the x , y directions, u,
v are the motion parameters.

Put these two together

max
n∑

j=1

yjαjk(I + uIx + vIy , xj) (3)

Use quadratic polynomial kernel, k(x, xj) = (x>xj)
2

67 / 135

Support Vector Tracking III

The function can be maximized as

E (u, v) =
n∑

j=1

yjαjk(I + uIx + vIy , xj) (4)

=
n∑

j=1

yjαj ((I + uIx + vIy)xj)
2 (5)

Taking the derivatives w.r.t. u and v

∂E

∂u
=

n∑

j=1

yjαj I
>
x xj (I + uIx + vIy)>xj = 0 (6)

∂E

∂v
=

n∑

j=1

yjαj I
>
y xj (I + uIx + vIy)>xj = 0 (7)

68 / 135

Support Vector Tracking IV

After rearranging the terms[
A11 A12

A21 A22

] [
u
v

]
=

[
b1

b2

]
(8)

where
A11 =

n∑

j=1

αjyj (x
>
j Ix)2 (9)

A12 = A21 =
n∑

j=1

αjyj (x
>
j Ix)(x>j Iy) (10)

A22 =
n∑

j=1

αjyj (x
>
j Iy)2 (11)

b1 = −
n∑

j=1

αjyj (x
>
j Ix)(x>j I) (12)

b2 = −
n∑

j=1

αjyj (x
>
j Iy)(x>j I) (13)

69 / 135

Support Vector Tracking V

Resemble the standard optical flow equations

Support vectors replace the role of the second image

All computations are done on a single frame (not on a pair of
successive frame)

Similar to optical flow, large motion is handled by pyramid

Train on a set of 10,000 images of vehicles (sedans, SUVs,
trucks) and non-vehicles

Each example is normalized to the size of 20× 20 pixels and
about 2,000 support vectors are extracted

Speed up the classification with a reduced set method with
400 SVs

70 / 135

Support Vector Tracking VI

Error surface

Comparison

71 / 135

Support Vector Tracking VII

Summary:

Pros:

integrate SVM classifier into visual tracking

more robust than template-based visual tracking

Cons:

need to collect a large training set

handle simple motion model

does not handle occlusion

72 / 135

Relevance Vector Machine I

Pose the tracking problem as a regression
problem [Williams et al., 2005]

RVM: a probabilistic sparse SVM

Training

state spacedimensions forwhich they are not experts and this
beneficially engenders insensitivity to the orthogonal
degrees of freedom. Examples are generated with random
displacements sampled from a uniform distribution

ti � Uð�����;þ����Þ; ð13Þ

where U is the multivariate uniform distribution between
limits�����. An example zi is then excised from the seed image
as described in Section 3.1 with warp parameters u ¼ ti þ ����.

Fig. 4 shows some subimages from a real training set for
a face tracking application. This highlights a problem with
generating examples from only one seed image: the back-
ground is being learned along with the foreground target.
Using more seed images showing the target against
different backgrounds mitigates this problem and also
provides some invariance to appearance changes in the
target (Section 5 shows some experiments assessing the
efficacy of using multiple seed images).

The choice of the range of displacements and the number
of examples affects three aspects of training and runtime
performance:

1, The Gaussian RBF kernel (8) employs the L2 norm
between vectors. If examples are more tightly spaced,

thewidthof thekernel� canbemade smaller resulting
in more sharply peaked basis functions capable of
more precise localization.

2, The range of displacements used in generating
training examples ���� dictates the range over which
the expert can be relied on at runtime (see Section 5)
and thereby the maximum interframe motion that
can be tracked.

3, RVM training time scales as OðN3Þ and both a larger
capture range and closer packed examples result in
more relevance vectors retained by the expert,
incurring more kernel evaluations and reduced
speed at runtime.

Section 5 contains experimental results showing the effects
of these settings on real tracking performance. Algorithm 1
summarizes the procedure for training a displacement
expert:

Algorithm 1 Learn displacement expert �u ¼ gðxÞ
Require: Seed images: : fIg
Require: Labels: f����g
Require: Displacement Range: ����
Require: Number of examples: N
for i ¼ 1 to N do
Generate random displacement
ti Uniformð�����;þ����Þ
Sample from random seed image, Ir (Section 3.1)
zi SampleðIr; ����r þ tiÞ

end for
Train an RVM for each state space dimension
for j ¼ 1 to D do
Select correct target data
f�g jth dimension offtg
RVM training algorithm as described in [25]
ŵwj;�j RVMTrainðfzg; f�gÞ

end for
Delete from memory all examples zi for which ŵwi ¼ 0

Once trained, what is special about the training examples
kept as “relevant” (i.e., wi 6¼ 0)? Fig. 5 shows the displace-
ments of training examples for an expert working with two
degrees of freedom (2D translation). Those chosen as
relevant appear to be the most extreme examples and as
such are prototypical of horizontal or vertical translation.

3.3 Tracking with a Displacement Expert

Fig. 6 shows the process by which the displacement of a
subimage from the true target position is estimated. The
displacement along state-space dimension i is calculated as

�ui ¼ giðxtÞ ¼ wT
i k; ð14Þ

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 8, AUGUST 2005

Fig. 3. Example Generation. From a labeled region of interest, many
training examples may be sampled and converted to vectors zi,
accompanied by target displacements ti. As a tutorial example this
expert is estimating horizontal translation only.

Fig. 4. Real training examples. (a) A labeled seed image. (b) Some typical examples used to train the relevance vector machines on displacements
in translation, rotation and scaling.

state spacedimensions forwhich they are not experts and this
beneficially engenders insensitivity to the orthogonal
degrees of freedom. Examples are generated with random
displacements sampled from a uniform distribution

ti � Uð�����;þ����Þ; ð13Þ

where U is the multivariate uniform distribution between
limits�����. An example zi is then excised from the seed image
as described in Section 3.1 with warp parameters u ¼ ti þ ����.

Fig. 4 shows some subimages from a real training set for
a face tracking application. This highlights a problem with
generating examples from only one seed image: the back-
ground is being learned along with the foreground target.
Using more seed images showing the target against
different backgrounds mitigates this problem and also
provides some invariance to appearance changes in the
target (Section 5 shows some experiments assessing the
efficacy of using multiple seed images).

The choice of the range of displacements and the number
of examples affects three aspects of training and runtime
performance:

1, The Gaussian RBF kernel (8) employs the L2 norm
between vectors. If examples are more tightly spaced,

thewidthof thekernel� canbemade smaller resulting
in more sharply peaked basis functions capable of
more precise localization.

2, The range of displacements used in generating
training examples ���� dictates the range over which
the expert can be relied on at runtime (see Section 5)
and thereby the maximum interframe motion that
can be tracked.

3, RVM training time scales as OðN3Þ and both a larger
capture range and closer packed examples result in
more relevance vectors retained by the expert,
incurring more kernel evaluations and reduced
speed at runtime.

Section 5 contains experimental results showing the effects
of these settings on real tracking performance. Algorithm 1
summarizes the procedure for training a displacement
expert:

Algorithm 1 Learn displacement expert �u ¼ gðxÞ
Require: Seed images: : fIg
Require: Labels: f����g
Require: Displacement Range: ����
Require: Number of examples: N
for i ¼ 1 to N do
Generate random displacement
ti Uniformð�����;þ����Þ
Sample from random seed image, Ir (Section 3.1)
zi SampleðIr; ����r þ tiÞ

end for
Train an RVM for each state space dimension
for j ¼ 1 to D do
Select correct target data
f�g jth dimension offtg
RVM training algorithm as described in [25]
ŵwj;�j RVMTrainðfzg; f�gÞ

end for
Delete from memory all examples zi for which ŵwi ¼ 0

Once trained, what is special about the training examples
kept as “relevant” (i.e., wi 6¼ 0)? Fig. 5 shows the displace-
ments of training examples for an expert working with two
degrees of freedom (2D translation). Those chosen as
relevant appear to be the most extreme examples and as
such are prototypical of horizontal or vertical translation.

3.3 Tracking with a Displacement Expert

Fig. 6 shows the process by which the displacement of a
subimage from the true target position is estimated. The
displacement along state-space dimension i is calculated as

�ui ¼ giðxtÞ ¼ wT
i k; ð14Þ

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 8, AUGUST 2005

Fig. 3. Example Generation. From a labeled region of interest, many
training examples may be sampled and converted to vectors zi,
accompanied by target displacements ti. As a tutorial example this
expert is estimating horizontal translation only.

Fig. 4. Real training examples. (a) A labeled seed image. (b) Some typical examples used to train the relevance vector machines on displacements
in translation, rotation and scaling.

73 / 135

Relevance Vector Machine II

Learn the displacement expert with RVM regression

Test

where kj ¼ kðxt; zjÞ forms a vector of kernel evaluations and
xt is the queried subregion at time t sampled into a vector
usingut. From (7),wi is Gaussian distributed asNðwijŵiwi;�iÞ
meaning that �ui is also Gaussian with mean ŵwT

i k and
variance

si ¼ kT�ikþ �2i ; ð15Þ

where�2i is the variance from (6) [25]. To secure the benefits of
temporal fusion of data, observations must be obtained in a
probabilistic setting. This is one of the principal advantages
of the RVM over the SVM: The RVMdoesn’t just estimate the
change in state, but generates an output probability
distribution:

�u � Nð�ujWk; SÞ: ð16Þ

W is a matrix whose rows are the weight vectors of the

D RVMs,

W ¼
ŵwT

1

..

.

ŵwT
D

2
64

3
75 ð17Þ

and S is a diagonal covariance matrix (the cross-covariance
terms are assumed to be zero) containing the scalar
variances from (15):

S ¼ diagðs1; . . . ; sDÞ: ð18Þ

This probabilistic output can be treated as a Gaussian
innovation and incorporated into a Kalman-Bucy filter [9].

Equations for the evolution of the state and observation
are established by modeling the dynamics as a second order
autoregressive process (ARP) [3]. The state equations are
augmented to account for the two previous observations:

p u0tþ1ju0t
� �

/ exp � 1

2
u0tþ1��u0t
� �T

Q�1 u0tþ1��u0t
� �� �

; ð19Þ

where ut is a state estimate at time t and u0t ¼ ½utut�1�
T is its

augmented form. The coefficients, � and Q are learned
using maximum likelihood from a sequence capturing
typical motion of the target region [4].

The innovation term, �u, is then used to update the state
estimate, ut, by fusing this observation with the motion
model [9]. Algorithm 2 outlines the continuous tracking
process:

Algorithm 2 Tracking loop
Require: Initial state estimate: u0

Require: Initial state covariance: U0

t 0
loop
I New image from capture device
xt SampleðI;utÞ
Extrapolate state estimate using motion model (19)
utþ1 �ut
Utþ1 �Ut�

T þQ
Get innovation from displacement expert (16)
�u; S gðxtÞ
Compute Kalman gain [9]
Gk Utþ1½Utþ1 þ S��1
Fuse prediction and innovation
utþ1 utþ1 þGk�u
Utþ1 Utþ1 �GkUtþ1
t tþ 1

end loop

4 INITIALIZATION AND RECOVERY

For efficient operation, the RVM tracker fully exploits
temporal coherence. However, a robust tracker capable of
operating for an indefinite period also needs a detection
system, running in tandem, for initialization and recovery.
This object detector operates in two distinct modes. During
continuous tracking, the identity of the tracked object is
verified by warping it according to the current state estimate
(Section 3.1) and testing it with a classifier.4 Absence of

WILLIAMS ET AL.: SPARSE BAYESIAN LEARNING FOR EFFICIENT VISUAL TRACKING 5

Fig. 6. Expert prediction. A vector, x that has been sampled from an
image, is compared to the relevance vectors using the kernel function.
These values are then summed via the weights found by Algorithm 1 to
give an estimated displacement �u of x from the target.

4. Because image patches are warped before verification, rotated objects
are successfully verified. The restart mechanism, however, does not model
rotations and, thus, will not locate an object rotated by a significant amount
from its canonical orientation.

Fig. 5. The relevance vectors span the state space. As a tutorial
example, this figure shows the positions (ti) of examples used to train a
tracker in a space of 2D translations. Relevance vectors are indicated for
horizontal translations (circles) and vertical ones (squares).

Works most effective with in-plane image transformation

74 / 135

Tracking by Detection I

Formulate the tracking problem as a detection

Multi-target detection and tracking [Okuma et al., 2004]

Learn foreground/background classifiers

Collins [Collins and Liu, 2003]

Avidan [Avidan, 2007]

Grabner [Grabner and Bischof, 2006a]

See also P-N Learning [Kalal et al., 2010]

75 / 135

Tracking and Detection I

Track varying number of non-rigid objects

Two main components:

mixture of particle filters
Adaboost-based object detection

34 K. Okuma et al.

Fig. 3. Training set of images for hockey players: This figure shows a part of
the training data. A total of 6000 different figures of hockey players are used for the
training

(a) (b) (c)

Fig. 4. Hockey player detection result: This figure shows results of the Adaboost
hockey detector. (a) and (b) shows mostly accurate detections. In (c), there are a set
of false positives detected on audience by the rink

data generated by such a simple script is not ideal for training Adaboost, as
shown in Figure 3. As a result, our trained Adaboost produces false positives
alongside the edge of the rink shown in (c) of Figure 4. More human intervention
with a larger training set would lead to better Adaboost results, although failures
would still be expected in regions of clutter and overlap. The non-hockey-player
subwindows used to train the detector are generated from 100 images manually
chosen to contain nothing but the hockey rink and audience. Since our tracker
is implemented for tracking hockey scenes, there is no need to include training
images from outside the hockey domain.

The results of using Adaboost in our dataset are shown in Figure 4. Adaboost
performs well at detecting the players but often gets confused and leads to many
false positives.

4.2 Incorporating Adaboost in the Proposal Distribution

It is clear from the Adaboost results that they could be improved if we consid-
ered the motion models of the players. In particular, by considering plausible
motions, the number of false positives could be reduced. For this reason, we in-

34 K. Okuma et al.

Fig. 3. Training set of images for hockey players: This figure shows a part of
the training data. A total of 6000 different figures of hockey players are used for the
training

(a) (b) (c)

Fig. 4. Hockey player detection result: This figure shows results of the Adaboost
hockey detector. (a) and (b) shows mostly accurate detections. In (c), there are a set
of false positives detected on audience by the rink

data generated by such a simple script is not ideal for training Adaboost, as
shown in Figure 3. As a result, our trained Adaboost produces false positives
alongside the edge of the rink shown in (c) of Figure 4. More human intervention
with a larger training set would lead to better Adaboost results, although failures
would still be expected in regions of clutter and overlap. The non-hockey-player
subwindows used to train the detector are generated from 100 images manually
chosen to contain nothing but the hockey rink and audience. Since our tracker
is implemented for tracking hockey scenes, there is no need to include training
images from outside the hockey domain.

The results of using Adaboost in our dataset are shown in Figure 4. Adaboost
performs well at detecting the players but often gets confused and leads to many
false positives.

4.2 Incorporating Adaboost in the Proposal Distribution

It is clear from the Adaboost results that they could be improved if we consid-
ered the motion models of the players. In particular, by considering plausible
motions, the number of false positives could be reduced. For this reason, we in-

Numerous false positives from detection

Detection helps tracking and vice versa

76 / 135

Tracking and Detection II
A Boosted Particle Filter: Multitarget Detection and Tracking 37

32

33

34

35

205
(a) Adaboost detection result (b) BPF tracking

Fig. 7. BPF tracking result: The results of Adaboost detection are shown on the
left, with the corresponding boosted particle filter results on the right

77 / 135

Ensemble Tracking I

Train an ensemble of weak classifiers online using Adaboost
[Avidan, 2007]

Each pixel is classified to belong to the object or background,
thereby giving a confidence map

The peak of the map is found using mean-shift

78 / 135

Ensemble Tracking II

Weak classifier h: represent each pixel as a d-dimensional
feature, xi with its label yi , using weighted least squares
regression

Ax = y h = (A>A)−1A>y (14)

WAx = W y h = (A>W>WA)−1A>W>W y (15)

where each row of A is xi and W is a diagonal weight matrix

79 / 135

Ensemble Tracking III

General ensemble tracking
Initialization:
Train T weak classifiers and add them to the ensemble
For each new frame Ij do:

test all pixels using the current strong classifier and create a
confidence map Lj

run mean shift on the confidence map and report new object
rectangle rj
label pixels within rj as object and all those outside as
background
keep K “best” weak classifiers
train new T − K weak classifiers on frame Ij and add them to
the ensemble

Use Adaboost to construct a boosted classifier

80 / 135

Ensemble Tracking IV

Using 11-d feature vector (8-bin local histogram of oriented
gradients and RGB)

Using 9-d feature vector (8-bin local histogram of oriented
gradients and intensity)

81 / 135

Ensemble Tracking V

Summary:

Pros:

tracking as online classification/detection problem

online update

handle partial occlusion

work on gray scale images

Cons:

treat the target as a bag of pixels

drifting problem

82 / 135

Online Boosting I

Exploit the online Adaboost algorithm by Oza [Oza, 2001]

Importance (difficulty) of a sample can be estimated by
propagating it through the set of weak classifiers

Offline setting: all samples are used to update and select one
weak classifier

Online setting: one sample is used to update all weak
classifiers and the corresponding weight

Grabner and Bischof [Grabner and Bischof, 2006b] present an
online boosting algorithm for visual tracking using a pool of
weak classifiers

Online boosting for feature selection

83 / 135

Online Boosting II

ing deliver the same result. For details see the PhD-Thesis
of Oza [19].

The on-line algorithm requires that the number of weak
classifiers is fixed at the beginning. Note the interchange
of roles. In the off-line case all samples are used to update
(and select) one weak classifier, whereas in the on-line case
one sample is used to update all weak classifiers and the
corresponding voting weight.

2.4. On-line boosting for feature selection

The approach of Oza is not directly applicable to fea-
ture selection. The essential novelty of our approach is, that
we propose an on-line boosting algorithm for solving the
feature selection task. For this purpose we need a further
concept.

Selector: Given a set of M weak classifier with hypoth-
esis Hweak = {hweak

1 , ..., hweak
M }, a selector selects

exactly one of those.

hsel(x) = hweak
m (x) (3)

where m is chosen according to a optimisation crite-
rion. In fact we use the estimated error ei of each weak
classifier hweak

i ∈ Hweak such that m = argmini ei.

Note, that the selector can interpreted as a classifier (he
switches between the weak classifiers). Training a selec-
tor means that each weak classifier is trained (updated) and
the best one (with the lowest estimated error) is selected.
Similar to the off-line case, the weak classifiersHweak cor-
respond to features, i.e. the hypotheses generated by the
weak classifier is based on the response of the feature. The
selectors can therefore select from a subset of M features
Fsub = {f1, ..., fM | fi ∈ F} of the global feature pool.

In summary: The main idea is to apply on-line boosting
not directly to the weak classifiers but to the selectors.

The overall principle is depicted in Fig. 1 and in Algo-
rithm 2.1. In particular, the new on-line AdaBoost training
for feature selection works as follows: First, a fixed set of
N selectors hsel

1 , .., hsel
N is initialized randomly, each with

its own feature poolFn. When a new training sample 〈x, y〉
arrives the selectors are updated. This update is done with
respect to the importance weight λ of the current sample1.
For updating the weak classifiers, any on-line learning algo-
rithm can be used, but we employ a standard EM technique
to estimate the probability distributions of positive and neg-
ative samples and generate a hypothesis (see Section 3 for
more details). The weak classifier with the smallest error is
selected by the selector

argmin
m

(en,m), en,m =
λwrong
n,m

λcorr
n,m + λwrong

n,m
(4)

1Either λ is used as a learning rate in the learning algorithm or by k-
times repeated updating k ∼ Poisson(λ) as proposed by Oza.

Figure 1. Novel on-line boosting for feature selection.

en,m is the error of the m-th weak classifier hweak
n,m in the

in the n-th selector, estimated from the weights of correctly
λcorr
n,m and wrongly λwrong

n,m classified examples seen so far.
Finally, the corresponding voting weight αn and the impor-
tance weight λ of the sample are updated and passed to the
next selector hsel

n+1.
In order to increase the diversity of the classifier pool Fn

for the selector hsel
n and to adapt to changes in the environ-

ment the worst weak classifier is replaced by one randomly
chosen from the feature pool F .

This procedure is repeated for all selectors. The num-
ber of selectors is constant similar to the number of weak
classifiers in Oza’s on-line algorithm. A strong classifier is
obtained by linear combination of selectors.

hstrong(x) = sign
(N∑

n=1

αn · hsel
n (x)

)
(5)

In contrast to the off-line version a classifier is available at
any time.

2.5. Discussion

We point out the differences and relations between the
off-line and the on-line algorithm and take a look at the ad-
vantages and disadvantages. The main difference is that in
the on-line case only the information from one training ex-
ample is used and in the off-line case the training set is fixed.

From the algorithm’s point of view, in the off-line case at
each boosting iteration a new weak classifier is created and
thus a feature from the feature pool F is selected and added
it to the ensemble. A drawback for the on-line algorithm,
is that the discriminative complexity of the classifier is lim-
ited, because the number of weak classifiers is fixed (since
also the number of selectors is fixed). However, the fea-
tures selected within a selector and also the voting-weight

84 / 135

Online Boosting III

Figure 3. Experimental results when applying our on-line feature selection method to tracking. The initial marked glass is robustly tracked
(occlusions and changes in appearance) over the whole image sequence (first row). The second row shows the maxima of the confidence
map over time.

Figure 4. Robust tracking of two similar objects which are severely occluded.

overlapped with blue rectangles indicating classifiers which
are currently updated. Those classifiers that give a negative
response, and by definition this are foreground objects, are
depicted in the second row. Added, removed or shifted ob-
jects in the scene are detected very well. Note, that during
learning of this sequence the screen saver was active, there-
fore this dynamic background has been correctly modeled
as background by the classifiers. But, when we weak up the
computer (4-th column) the change is detected.

On a standard quarter PAL (384×288) resolution a fram-
erate of about 15-20 fps is achieved. Each sub-classifier
contains 30 selectors (each can choose from 250 weak clas-
sifier) and analyzes a 20 × 20 image patch with 50% over-
lapp.

3.2. Tracking

This work was inspired by Avidan [3]. The main idea
is to formulate the tracking task as a classification problem
and to continuously update the current classifier which rep-
resents the object to optimally discriminate it from the cur-
rent background [5].

The principle is depicted in Figure 5. We assume that we
have already detected the object in the gray-scale image and
therefore have an initial tracking region. We start, build-
ing an initial classifier using the marked region as positive
samples and patches in the local neighborhood as negative
samples. At time t + 1 we evaluate the current classifier
in a region of interest around the previous detection (in fact
we could also use a motion model to predict the new po-
sition). For each classified patch we receive a confidence

Figure 5. Principle of tracking with a classifier

value which is entered in a confidence map. This confi-
dence map is analyzed and the tracking window is shifted
to the best possible position3. We update the classifier and
continue the process. This update has several advantages,
first we learn to optimally discriminate the object from the
background, and second the object can change its appear-
ance which will be learned by the boosting approach. In
addition depending on the update parameters the algorithm
is robust to occlusions. The on-line update capability is the
big advantage over support vector or relevance vector track-
ing methods [2].

3At the moment we simply shift it to the maximum, but also a more
powerful method, like a mean shift approach, can be used. But even our
simple strategy shows pretty good results that are adequate for demonstrat-
ing the on-line boosting method.

Weak classifier: Gaussian distributions of Haar-like, HOG
(histogram of gradients), and LBP (local binary pattern)
features with Kalman filter

50 selectors, and each can choose from 250 weak classifiers

Experimental results

85 / 135

Semi-supervised Tracking I

Idea: Pure online visual tracking often leads to drifting
problem

[Grabner et al., 2008] apply semi-boost
algorithm [Mallapragada et al., 2007] to visual tracking

Semi-Supervised On-line Boosting for Robust Tracking 3

Fig. 2. Detection and tracking can be viewed as the same problem, depending on how
fast the classifier adapts to the current scene. On the one side a general object detector
(e.g., [14]) is located and on the other side a highly adaptive tracker (e.g., [4]). Our
approach is somewhere in between, benefiting from both approaches: (i) be sufficiently
adaptive to appearance and illumination changes and (ii) limit (avoid large) drifting
by keeping prior information about the object.

fixed classifiers which per definition do not suffer from the drifting problem, but
have limited adaptation capabilities or we can use on-line adaptation and then
have to face the drifting problem3. In fact, this is not a binary choice as depicted
in Fig. 2.

In this paper, we explore the continuum between a fixed detector and on-line
learning methods as depicted in Fig. 2. Recently, this has also been investigated
by Li et al. [15] for tracking in low-frame rates. However, in order to formulate
this problem in a principled manner we use ideas from semi-supervised learn-
ing (see [16] for a recent survey). In particular, we use the recently proposed
SemiBoost [17, 18] for learning a classifier. Labeled data (or a previously trained
model) is used as a prior and the data collected during tracking as unlabeled sam-
ples. This allows us to formulate the tracker update problem in a natural manner.
Additionally, this solves the problem of how to weight the a priori information
and the on-line classifier without parameter tuning. The major contribution is
an on-line formulation of semi-supervised boosting which is a requirement for
using this algorithm for tracking.

Back to our example shown in Fig. 1. The proposed approach performs similar
to the former on-line tracker up to the third subfigure, where both get lost. Yet,
in contrast to the on-line boosting, as soon as the object becomes visible again it
is re-detected by the SemiBoost tracker (using the a priori knowledge) while the
on-line boosted tracker meanwhile has adapted itself to a completely different
region which it finally tries to track.

The reminder of the paper is organized as follows. Section 2 shortly reviews
on-line boosting for feature selection and a recently published variant of semi-
supervised boosting called SemiBoost[18]. In Section 3, we present our novel on-
line SemiBoosting method, which is then used in a tracking application shown
in Section 4. Section 5 presents some detailed experiments and results. Finally,
our work concludes with Section 6.

3 In fact, this is another instance of the stability plasticity dilemma [13].

Semi-Supervised On-line Boosting for Robust Tracking 9

Fig. 3. Given a fixed prior and an initial position of the object in time t, the classifier
is evaluated at many possible positions in a surrounding search region in frame t +
1. The obtained confidence map is analyzed in order to estimate the most probable
position and finally the tracker (classifier) is updated in an unsupervised manner, using
randomly selected patches.

4.1 Modifications of the Tracking Loop

The tracker, as reviewed above, can suffer from the drifting problem. This is
due to self-learning relies on its own predictions that are always incorporated
with hard labels (i.e., y ∈ {−1,+1}), even if their confidences are very low. In
contrast, incorporating our novel way of on-line semi-supervised boosting allows
us to change the update strategy of the previously proposed on-line boosting
tracker. The overall work flow is depicted in Figure 3, which is very similar to
the one described above. The main difference is, that we do not update the
classifier with fixed labels, we solely use (random) patches from the region of
the estimated object position and use them as unlabeled samples to update
the classifier. This is only possible because we have a prior classifier. Roughly
speaking, one can think of the prior classifier as a fixed point and the on-line
classifier exploring the space around it. This means that the classifier can adapt
(or “drift”) to new situations but has always the possibility to recover.

5 Experiments and Discussion

In this section, first, we perform experiments demonstrating the specific prop-
erties of our tracking approach. Second, we evaluated our tracker on different
scenarios showing that we can cope with a large variability of different objects.

As image features which are selected by on-line SemiBoost we use Haar-like
features [14] which can be calculated efficiently using integral data-structures.
The performance (speed) depends on the size of the search region which we
have defined by enlarging the target region by one third of the object size in
each direction (for this region the integral representation is computed). In our
experiments we neither use a motion model nor a scaled search window, which

Use first frame to learn the prior

86 / 135

Semi-supervised Tracking II

Semiboost

Other semi-supervised methods

Co-inference [Wu and Huang, 2001]

Co-training [Javed et al., 2005]

87 / 135

FragTrack I

FragTrack [Adam et al., 2006]

use multiple local image fragments or patches
use integral histogram [Porikli, 2005]
every patch votes on the possible position and scale
minimize a robust statistic to combine vote maps
use Earth Mover Distance (EMD) [Rubner et al., 2000] to
compute similarity between histograms

of the target frame, we obtain a vote-map describing the

possible positions of each patch in the target frame. We

then combine the vote-maps in a robust manner. Spatial in-

formation is not lost due to the use of spatial relationships

between patches. Occlusions result in some of the patches

contributing outlier vote-maps. Due to our robust method

for combining the vote maps, the combined estimate of the

target’s position is still accurate.

The use of parts or components is a well known tech-

nique in the object recognition literature (see chapter 23 in

[11]). Examples of works which use the spatial relation-

ships between detections of object parts are [21, 17, 16, 2].

In [24] the issue of choosing informative parts which con-

tain the most information concerning the presence of an ob-

ject class is discussed. A novel application of detecting un-

usual events and salient features based on video and image

patches has recently been described in [5].

In tracking, the use of parts has usually been in the con-

text of human body tracking where the parts are based on

a model of the human body - see [23] for example. Re-

cently, Hager, Dewan and Stewart [14] (followed by Fan et

al. [10]) analyzed the use of multiple kernels for tracking.

In these works the connection between the intensity struc-

ture of the target, the possible transformations it can expe-

rience between consecutive frames, and the kernel structure

used for kernel tracking was analyzed. This analysis gives

insight on the limitations of single-kernel tracking, and on

the advantages of multiple-kernel tracking. The parts-based

tracking algorithm described in this work differs from these

and other previous works in a number of important issues:

• Our algorithm is robust to partial occlusions - the

works in [14, 10] cannot handle occlusions due to the

non-robust nature of the objective function.

• Our algorithm allows the use of any metric for com-

paring two histograms, and not just analytically-

tractable ones such as the Bhattacharyya or the equiv-

alent Matusita metrics. Specifically, by using non-

componentwise metrics the effects of bin-quantization

are reduced (see section 2.1 and Fig. 3).

• The spatial constraints are handled automatically in

our algorithm by the voting mechanism. In contrast,

in [10] these constraints have to be coded in (e.g. the

fixed length constraint).

• The robust nature of our algorithm and the efficient use

of the integral histogram allows one to use the algo-

rithm without giving too much thought on the choice

of multiple patches/kernels. In contrast, in [14, 10] the

authors carefully chose a small number of multiple ker-

nels for each specific sequence.

• We present extensive experimental validation, on out-

of-the-lab real sequences. We demonstrate good track-

Template T

Patch P
T

Previous position (X
0
,Y

0
)

Image I

Hypothesized position
 (X,Y) within radius r of
 previous position

Patch P(I; X,Y)

Figure 1. Template patch PT and the corresponding image patch

PI;(x,y) for a hypothesized position (x, y)

ing performance on these challenging scenarios, ob-

tained with the use of only gray-scale information.

Our algorithm requires the extraction of intensity or

color histograms over a large number of sub-windows in

the target image and in the object template. Recently Pork-

ili [18] extended the integral image [25] data structure to

an “integral histogram” data structure. Our algorithm ex-

ploits this observation - a necessary step in order to be able

to apply the algorithm for real time tracking tasks. We ex-

tend the tracking application described in [18] by our use

of parts, which is crucial in order to achieve robustness to

occlusions.

2. Patch Tracking

Given an object O and the current frame I , we wish to

locate O in the image. Usually O is represented by a tem-

plate image T , and we wish to find the position and the scale

of a region in I which is closest to the template T in some

sense. Since we are dealing with tracking, we assume that

we have a previous estimate of the position and scale, and

we will search in the neighborhood of this estimate. For

clarity, we will consider in the following only the search in

position (x, y).

Let (x0, y0) be the object position estimate from the pre-

vious frame, and let r be our search radius. Let PT =
(dx, dy, h, w) be a rectangular patch in the template, whose

center is displaced (dx, dy) from the template center, and

whose half width and height are w and h respectively. Let

(x, y) be a hypothesis on the object’s position in the cur-

rent frame. Then the patch PT defines a corresponding

rectangular patch in the image PI;(x,y) whose center is at

(x+dx, y+dy) and whose half width and height are w and

h. Figure 1 describes this correspondence.

Given the patch PT and the corresponding image patch

PI;(x,y), the similarity between the patches is an indication

of the validity of the hypothesis that the object is indeed

located at (x, y). If d(Q,P) is some measure of similarity

0-7695-2646-2/06 $20.00 (c) 2006 IEEE

88 / 135

FragTrack II

initial template frame 222 frame 539 frame 849

initial template frame 66 frame 134 frame 456
Figure 8. Occlusions - frames from “face” and “woman” sequences. Our tracker - solid red. Mean-shift tracker - dashed blue. Note in

frame 456 how the spatial information - bright in the upper part, dark in the lower part - helps our tracker. The mean-shift tracker which

does not have this information chooses a region with a dark upper part and a bright lower part.

initial template frame 29 frame 141 frame 209
Figure 9. Pose change and occlusions - frames from “living room” sequence. Our tracker - solid red. Mean-shift tracker - dashed blue.

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70
Position error w.r.t. ground truth

frame number

p
o

s
it
io

n
 e

rr
o

r
(i
n

 p
ix

e
ls

)

our tracker
mean shift tracker

Figure 6. Face sequence - error with respect to manually marked

ground truth. Our tracker - solid red. Mean shift - dashed blue.

Please see videos for additional impression

sentation and voting known from the recognition literature,

with the integral histogram tool. The result is a real time

tracking algorithm which is robust to partial occlusions and

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45
Position error w.r.t. ground truth

frame number

p
o

s
it
io

n
 e

rr
o

r
(i
n

 p
ix

e
ls

)

our tracker
mean shift tracker

Figure 7. Woman sequence - error with respect to manually

marked ground truth. Our tracker - solid red. Mean shift - dashed

blue. Please see videos for additional impression

pose changes.

In contrast with other tracking works, our parts or frag-

ments approach is model-free: the fragments are chosen

0-7695-2646-2/06 $20.00 (c) 2006 IEEE

FragTrack face FragTrack woman

89 / 135

Online Multiple Instance Learning (MIL)

Inherent ambiguity of positive examples in sampling
Multiple Instance Learning [Dietterich et al., 1997]
Learning with positive bags and negative bags offline

Positive bag: At least one instance is positive
Negative bag: All instances are negative

Batch mode discrete MILBoost for face
detection [Viola et al., 2005]
Develop continuous online MILBoost for visual
tracking [Babenko et al., 2009]

90 / 135

Boosting and MILBoost

Boosting: Given xi → yi (instance)

H(x) =
K∑

k=1

αkhk (x)

where hk (s) is a weak classifier and prediction via sgn(HK (x))

MILBoost: Given Xi → yi (bag)

L(H) =
∑

i

yi log(pi) + (1− yi) log(1− pi)

where

pi = p(yi = 1|Xi) = 1−∏j (1− pij) (Noisy-Or)

pij = p(yij = 1|xij) (as LogitBoost)

91 / 135

Batch MILBoost

Train weak classifiers in a greedy fashion

hk+1 = arg max
h∈H
L(Hk + h)

For batch MILBoost, can optimize using functional gradient
descent [Viola et al., 2005]

For tracking, we need an online version

92 / 135

Online MILBoost

At all times, keep a pool of M � K weak classifier candidates

At time t get more training data

Update all candidate classifiers
Pick best K in a greedy fashion

hk+1 = arg max
h∈{h1,h2,...,hM}

L(Hk + h)

Can be applied for classification and regression problems

93 / 135

Online MILBoost for Tracking

Tracking by learning boosted detector online

Online MILBoost: H(x) =
∑K

k=1 αkhk (x)

Weak classifier hk (x): Univariate Gaussian densities of
generalized Haar-like features

Maximize bag likelihoods via stochastic gradient descent

Online selection of weak classifiers (i.e., Haar-like features)
that best separate foreground and background

94 / 135

Visual Tracking with Online MILBoost: Results

20 fps on 3GHz machine with C++ implementation

Handle fast motion, lighting/pose variation, and occlusion

Only a few fixed parameters (no tuning)

Quantitative and qualitative results

Code and data available on the web

David Indoor Tiger Face

Boris Tom and Jerry Tom and Jerry 2

95 / 135

Online Articulated Object Tracking

Tracking by detection with parts-based
representation [Nejhum et al., 2008]

Appearance: Represent an articulated object, W, with
weighted integral histograms of blocks λiH

W
i

Shape: Find contour with fast graph cut segmentation

Tracking articulated objects:
Detection: Scan the image and find W∗ = max

W′
S(W′,W),

where S(W′,W) =
∑K

i=1 λiρ(HW′

i ,HW
i)

Refinement: Apply segmentation locally to find foreground and
background
Update: Adjust block configuration locally, Hf =

∑K
i=1 αiHW

i

96 / 135

Online Articulated Object Tracking: Results

Online update of shape and appearance [Nejhum et al., 2008]

Use efficient graph cut algorithm for segmentation

4 frames per second on a 3GHz machine with MATLAB and
MEX implementation

Code and data available on the web

Lipinski Lysacek

Guillem Tom and Jerry

97 / 135

Summary

Online visual tracking algorithms with robust performance

Simultaneously track and update appearance model
Adaptive discriminative generative model
Online MILBoost for visual tracking
Tracking articulated objects with appearance and shape

Able to track objects undergoing change in illumination and
pose, with occlusions, and motion blurs

Code and data are available on the web

98 / 135

Sparse Representation I

Motivated by recent success in sparse representation

Sparsify object representation with trivial templates

Each target candidate is sparsely represented by target and
trivial templates [Mei and Ling, 2009]

Robust Visual Tracking using �1 Minimization

Xue Mei Haibin Ling
Center for automation Research Center for Information Science & Technology

Electrical & Computer Engineering Department Computer & Information Science Department

University of Maryland, College Park, MD, USA Temple University, Philadelphia, PA, USA

xuemei@umiacs.umd.edu hbling@temple.edu

Abstract

In this paper we propose a robust visual tracking method
by casting tracking as a sparse approximation problem in a
particle filter framework. In this framework, occlusion, cor-
ruption and other challenging issues are addressed seam-
lessly through a set of trivial templates. Specifically, to
find the tracking target at a new frame, each target candi-
date is sparsely represented in the space spanned by target
templates and trivial templates. The sparsity is achieved
by solving an �1-regularized least squares problem. Then
the candidate with the smallest projection error is taken as
the tracking target. After that, tracking is continued us-
ing a Bayesian state inference framework in which a par-
ticle filter is used for propagating sample distributions over
time. Two additional components further improve the ro-
bustness of our approach: 1) the nonnegativity constraints
that help filter out clutter that is similar to tracked targets
in reversed intensity patterns, and 2) a dynamic template
update scheme that keeps track of the most representative
templates throughout the tracking procedure. We test the
proposed approach on five challenging sequences involving
heavy occlusions, drastic illumination changes, and large
pose variations. The proposed approach shows excellent
performance in comparison with three previously proposed
trackers.

1. Introduction

Visual tracking is a critical task in many computer vision
applications such as surveillance, robotics, human com-
puter interaction, vehicle tracking, and medical imaging,
etc. The challenges in designing a robust visual tracking
algorithm are caused by the presence of noise, occlusion,
varying viewpoints, background clutter, and illumination
changes [32]. A variety of tracking algorithms have been
proposed to overcome these difficulties.

In this paper, we develop a robust visual tracking frame-

Figure 1. Templates used in our proposed approach (from the second test-
ing sequence, Fig. 5).

work by casting the tracking problem as finding a sparse
approximation in a template subspace. Motivated by the
work in [30], we propose handling occlusion using trivial
templates, such that each trivial template has only one non-
zero element (see Fig. 1). Then, during tracking, a target
candidate is represented as a linear combination of the tem-
plate set composed of both target templates (obtained from
previous frames) and trivial templates. The number of tar-
get templates are far fewer than the number of trivial tem-
plates. Intuitively, a good target candidate can be efficiently
represented by the target templates. This leads to a sparse
coefficient vector, since coefficients corresponding to trivial
templates (named trivial coefficients) tend to be zeros. In
the case of occlusion (and/or other unpleasant issues such
as noise corruption or background clutter), a limited num-
ber of trivial coefficients will be activated, but the whole
coefficient vector remains sparse. A bad target candidate,
on the contrary, often leads to a dense representation1(e.g.,
Fig. 3). The sparse representation is achieved through solv-
ing an �1-regularized least squares problem, which can be
done efficiently through convex optimization. Then the can-
didate with the smallest target template projection error is
chosen as the tracking result. After that, tracking is led by
the Bayesian state inference framework in which a particle
filter is used for propagating sample distributions over time.

Two additional components are included in our approach
to further improve robustness. First, we enforce nonnega-
tivity constraints to the sparse representation. These con-

1Candidates similar to trivial templates have sparse representations, but
they are easily filtered out for their large dissimilarities to target templates.

1436

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

y = T = a1t1 + a2t2 + · · ·+ antn

y =
[
T I

] [a
e

]

Enforce non-negative coefficients

Sparsify is achieved by `1 minimization

Used with a particle filter

99 / 135

Sparse Representation II

50 100 150 200 250 300 350
0

1

2

Good target candidate approximated by templates

coefficients

va
lu

e

50 100 150 200 250 300 350
0

0.1

0.2

Bad target candidate approximated by templates

coefficients

va
lu

e

Figure 3. Top left: good and bad target candidates. Bottom left: Ten
templates in the template set. They are the enlarged version of the tem-
plates shown on the bottom left corner of the top image. Top right: good
target candidate approximated by template set. Bottom right: bad target
candidate approximated by template set.

where e+ ∈ Rd, e− ∈ Rd are called a positive trivial coeffi-
cient vector and a negative trivial coefficient vector respec-
tively, B = [T, I,−I] ∈ Rd×(n+2d), and c� = [a, e+, e−] ∈
Rn+2d is a non-negative coefficient vector. Example tem-
plates are illustrated in Fig. 1.

3.3. Achieving Sparseness through �1 Minimization

The system in (7) is underdetermined and does not have
a unique solution for c. The error caused by occlusion
and noise typically corrupts a fraction of the image pixels.
Therefore, for a good target candidate, there are only a lim-
ited number of nonzero coefficients in e+ and e− that ac-
count for the noise and partial occlusion. Consequently, we
want to have a sparse solution to (7). We exploit the com-
pressibility in the transform domain by solving the problem
as an �1-regularized least squares problem, which is known
to typically yield sparse solutions [30]

min ||Bc− y||22 + λ||c||1 , (8)

where ||.||1 and ||.||2 denote the �1 and �2 norms respec-
tively.

Fig. 3 shows the coefficients approximated by the tem-
plate set for the good and bad target candidates. The good
and bad target candidates are shown in the red and blue
bounding boxes on the top left image. The 10 target tem-
plates with size of 12 × 15 are shown on the left corner,
while the enlarged version is shown on the bottom left im-
age. The images on the right show the good and bad target
candidate approximated by the template set, respectively.
The first 10 coefficients correspond to the 10 target tem-
plates used in the tracking and the rest 360 coefficients cor-
respond to the trivial templates. In the top right image, the
seventh coefficient is relatively large comparing to the rest
coefficients. Thus the seventh target template represents the
good candidate well and the trivial templates have a small
factor in approximating the good candidate. While in the
bottom right image, the coefficients are densely populated
and trivial templates account for most of the approximation
for bad candidate in the left image.

Our implementation solves the �1-regularized least
squares problem via an interior-point method based on [22].

Algorithm 1 Template Update
1: y is the newly chosen tracking target.
2: a is the solution to (8).
3: w is current weights, such that wi ← ||ti||2.
4: τ is a predefined threshold.
5: Update weights according to the coefficients of the tar-

get templates. wi ← wi ∗ exp(ai).
6: if (sim(y, tm) < τ), where sim is a similarity func-

tion. It can be the angle between two vectors or SSD
between two vectors after normalization. tm has the
largest coefficient am, that is, m = argmax1≤i≤n ai
then

7: i0 ← argmin1≤i≤n wi

8: ti0 ← y, /*replace an old template*/.
9: wi0 ← median(w), /*replace an old weight*/.

10: end if
11: Normalize w such that sum(w) = 1.
12: Adjust w such that max(w) = 0.3 to prevent skewing.
13: Normalize ti such that ||ti||2 = wi.

The method uses the preconditioned conjugate gradients
(PCG) algorithm to compute the search direction and the
run time is determined by the product of the total number of
PCG steps required over all iterations and the cost of a PCG
step. We use the code from [11] for the minimization task.

We then find the tracking result by finding the small-
est residual after projecting on the target template subspace,
i.e., ||y − Ta||2. Therefore, the tracking result is the sam-
ple of states that obtains the largest probability, that is, the
smallest error.

3.4. Template Update

Template tracking was suggested in the computer vision
literature in [23], dating back to 1981. The object is tracked
through the video by extracting a template from the first
frame and finding the object of interest in successive frames.
A fixed appearance template is not sufficient to handle re-
cent changes in the video, while a rapidly changing model
is susceptible to drift. Approaches have been proposed to
overcome the drift problem [25, 21] in different ways.

Intuitively, object appearance remains the same only for
a certain period of time, but eventually the template is no
longer an accurate model of the object appearance. If we
do not update the template, the template cannot capture the
appearance variations due to illumination or pose changes.
If we update the template too often, small errors are intro-
duced each time the template is updated. The errors are ac-
cumulated and the tracker drifts from the target. We tackle
this problem by dynamically updating the target template
set T.

One important feature for �1 minimization is that it fa-
vors the template with larger norm because of the regular-

1439

Tracking resultsFigure 4. The tracking results of the first sequence: our proposed tracker (row 1), MS (row 2), CV (row 3), and AAPF (row 4) over
representative frames with severe occlusion.

Figure 5. The tracking results of the second sequence: our proposed tracker (row 1), MS (row 2), CV (row 3), and AAPF (row 4) over
representative frames with drastic illumination changes.

References
[1] S. Avidan. “Ensemble Tracking”, CVPR, 494-501, 2005.

[2] B. Babenko, M. Yang, and S. Belongie. “Visual Tracking with Online
Multiple Instance Learning”, CVPR, 2009.

[3] S. Baker and I. Matthews. “Lucas-kanade 20 years on: A unifying
framework”, IJCV, 56:221-255, 2004.

[4] M. J. Black and A. D. Jepson. “Eigentracking: Robust matching
and tracking of articulated objects using a view-based representation”,
IJCV, 26:63-84, 1998.

1441

Top to bottom: [Mei and Ling, 2009] mean-shift tracker,

covariance-based tracker [Porikli et al., 2006], and appearance-based

particle filter [Zhou et al., 2004]

100 / 135

Sparse Representation III

Figure 6. The tracking results of the third sequence: our proposed tracker (row 1), MS (row 2), CV (row 3), and AAPF (row 4) over
representative frames with partial occlusion and background clutter.

Figure 7. The tracking results of the fourth sequence: our proposed tracker (row 1), MS (row 2), CV (row 3), and AAPF (row 4) over
representative frames with severe occlusion.

[5] E. Candès, J. Romberg, and T. Tao. “Stable signal recovery from in-
complete and inaccurate measurements”, Comm. on Pure and Applied
Math, 59(8):1207-1223, 2006.

[6] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Bara-
niuk, and R. Chellappa. “Compressive Sensing for Background Sub-
traction”, ECCV, 2008.

1442

Top to bottom: [Mei and Ling, 2009] mean-shift tracker,

covariance-based tracker [Porikli et al., 2006], and appearance-based

particle filter [Zhou et al., 2004]

101 / 135

Multiple Trackers

In layer [Toyama and Hager, 1999]
In parallel [Birchfield, 1998] [Perez et al., 2002a]
[vermaak et al., 2003]
Homogeneous tracker [Li et al., 2007] [Kwon and Lee, 2010]
Heterogeneous trackers [Stenger et al., 2009]
[Santner et al., 2010]
Feature level: [Bar-Shalom, 1992]
[Isard and MacCormick, 2001] [Perez et al., 2002a]
[Yu and Wu, 2004] [Wu and Huang, 2004]
[Perez et al., 2002b]
Tracker level:

Rapid face motion [Li et al., 2007]
Black box approach [Leichter et al., 2006]
Multiple observers [Stenger et al., 2009]: off-line training to
find the best combination of tracking methods
Visual tracking decomposition [Kwon and Lee, 2010]
PROST [Santner et al., 2010]

Connection with multi-view learning
102 / 135

Multiple Observers with Different Lifespans I

Multiple observers (observation model) for face
tracking [Li et al., 2007]

Handle fast and abrupt motion with low frame rate images

Each observer is learned from different ranges of samples, with
different subsets of features

ter; while those with longer lifespan can produce more ac-
curate result and prevent the “drift” problem which is typi-
cal of an online learning system.

Further in organizing these observers, rather than adopt-
ing a cascade (which is a common approach in detection
literature, however problematic in our approach as will be
shown) and a standard particle filter (which is also one of
the most celebrated tracking frameworks), we instead pro-
pose a “cascade particle filter” in the hope of combining
the two successful ideas in both fields to satisfy the special
needs of our particular problem.

In the next section, related work is briefly summarized.
Section 3 is devoted to the learning of different observers.
Section 4 first introduces the common approach of particle
filter and reveals its deficiency in the view of LFR issue,
and then describes the cascade particle filter and compares
it with existing methods. After that are the experiment and
conclusion sections.

2. Related work
LFR is in most cases equivalent to abrupt motion. How-

ever, a large part of traditional tracking approaches heav-
ily depend on motion continuity. Particle filters [10] uses
a dynamic model to guide the particle propagation within a
limited sub-space of target state. Other methods based on
iterative optimization such as mean shift [4] and Kanade-
Lucas-Tomasi feature tracker [17] generally require the ker-
nels or feature patches in consecutive frames to overlap with
or be in a very close vicinity of each other. These, however,
are presumptions too expensive under conditions of LFR or
abrupt motion.

Several existing publications have been aware of this pit-
fall, may the motive be LFR tracking or not, the remedy has
been quite unanimous: detection. Okuma et al. [14] uses
a boosted detector to amend the trial distribution of parti-
cle filter. Such mixture trial distribution can also be found
in many other works such as [12], although not aimed at
LFR videos. Porilkli and Tuzel [15] extend the standard
mean shift technique by optimizing around multiple kernels
at motion areas detected by background modeling, to track
in 1-fps camera-fixed surveillance video. These ideas can
be concluded as using an independent detector to guide the
search of an existing tracker when target motion becomes
unpredictable.

Another extreme is to “detect and connect” [7][11]. Such
approaches are of potential to deal with LFR tracking, be-
cause they first detect the objects of interest (sometimes
track them through short sequences), and then construct tra-
jectories (or connect trajectory fragments) by analysis of
motion continuity, appearance similarity, etc. Real-time al-
gorithms of this category are mostly limited in background-
fixed scenes where a fast change detector is readily at hand.

The two categories above has a common drawback that

Offline Sample Pool Online Sample Sequence

Learning Period Service Period

Learning Period Service Period

Current frame

Observation
Model 3
Observation
Model 2

Observation
Model 1 Learning Period Service Period

Figure 2. Life-spans of observation models (observers).

they need a detector fast enough to be applied to large search
areas (in most cases, the whole frame), partly because the
detector is only loosely coupled with the tracker.

The seemingly most similar work to ours may be the
multi-scale approaches for abrupt motion [8][3] and layered
sampling of multi-scale likelihoods [16]. However, multi-
scale approaches adopt essentially the same observation
model on several down-scaled images, while our approach
applies a pipeline of complementary observation models on
the same image space. The latter’s advantage lies in that dis-
criminative power is increased and no risk of losing image
information in down-scaling is induced.

Recently there has been a trend of introducing learning
techniques into tracking problems, and tracking is viewed as
a classification problem in the sense of distinguishing track-
ing target from the background. Representative publications
include [2] [19], which have shown increased discriminative
power of the tracker. Although none of them have targeted
at LFR tracking, we will also incorporate online learning
in our approach, only that online classifiers will be unified
with offline ones to achieve enhanced robustness.

3. Learning discriminative observers
3.1. Representation

Following the convention of sequential Bayesian estima-
tion, denote the state of the target object and the observation
at time t by xt and zt respectively (in this section we sup-
press the subscript t when there is no ambiguity). In the
case of face tracking, we define x = (x, y, s), namely the
position and size. An observer outputs p(z|x) for each input
candidate x. Since we adopt m observers, it is convenient
to define z = (z1, . . . , zm), and denote the output of the
k-th observer as p(zk|x).

Further, each observer here is represented by its learner
L, training sample set S, feature pool F for learning, as
well as the time complexities: offline training complexity
τoff , online training complexity τon and testing complexity
τtest (defined as the time to calculate p(z|x) for each x).
Therefore we formalize the k-th observer as

Ok = (Lk, Fk, Sk, τk,on , τk,off , τk,test). (1)

Denote the features selected by Lk as F̂k (⊂ Fk), and
Ŝk as the test samples input to the k-th observer (the output

103 / 135

Multiple Observers with Different Lifespans II

F3F2F1
f1 f3

f2 f4
f5

Figure 3. Feature set of each observation model.

k 1 2 3

Lk A 5-dimension
LDA classifier

Discrete Ad-
aBoost on a
pool of P LDA
classifiers

Real AdaBoost
on histogram
weak classifiers

Fk 5 pre-selected
Haar-like features

50 pre-selected
Haar-like features

10,000s of
Haar-like
features

|F̂k| 5 ≤ 50 ≈ 500 per view
Sk Samples of the

previous frame
Samples of the
previous 5 frames

10,000s of of-
fline samples

τk,on O(|F1|2|S1|) O(|F2|2|S2| +

|S2|P 2)

0

τk,off Negligible Negligible Several days
τk,test O(|F̂1|) O(|F̂2|) O(|F̂3|)

Table 1. Our setting of observation models.

should be p(zk|x) for each x ∈ Ŝk). The training time
(τk,off + τk,on) usually increases with |Fk| and |Sk|, and
the testing time τk,test increases with |F̂k|. And the total
offline and online time complexities are

τoffline =
m∑

k=1

τk,off , (2)

τonline =
m∑

k=1

(τk,on + |Ŝk| · τk,test). (3)

For tracking, τonline is of first concern. Notice that both
training time (τk,on + τk,off) and testing time τk,test in-
crease with an observer’s lifespan, since training sample
number |Sk| accumulates and a larger Fk (also a more so-
phisticated Lk) is required to learn the knowledge provided
by Sk, and the resulting F̂k is also larger.

Therefore, to minimize the testing part in (3) it is desir-
able to arrange the observers in a lifespan-ascending order
so that |Ŝ1| < |Ŝ2| < · · · < |Ŝm| (Section 3 is devoted to
how to achieve this). Meanwhile, to minimize the online
training part in (3), Fk must be carefully selected and as
much of training as possible should be done offline.

3.2. Configuration and learning

Based on the above analysis, different settings for each
observation model is carefully chosen to balance effec-
tiveness and efficiency – in other words, each learner Lk

and feature pool Fk should be competent yet not “over-

qualified” for the learning task on sample set Sk. Table 1
gives a summary.

Feature Sharing (Figure 3) is a distinct feature to be
introduced before each observer. We use a Haar-like fea-
ture set extended from that of [18]. Calculation of such fea-
tures is extremely efficient, on the premise that a pyramid
of first- and second-order integral images has been built,
which is relatively time-consuming in a real-time system.
This makes feature sharing a reasonable choice. Feature
pool for each observer is selected by offline learning. All
observers work on grayscale data.

Observer 1 is an LDA classifier learned on all samples
from the previous frame, using only 5 Haar-like features for
fast elimination of non-target. Denote the LDA projection
vector as w, the 5d feature vector as f(x) and the classifi-
cation threshold as η, the observation likelihood is modeled
as a sigmoid function based on the classifier’s output:

p(z1|x) ∝
1

1 + exp (−(wT f(x)− η))
. (4)

Observer 2 is a strong classifier boosted from a pool
of LDA classifiers. At each frame t, with the samples
S2 = (S2,pos, S2,neg) gathered from the past 5 frames, the
learning process is

1. Select samples for adding new weak classifiers: all
positive samples S2,pos and only the negative samples
S′
2,neg = {x|x ∈ S2,neg ∧ p(zt−1,2|x) > ξ}, where

p(zt−1,2|x) is the old observation likelihood and ξ is
a threshold. The reason is that new weak classifiers
should focus on samples which are not well handled
by the old model.

2. Add new weak classifiers by bootstrap. Each is learned
by LDA with 10 features selected from F2.

3. Weight weak classifiers by Discrete AdaBoost [6].

4. Discard weak classifiers which are not selected for a
certain number of frames.

Denote the p-th weak classifier as (αp,wp, fp, ηp), where
αp is the boosted weight, fp and wp are the features and
corresponding projection vector learned by LDA, and ηp is
the threshold. The final observation likelihood is modeled
by a Sigmoid function of the boosted output:

p(z2|x) ∝
1

1 + exp

(
−

P
p αpsign(wT

p fp(x)−ηp)P
p αp

) . (5)

Observer 3 is a tree-structured detector similar to [9].
Each tree node is a strong classifier boosted from histogram
weak classifiers. Since it consists of multiple layers, for an
input x, the output is the number of layers h that x passes
and the confidence c given by the last strong classifier it
passed. The observation likelihood is defined as

p(z3|x) ∝ 1/ (1 + φh exp(−c)) , (6)

With a cascade particle filter

Tracking results

104 / 135

Multiple Observers with Different Lifespans III

0 50 100 150 200 250 300

0

50

100

150

200

#56

#58

#60

#60

(a) Offline face detection. It fails due to motion blur, and is unable to identify different persons.

#56 #57 #58 #59 #60
0 50 100 150 200 250 300

0

50

100

150

200

Target Trajectory

#56

#60

#57

#58

#59

(b) Proposed approach under drastic camera motion and considerable blur (yellow rectangle denotes target in the previous frame).

0 50 100 150 200 250 300

0

50

100

150

200

#24

#25

#26

#27

#28

(c) Online tracking by method in [19], drift can be observed.

0 50 100 150 200 250 300

0

50

100

150

200

#24 #25 #26 #27 #28 Target Trajectory

#24

#25

#26

#27

#28

(d) Proposed approach under fast view change (right full profile to left profile in 5 frames).

Figure 7. Comparison with offline approach and online approach in challenging cases (baseball.mpg).

#59 #64 #86 #99 #101 #105
(a) Tracking by proposed approach under poor illumination, significant camera motion and fast zooming (yellow rectangle denotes target in the previous frame).

#59 #64
(b) Mean Shift by color histogram.

#59 #62
(c) CONDENSATION.

#59 #64
(d) Online tracking by method in [19].

#18 #26 #27 #31 #33 #38
(e) Tracking a jumping and running kid in a cluttered scene by proposed approach (yellow rectangle denotes target in the previous frame).

#31 #33
(f) Mean Shift by color histogram.

#27 #28
(g) CONDENSATION.

#28 #31
(h) Online tracking by method in [19].

Figure 8. Comparison with other methods on 5fps videos under various conditions (boy1.mpg, boy2.mpg).

Li CVPR07

105 / 135

Learning with Multiple Trackers I

Learning to fuse multiple
trackers for face and
hand tracking off-
line [Stenger et al., 2009]

Motivation example:
tracking with single
template using
normalized cross
correlation (NCC), and
local features with
randomized tree (RT)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frame#

p
o

s
it
io

n
 e

rr
o

r
(s

c
a

le
−

n
o

rm
a

liz
e

d
)

NCC

RT

#75 #129 #201 #500

Figure 1.Example of precision vs. robustness of trackers.The
plot shows the tracking error on a hand tracking test sequence (be-
low) of two stand-alone trackers with different observation mod-
els: maximum correlation (NCC), and randomized template track-
ing (RT). In this example NCC is more accurate but fails earlyon,
while RT is able to track over a longer period with less precision.

evaluate combinations of observers on the test set. The
tracking algorithm therefore only needs to include a small
number of components at run-time. The observation mod-
els are components from different stand-alone tracking al-
gorithms such as single template matching, optical flow and
on-line classification. We also include an off-line trained
detection component that is used to initialize the tracker and
prevent drift.

The following section introduces a method for evaluat-
ing individual observers, introducing notions of tracker pre-
cision and robustness. Section3 explains how these mea-
surements can be used for evaluating the performance of
combinations of observers. Schemes for parallel as well as
cascaded computation of the observers are compared. Ex-
periments in section4 show results on two scenarios, face
tracking with a handheld camera and hand tracking with a
static camera.

2. Evaluation of Observation Models

The goal is to find, for a given tracking scenario, the best
observer or combination of observers. The approach is to
first evaluate each observer individually and from these val-

ues measure the performance of combinations of observers.
The observers we consider are those used previously in
tracking algorithms, see Table1 for a list of observers evalu-
ated. They can be classified into four types: single template
matching, motion consensus of local features [2, 13, 17],
histogram-based region matching [6] and on-line classifi-
cation [4, 9, 16]. Note that the individual observers are not
restricted to using a single cue.

Given an image sequenceIt, t = 1, ..., T , at every time
stept each observerOk, k = 1, ...,K computes an estimate
of the target location̂xk

t as well as an errorekt = d(x̂k
t ,x

gt
t)

as distance to the labeled ground truth locationxgt
t .

The estimatêxt is represented by a center location and
scale estimate and typical distance measures are either
bounding box overlap or a scale-normalized distance be-
tween the centers [5]. Every observer also outputs a con-
fidence valueck, which is computed depending on the type
of observer. Following previous work, this can be a his-
togram distance for region trackers [6], a measure of mo-
tion consensus for local feature trackers [2] or the classifi-
cation margin for on-line classifiers [1]. Confidence values
have regularly been used to compare and integrate the re-
sults of multiple observers. However, most observers have
a relatively simple object representation thus the confidence
value itself cannot be expected to be perfectly reliable. For
example an observer may have a high confidence value at
an incorrect location if there is an object close-by that is
similar to the target in the observer’s feature space. Here
the confidence value is simply regarded as a single feature
computed by the observer. Loss of track occurs when the er-
ror ekt is above a threshold valueτ . In this case the tracker
outputsτ as error value and is re-initialized at the next suc-
cessful detection. Detections are pre-computed by running
an off-line detector over all sequences. The performance of
a tracking algorithm is estimated as the expected error over
all frames

E[ek] =
1

T

∑

t

ekt , k = 1, ...,K. (1)

However, this function does not allow the comparison of
observers when track is lost because the error is meaning-
less in this case. In practice we are therefore interested in
both the tracking error while the tracker is following the tar-
get as well as the probability of losing track. This motivates
the distinction into two performance criteria, precision and
robustness. Precision is related to the expected error during
successful tracking by

1− E[ek|ek < τ]. (2)

The robustness is the probability of successful tracking as

p(ekt < τ |ekt−1 < τ). (3)

106 / 135

Learning with Multiple Trackers II

14 observers
Method Observation Estimate Confidence value
NCC Normalized cross correlation max correlation correlation score
SAD Sum of absolute differences min distance distance score

BOF Block-based optical flow of 3× 3 templates mean motion mean NCC score
KLT [17] Kanade-Lucas-Tomasi sparse optical flow using 50 features centroid of good features fraction of good features
FF [13] Flocks of features: Tracking 50 local features with high color

probability and ‘flocking’ constraints
centroid of good features fraction of good features

RT [2] Randomized templates: NCC track of eight subwindows, with
motion consensus and resampling

centroid of good features fraction of good features

MS [6] Mean shift: Color histogram-based mean shift tracking with
background weighting

min histogram distance histogram distance

C [22] Color probability map, blob detection scale space maximum probability score
M [22] Motion probability map, blob detection scale space maximum probability score
CM [14] Color and motion probability map scale space maximum probability score

OBD [9] On-line boosted detector: Classifier boosted from pool of rect-
angle features updated on-line

max classifier output classifier margin

LDA [16] LDA classifier computed from five rectangle features in the pre-
vious frame (Observer 1 in [16])

max classifier output classifier margin

BLDA [16] Boosted LDA classifier using 50 LDA classifiers from a pool of
150, trained on the previous five frames (Obs. 2 in [16])

max classifier output classifier margin

OFS [4] On-line feature selection of 3 out of 49 color-based features
based on fg/bg variance ratio

centroid of top features mean variance ratio of se-
lected features

Table 1.Observers in the evaluation.A diverse range of observers are tested in the experiments. They can roughly be grouped into four
types: single template matching, local feature matching, histogram-based region matching, and on-line classifiers. Between them they use
a variety of cues, including image intensity, color and motion features. Some observers maintain a fixed representationwhile others are
updated over time.

3.1. Parallel evaluation

The parallel evaluation scheme selects the observer with
the lowest expected error given its confidence value at each
time step, i.e.k∗=argmink E[ek|ck], see top of Figure3.
If this error is above a certain threshold, then a detector is
used to re-initialize. The output of the individual observers
is used to evaluate the performance over different combina-
tions of observers.

The running of tests consisting of all possible combina-
tions of all trackers on all test sequences would take a pro-
hibitive amount of time to complete. We therefore run all
the observers individually on the test sequences and record
the results for each frame. These results are then used in
the combination tests as the result from each component
observer. In order to test the validity of such a setup, we
performed tests using the complete tracking framework for
selected combinations of observers.

3.2. Cascaded evaluation

Although the combined estimate is expected to be bet-
ter than individual estimates, the main disadvantage is the
increased execution time. In cascaded evaluation observers
are evaluated in sequence, starting with the first observer,
and continuing with the next observer only if the expected
error is above a threshold value, see Figure3 bottom. If

Figure 3.Evaluation schemes.(top) In the parallel evaluation the
output from the observer with the lowest expected error is chosen.
(bottom) In the cascaded evaluation the next observer is only eval-
uated if the expected error is above a threshold. An off-linetrained
detector is used to re-initialize. The binary tests in this schematic
represent threshold tests on the expected error.

no observer returns a sufficiently low expected error, the al-
gorithm attempts to jump to the top of the cascade using
local detection. For evaluation, the output of the individ-

107 / 135

Learning with Multiple Trackers III

Evaluation of observer combinations

0.985 0.99 0.995 1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

C−FF

C−SAD
CM−C

CM−MS

CM−SADMS−SAD

NCC−BLDA

NCC−C

NCC−CM

NCC−FF

NCC−KLT

NCC−MS

NCC−OB

NCC−SAD

robustness [prob successful track]

pr
ec

is
io

n
[1

−
m

ea
n

po
si

tio
n

er
ro

r]

Hand data, pairs, parallel

0.985 0.99 0.995 1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

C−KLT−5

C−NCC−4

LDA−CM−4

LDA−NCC−4

NCC−BOF−3
NCC−C−3

NCC−C−4

NCC−CM−2

NCC−CM−3

NCC−CM−4

NCC−FF−3

NCC−FF−4

NCC−M−3

NCC−MS−3

NCC−OFS−3

NCC−SAD−3

NCC−SAD−4

robustness [prob successful track]

pr
ec

is
io

n
[1

−
m

ea
n

po
si

tio
n

er
ro

r]

Hand data, pairs, cascade

C−FF−5

C−NCC−3

0.985 0.99 0.995 1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

LDA−NCC−C−3

LDA−NCC−MS−3

MS−NCC−CM−3

NCC−C−CM−3

NCC−CM−FF−3
NCC−CM−MS−3
NCC−MS−CM−3

NCC−MS−KLT−3

NCC−MS−M−3

robustness [prob successful track]

pr
ec

is
io

n
[1

−
m

ea
n

po
si

tio
n

er
ro

r]

Hand data, triplets, cascade

NCC−MS−OFS−3

NCC−M−CM−3

NCC−OB−CM−3

0.985 0.99 0.995 1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

C−FF
CM−FF

FF−SAD

LDA−FF
NCC−BLDA

NCC−BOF NCC−C

NCC−CM

NCC−FF

NCC−KLT

NCC−MS

NCC−OB

NCC−OFS
NCC−SAD

OB−SAD

robustness [prob successful track]

pr
ec

is
io

n
[1

−
m

ea
n

po
si

tio
n

er
ro

r]

Face data, pairs, parallel

0.985 0.99 0.995 1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

FF−BLDA−3
FF−MS−3 FF−NCC−3

FF−OB−3 FF−SAD−3 LDA−FF−4

NCC−FF−3

NCC−FF−4

robustness [prob successful track]

pr
ec

is
io

n
[1

−
m

ea
n

po
si

tio
n

er
ro

r]

Face data, pairs, cascade

FF−NCC−4

0.985 0.99 0.995 1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

LDA−NCC−FF−3
NCC−FF−BLDA−3

NCC−FF−CM−3
NCC−FF−MS−3

NCC−FF−OB−3

NCC−FF−RT−3

NCC−FF−SAD−3

NCC−M−FF−3
NCC−MS−FF−3

OFS−NCC−FF−3

FF−MS−NCC−4

FF−RT−NCC−4

robustness [prob successful track]

pr
ec

is
io

n
[1

−
m

ea
n

po
si

tio
n

er
ro

r]

Face data, triplets, cascade

M−NCC−FF−3

FF−NCC−RT−4

Figure 6.Evaluation of observer combinations. These plots show the precision and robustness measured on the test sequences: (top
row) hand data, (bottom row) face data. (left) pairs, parallel evaluation, (middle) pairs, cascaded evaluation, (right) triplets, cascaded
evaluation. Only a small subset of data points near the upperright frontier with both high robustness and precision are shown here.

face data are both below 0.93 and are not shown in the plot.

4.2. Parallel evaluation

We evaluated all pairs of observers using a threshold
value of τ = 1, giving a total of 91 combinations. Sub-
sets of the results are shown in the left two plots of Fig-
ure6. Only combinations are plotted that are near the upper
right frontier of high robustness and high precision. On the
hand data the combination of NCC with one of the color-
based observers CM, C and MS shows good performance.
In the videos the hand occasionally moves rapidly, result-
ing in significant motion blur. These cases tend to be failure
modes for intensity or gradient based methods. On the other
hand, the color distribution is less affected by motion blur.
The robustness of these color-based observers is increased
by most of the other observers that can help to bridge the
frames where the color cue is unreliable. On the face data
combinations of NCC with the local feature based observer
FF is the most precise, while combinations of FF with many
other observers are most robust. The analysis also shows
how observers using different cues complement each other.
For example on the hand data, the NCC-C combination has
robustness-precision values of (0.997, 0.892), better than ei-
ther NCC (0.992, 0.869) or C (0.991, 0.839) alone. Another
example, which is not shown in the plot, is the combination
of color (C) and local features (RT) on the face data, the
same combination that was proposed in [2]. The combined

observer C-RT has higher precision and robustness than ei-
ther of the components alone.

4.3. Cascaded evaluation

We compared all ordered combinations of pairs at five
different threshold levels (0.1, 0.2, 0.3, 0.4, 1.0) resulting in
a total of 912 evaluations. Subsets of the results are shown
in the two plots in Figure6, middle. On the hand data most
of the results with the highest precision employ NCC at the
beginning of the cascade. High robustness is achieved when
at least one of the observers uses the color cue, e.g. C or
CM. The combination of NCC and CM that was proposed
in [22] performs well in terms of precision, losing slightly
in terms of robustness compared to the parallel evaluation.
On the face data, the combination NCC-FF has the highest
precision while FF-NCC is the most robust. The results also
suggest that arranging the observers in the order of their
individual precision leads to good performance. The idea
is to estimate using the most precise observer at each time
step. If the expected error falls below the threshold, the
next observer essentially acts as a fallback method. Note
that in some cases the cascaded tracker may have switched
to an observer that is less precise during a difficult part of
the sequence. It is therefore worth checking regularly if it
is possible to jump to the top of the cascade again via local
detection in order to increase tracking precision.

We also evaluated all triplets of observers at five different

(left) pairs, parallel evaluation, (middle) pairs, cascaded evaluation, (right)

triplets, cascaded evaluation. Only a small subset of data points near the upper

right frontier with both high robustness and precision are shown here.

108 / 135

Learning with Multiple Trackers IV

Figure 9.Hand tracking using NCC-CM-FF observers in a cas-
cade. The NCC-observer (blue) is used initially, switching to the
CM-observer (red) during motion blur.

Figure 10.Face tracking using an NCC-FF-MS cascade.Ini-
tially the accurate NCC-observer (blue) is used, switchingto the
more flexible FF-observer (yellow) as NCC can no longer handle
the pose change. Note that there is local occlusion by the baton.
In the end the included background area causes problems for FF
and the tracker switches to color-based mean-shift (white).

Figure 11.Face tracking using an NCC-FF-MS cascade.NCC
(blue) is used initially, switching to FF (yellow) when a strong
shadow is cast on the face. Subsequently the tracker switches to
mean-shift (white).

References
[1] S. Avidan. Ensemble tracking.IEEE Trans. Pattern Analysis and

Machine Intell., 29(2):261–271, 2007.1, 2
[2] V. Badrinarayanan, P. Pérez, F. Le Clerc, and L. Oisel. Probabilistic

color and adaptive multi-feature tracking with dynamically switched
priority between cues. InProc. ICCV, Rio de Janeiro, Brazil, October
2007.1, 2, 4, 6

[3] S. Birchfield. Elliptical head tracking using intensitygradients and
color histograms. InCVPR, pages 232–237, Santa Barbara, CA, June
1998.1

[4] R. T. Collins, Y. Liu, and M. Leordeanu. Online selectionof discrim-
inative tracking features.PAMI, 27(10):1631–1643, October 2005.1,
2, 4

[5] R. T. Collins, X. Zhou, and S. K. Teh. An open source tracking
testbed and evaluation web site. InIntl. Workshop on Performance
Evaluation of Tracking and Surveillance (PETS), January 2005.1, 2

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object track-
ing. PAMI, 25(5):564–575, 2003.2, 4

[7] A. Doucet, N. G. de Freitas, and N. J. Gordon, editors.Sequential
Monte Carlo Methods in Practice. Springer-Verlag, 2001.5

[8] W. Du and J. Piater. A probabilistic approach to integrating multiple
cues in visual tracking. InECCV, pages 225–238, Marseille, France,
10 2008.1

[9] H. Grabner and H. Bischof. On-line boosting and vision. In Proc.
CVPR, volume 1, pages 260–267, 2006.1, 2, 4

[10] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line
boosting for robust tracking. InProc. ECCV, Marseille, France, Oc-
tober 2008.1

[11] H. P. Graf, E. Cosatto, D. Gibbon, and M. Kocheisen. Multi-modal
system for locating heads and faces. InProc. of the Second Intl.
Conference on Automatic Face and Gesture Recognition, pages 88–
93, 1996.1

[12] R. Kaucic, A. G. A. Perera, G. Brooksby, J. Kaufhold, andA. Hoogs.
A unified framework for tracking through occlusions and sensor
gaps. InCVPR, pages 990–997, San Diego, June 2005.1

[13] M. Kölsch and M. Turk. Fast 2D hand tracking with flocks of features
and multi-cue integration. InWorkshop on Real-Time Vision for HCI,
Washington DC, July 2004.1, 2, 4

[14] N. Krahnstoever, E. Schapira, S. Kettebekov, and R. Sharma. Mul-
timodal human-computer interaction for crisis managementsystems.
In Proc. WACV, pages 203–207, Orlando, FL, December 2002.4

[15] I. Leichter, M. Lindenbaum, and E. Rivlin. A generalized framework
for combining visual trackers – the black boxes approach.IJCV,
67(2):91–110, 2006.1

[16] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in
low frame rate video: A cascade particle filter with discriminative
observers of different lifespans. InCVPR, Minneapolis, MN, June
2007.1, 2, 4

[17] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. InProc. of the 7th International
Joint Conference on Artificial Intelligence, pages 674–679, 1981.2,
4

[18] F. Moreno-Noguer, A. Sanfeliu, and D. Samaras. Dependent multiple
cue integration for robust tracking.PAMI, 30(4):670–685, 2008.1

[19] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe. A
boosted particle filter: Multitarget detection and tracking. In ECCV,
volume I, pages 28–39, Prague, Czech Republic, May 2004.1

[20] P. Pérez, J. Vermaak, and A. Blake. Data fusion for visual track-
ing with particles.Proceedings of the IEEE, 92(3):495–513, March
2004.1

[21] M. Spengler and B. Schiele. Towards robust multi-cue integration
for visual tracking. InMachine Vision and Applications, volume 14,
pages 50–58, 2003.1

[22] B. Stenger, T. Woodley, T.-K. Kim, C. Hernandez, and R. Cipolla.
AIDIA - adaptive interface for display interaction. InProc. BMVC,
October 2008.4, 5, 6

[23] K. Toyama and E. Horvitz. Bayesian modality fusion of multiple
vision algorithms for head tracking. InFourth Asian Conference on
Computer Vision, Taipei, Taiwan, January 2000.1

[24] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. InProc. ICCV, Rio de Janeiro, Brazil, October 2007.3

[25] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian learning for
efficient visual tracking.PAMI, 27:1292–1304, 2005.1

NCC-CM-FF cascade

Figure 9.Hand tracking using NCC-CM-FF observers in a cas-
cade. The NCC-observer (blue) is used initially, switching to the
CM-observer (red) during motion blur.

Figure 10.Face tracking using an NCC-FF-MS cascade.Ini-
tially the accurate NCC-observer (blue) is used, switchingto the
more flexible FF-observer (yellow) as NCC can no longer handle
the pose change. Note that there is local occlusion by the baton.
In the end the included background area causes problems for FF
and the tracker switches to color-based mean-shift (white).

Figure 11.Face tracking using an NCC-FF-MS cascade.NCC
(blue) is used initially, switching to FF (yellow) when a strong
shadow is cast on the face. Subsequently the tracker switches to
mean-shift (white).

References
[1] S. Avidan. Ensemble tracking.IEEE Trans. Pattern Analysis and

Machine Intell., 29(2):261–271, 2007.1, 2
[2] V. Badrinarayanan, P. Pérez, F. Le Clerc, and L. Oisel. Probabilistic

color and adaptive multi-feature tracking with dynamically switched
priority between cues. InProc. ICCV, Rio de Janeiro, Brazil, October
2007.1, 2, 4, 6

[3] S. Birchfield. Elliptical head tracking using intensitygradients and
color histograms. InCVPR, pages 232–237, Santa Barbara, CA, June
1998.1

[4] R. T. Collins, Y. Liu, and M. Leordeanu. Online selectionof discrim-
inative tracking features.PAMI, 27(10):1631–1643, October 2005.1,
2, 4

[5] R. T. Collins, X. Zhou, and S. K. Teh. An open source tracking
testbed and evaluation web site. InIntl. Workshop on Performance
Evaluation of Tracking and Surveillance (PETS), January 2005.1, 2

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object track-
ing. PAMI, 25(5):564–575, 2003.2, 4

[7] A. Doucet, N. G. de Freitas, and N. J. Gordon, editors.Sequential
Monte Carlo Methods in Practice. Springer-Verlag, 2001.5

[8] W. Du and J. Piater. A probabilistic approach to integrating multiple
cues in visual tracking. InECCV, pages 225–238, Marseille, France,
10 2008.1

[9] H. Grabner and H. Bischof. On-line boosting and vision. In Proc.
CVPR, volume 1, pages 260–267, 2006.1, 2, 4

[10] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line
boosting for robust tracking. InProc. ECCV, Marseille, France, Oc-
tober 2008.1

[11] H. P. Graf, E. Cosatto, D. Gibbon, and M. Kocheisen. Multi-modal
system for locating heads and faces. InProc. of the Second Intl.
Conference on Automatic Face and Gesture Recognition, pages 88–
93, 1996.1

[12] R. Kaucic, A. G. A. Perera, G. Brooksby, J. Kaufhold, andA. Hoogs.
A unified framework for tracking through occlusions and sensor
gaps. InCVPR, pages 990–997, San Diego, June 2005.1

[13] M. Kölsch and M. Turk. Fast 2D hand tracking with flocks of features
and multi-cue integration. InWorkshop on Real-Time Vision for HCI,
Washington DC, July 2004.1, 2, 4

[14] N. Krahnstoever, E. Schapira, S. Kettebekov, and R. Sharma. Mul-
timodal human-computer interaction for crisis managementsystems.
In Proc. WACV, pages 203–207, Orlando, FL, December 2002.4

[15] I. Leichter, M. Lindenbaum, and E. Rivlin. A generalized framework
for combining visual trackers – the black boxes approach.IJCV,
67(2):91–110, 2006.1

[16] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in
low frame rate video: A cascade particle filter with discriminative
observers of different lifespans. InCVPR, Minneapolis, MN, June
2007.1, 2, 4

[17] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. InProc. of the 7th International
Joint Conference on Artificial Intelligence, pages 674–679, 1981.2,
4

[18] F. Moreno-Noguer, A. Sanfeliu, and D. Samaras. Dependent multiple
cue integration for robust tracking.PAMI, 30(4):670–685, 2008.1

[19] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe. A
boosted particle filter: Multitarget detection and tracking. In ECCV,
volume I, pages 28–39, Prague, Czech Republic, May 2004.1

[20] P. Pérez, J. Vermaak, and A. Blake. Data fusion for visual track-
ing with particles.Proceedings of the IEEE, 92(3):495–513, March
2004.1

[21] M. Spengler and B. Schiele. Towards robust multi-cue integration
for visual tracking. InMachine Vision and Applications, volume 14,
pages 50–58, 2003.1

[22] B. Stenger, T. Woodley, T.-K. Kim, C. Hernandez, and R. Cipolla.
AIDIA - adaptive interface for display interaction. InProc. BMVC,
October 2008.4, 5, 6

[23] K. Toyama and E. Horvitz. Bayesian modality fusion of multiple
vision algorithms for head tracking. InFourth Asian Conference on
Computer Vision, Taipei, Taiwan, January 2000.1

[24] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. InProc. ICCV, Rio de Janeiro, Brazil, October 2007.3

[25] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian learning for
efficient visual tracking.PAMI, 27:1292–1304, 2005.1

NCC-FF-MS cascade

Figure 9.Hand tracking using NCC-CM-FF observers in a cas-
cade. The NCC-observer (blue) is used initially, switching to the
CM-observer (red) during motion blur.

Figure 10.Face tracking using an NCC-FF-MS cascade.Ini-
tially the accurate NCC-observer (blue) is used, switchingto the
more flexible FF-observer (yellow) as NCC can no longer handle
the pose change. Note that there is local occlusion by the baton.
In the end the included background area causes problems for FF
and the tracker switches to color-based mean-shift (white).

Figure 11.Face tracking using an NCC-FF-MS cascade.NCC
(blue) is used initially, switching to FF (yellow) when a strong
shadow is cast on the face. Subsequently the tracker switches to
mean-shift (white).

References
[1] S. Avidan. Ensemble tracking.IEEE Trans. Pattern Analysis and

Machine Intell., 29(2):261–271, 2007.1, 2
[2] V. Badrinarayanan, P. Pérez, F. Le Clerc, and L. Oisel. Probabilistic

color and adaptive multi-feature tracking with dynamically switched
priority between cues. InProc. ICCV, Rio de Janeiro, Brazil, October
2007.1, 2, 4, 6

[3] S. Birchfield. Elliptical head tracking using intensitygradients and
color histograms. InCVPR, pages 232–237, Santa Barbara, CA, June
1998.1

[4] R. T. Collins, Y. Liu, and M. Leordeanu. Online selectionof discrim-
inative tracking features.PAMI, 27(10):1631–1643, October 2005.1,
2, 4

[5] R. T. Collins, X. Zhou, and S. K. Teh. An open source tracking
testbed and evaluation web site. InIntl. Workshop on Performance
Evaluation of Tracking and Surveillance (PETS), January 2005.1, 2

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object track-
ing. PAMI, 25(5):564–575, 2003.2, 4

[7] A. Doucet, N. G. de Freitas, and N. J. Gordon, editors.Sequential
Monte Carlo Methods in Practice. Springer-Verlag, 2001.5

[8] W. Du and J. Piater. A probabilistic approach to integrating multiple
cues in visual tracking. InECCV, pages 225–238, Marseille, France,
10 2008.1

[9] H. Grabner and H. Bischof. On-line boosting and vision. In Proc.
CVPR, volume 1, pages 260–267, 2006.1, 2, 4

[10] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line
boosting for robust tracking. InProc. ECCV, Marseille, France, Oc-
tober 2008.1

[11] H. P. Graf, E. Cosatto, D. Gibbon, and M. Kocheisen. Multi-modal
system for locating heads and faces. InProc. of the Second Intl.
Conference on Automatic Face and Gesture Recognition, pages 88–
93, 1996.1

[12] R. Kaucic, A. G. A. Perera, G. Brooksby, J. Kaufhold, andA. Hoogs.
A unified framework for tracking through occlusions and sensor
gaps. InCVPR, pages 990–997, San Diego, June 2005.1

[13] M. Kölsch and M. Turk. Fast 2D hand tracking with flocks of features
and multi-cue integration. InWorkshop on Real-Time Vision for HCI,
Washington DC, July 2004.1, 2, 4

[14] N. Krahnstoever, E. Schapira, S. Kettebekov, and R. Sharma. Mul-
timodal human-computer interaction for crisis managementsystems.
In Proc. WACV, pages 203–207, Orlando, FL, December 2002.4

[15] I. Leichter, M. Lindenbaum, and E. Rivlin. A generalized framework
for combining visual trackers – the black boxes approach.IJCV,
67(2):91–110, 2006.1

[16] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in
low frame rate video: A cascade particle filter with discriminative
observers of different lifespans. InCVPR, Minneapolis, MN, June
2007.1, 2, 4

[17] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. InProc. of the 7th International
Joint Conference on Artificial Intelligence, pages 674–679, 1981.2,
4

[18] F. Moreno-Noguer, A. Sanfeliu, and D. Samaras. Dependent multiple
cue integration for robust tracking.PAMI, 30(4):670–685, 2008.1

[19] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe. A
boosted particle filter: Multitarget detection and tracking. In ECCV,
volume I, pages 28–39, Prague, Czech Republic, May 2004.1

[20] P. Pérez, J. Vermaak, and A. Blake. Data fusion for visual track-
ing with particles.Proceedings of the IEEE, 92(3):495–513, March
2004.1

[21] M. Spengler and B. Schiele. Towards robust multi-cue integration
for visual tracking. InMachine Vision and Applications, volume 14,
pages 50–58, 2003.1

[22] B. Stenger, T. Woodley, T.-K. Kim, C. Hernandez, and R. Cipolla.
AIDIA - adaptive interface for display interaction. InProc. BMVC,
October 2008.4, 5, 6

[23] K. Toyama and E. Horvitz. Bayesian modality fusion of multiple
vision algorithms for head tracking. InFourth Asian Conference on
Computer Vision, Taipei, Taiwan, January 2000.1

[24] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. InProc. ICCV, Rio de Janeiro, Brazil, October 2007.3

[25] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian learning for
efficient visual tracking.PAMI, 27:1292–1304, 2005.1

NCC-FF-MS cascade

Observation: cascade
evaluation gives similar
performance to parallel
evaluation at much higher
efficiency

109 / 135

Visual Tracking Decomposition I

Bayesian formulation and its weighted components
[Kwon and Lee, 2010]

p(Xt |Y1:t) ∝ p(Yt |Xt)

∫
p(Xt |Xt−1)p(Xt |Xt−1P(Xt−1|Y1:t−1)dXt−1

Observation model : Decompose into multiple basic basic
ones

p(Yt |Xt) =
r∑

i=1

w i
tpi (Yt |Xt),

r∑

i=1

w i
t = 1 (16)

Motion model: Decompose into multiple basic motion models

p(Xt |Xt−1) =
s∑

j=1

w j
tpj (Xt |Xt−1),

s∑

j=1

w j
t = 1 (17)

Multiple basic trackers are designed by associating the basic
observation and motion models and each account for certain
change of the object

All basic trackers are integrated with an interactive Makrov
Chain Monte Carlo framework

110 / 135

Visual Tracking Decomposition II

Basic observation model

1

tM
2

tM
r

tM

)X|Y(p tt1)X|Y(p tt2)X|Y(p ttr

Object models

Basic observation models

Template set
tS

1

t

1

1 f,,.........f
2

t

2

1 f,,.........f
3

t

3

1 f,,.........f
u

t

u

1 f,,.........f

Figure 2. The process of observation model decomposition We

make the set St utilizing image templates up to time t for the u
number of different features. Then the SPCA method constructs

the object models M i
t by selecting a certain subset of St. With

each object model, each basic observation model is defined by (8).

how to determine these basic models efficiently (section 4)

and estimate the weight of each model implicitly (section

5). Note that pi(Yt∣Xt)i=1,...,r in (3) form r different ba-

sic observation models. Similarly, pj(Xt∣Xt−1)j=1,...,s in

(4) build up s different basic motion models. For clarity,

we call p(Yt∣Xt) and p(Xt∣Xt−1) as the compound obser-

vation and the compound motion model, respectively, here-

after.

4. Model Decomposition

4.1. Basic Observation Models

In this paper, we employ the mixture of templates model

for object representation. For this, we define a set St, which

consists of different types of feature templates of an object

up to time t:

St = {fn
m∣m = 1, . . . , t, n = 1, . . . , u}, ∣St∣ = tu, (5)

where fn
m denotes the n-th type of the feature template at

time m and ∣St∣ indicates the total number of feature tem-

plates in St. In (5), different types of feature templates fn
m

are obtained by utilizing different types of feature extractors

Fn for the image patch I(X̂m) at each time:

fn
m =

Fn(I(X̂m))

∥Fn(I(X̂m))∥
,m = 1, . . . , t, n = 1, . . . , u, (6)

where I(X̂m) represents the image patch at time m de-

scribed by X̂m in (2) and Fn indicates the feature extractor

for obtaining the n-th type of the feature template.

Each basic observation model pi(Yt∣Xt) in (3) takes one

subset of St as its own object model M i
t at time t.

M i
t ⊂ St, i = 1, . . . , r. (7)

Then, it is determined by

pi(Yt∣Xt) = exp−�DD(Yt,M
i
t), i = 1, . . . , r, (8)

where � denotes the weighting parameter 1, and Yt rep-

resents the u number of observations obtained by feature

extractors Fn, n = 1, . . . , u for the image patch described

by Xt. In (8), the DD function returns the diffusion dis-

tance between the observation Yt and the object model M i
t

at time t. We utilize diffusion distance as a dissimilarity

measure, since it is robust to deformation as well as quanti-

zation effects of the observation [15]. Because Yt and M i
t

consist of multiple observations and multiple templates, re-

spectively, DD(Yt,M
i
t) is computed as the sum of dissim-

ilarity between each observation in Yt and each template

in M i
t . To complete the designing of pi(Yt∣Xt) in (8), the

remaining task is to obtain the r number of different subsets

M i
t , i = 1, . . . , r. This is efficiently done by the sparse prin-

cipal component analysis method in the next subsection.

4.1.1 Sparse Principal Component Analysis

There are three conditions for the object model M i
t to be

good in terms of tracking performance and efficiency. The

first condition is that M i
t has to cover most appearance

changes in an object over time. The second is that the for-

mation of it should be as compact as possible while preserv-

ing its good performance. The last condition is that relations

between M i
t , i = 1, . . . , r should be complementary. To

satisfy all of these conditions, our method adopts the SPCA

method to construct M i
t . Given a Gramian matrix At, the

original SPCA method [4] seeks out sparse principal com-

ponents c, which only have a limited number of nonzero

entries while capturing a maximum amount of variance:

maximize cTAtc− �∣c∣2
subject to ∥c∥2 = 1,

(9)

where ∣c∣ is the number of nonzero entries in c and � con-

trols the penalty on the nonzero entries of c. As the � value

increases, we have more sparse principal components c 2.

For our tracking problem, the Gramian matrix At at time t
is constructed as

At = aTa,

a =
(
f1
1 . . . f1

t . . . fu
1 . . . fu

t

)
,

(10)

where the size of At is ∣St∣ × ∣St∣ since the column size of

the matrix a is ∣St∣.
With the conventional convex optimization tools [4],

we can efficiently obtain the approximate solutions of (9).

1We set � to 5 in all of the experiments.
2We set � to 90 in all of the experiments.

mixture of different types of feature templates, e.g., hue,
saturation, intensity, and edge
find a sparse set of templates by sparse PCA
using first 5 frames and the most recent 4 frames
use a diffusion distance to compute distance between
histograms

111 / 135

Visual Tracking Decomposition III

Basic motion model

random walk: pj (Xt |Xt−1) = N(Xt−1, σ
2
j)

two types of motion with small and large variance

Basic tracker models

Among these components, we choose the r principal com-

ponents ci, i = 1, . . . , r according to the eigenvalue in de-

scending order. The chosen components compose each ob-

ject model M i
t in (7) as follows:

M i
t = {fn

m∣fn
m = a(x), ci(x) ∕= 0}. (11)

If the x-th element of ci has a nonzero value, M i
t includes

the template fn
m located at the x-th column of the matrix

a in (10). By doing this, each object model M i
t captures

the significant appearance changes in an object since each

model is constructed by each significant eigenvector. And

sparsity of the eigenvector gives compactness to the model

while making it have a small number of templates. Since

the eigenvectors have orthogonal property, the object mod-

els have complementary relationship with each other. Fig. 2

illustrates the whole process of observation model decom-

position.

4.2. Basic Motion Models

Each basic motion model pj(Xt∣Xt−1) in (4) describes

different types of motions made by a Gaussian perturbation

with a different variance.

pj(Xt∣Xt−1) = G(Xt−1, �
2
j), j = 1, . . . , s, (12)

where G represents the Gaussian distribution with mean

Xt−1 and variance �2
j . We assume that the motion of an ob-

ject can be decomposed into two kinds of motions, smooth

and abrupt, and make two motion models, p1(Xt∣Xt−1)
and p2(Xt∣Xt−1). p1(Xt∣Xt−1) explains the smooth mo-

tion with a small �2
1 . This kind of the motion model further

simulates the seemingly good moves near the local minima

(exploitation). On the other hand, p2(Xt∣Xt−1) covers the

abrupt motion with a large �2
2 . In this case, the model fur-

ther simulates moves that have not been explored much (ex-

ploration). Our method makes full use of the exploitation

ability with the exploration ability by implicitly combining

two motion models in section 5.

4.3. Basic Tracker Models

Our compound tracker is composed of r × s number

of basic trackers T j
i , i = 1, . . . , r, j = 1, . . . , s utilizing

all pairs of the observation models pi(Yt∣Xt)i=1,...,r and

motion models pj(Xt∣Xt−1)j=1,...,s as shown in Fig. 3.

Since we choose a few robust basic observation models us-

ing SPCA, the number of basic observation models is not

increased as many times as the size of the template set St in

(5). And the number of basic motion models is fixed to 2.

Therefore, our method typically maintains a small number

of basic trackers and shows good performance in terms of

scalability even on a large template set.

Each basic tracker constructs a Markov Chain modeled

by one pair of a basic observation and a basic motion model,

Interaction

S
a
m

p
lin

g

Interaction

Interaction
S
a
m

p
lin

g

S
a
m

p
lin

g

Tracker
1

1T Tracker
2

1T Tracker
s

rT

Basic observation models Basic motion models

)X|Y(p tt1)X|Y(p tt1)X|Y(p ttr

)X|X(p 1tt1
)X|X(p 1tt2

)X|X(p 1tts

model 2 model 2 model smodel 1 model r model 1

Figure 3. The process of tracker decomposition Each pair of the

observation and motion model makes each basic tracker. There-

fore, the total number of trackers is r× s if there are r observation

and s motion models.

and produces samples of the state for the MAP estimate in

(2) via the Metropolis Hastings algorithm. The algorithm

consists of two main steps: the proposal step and the accep-

tance step. In the proposal step, a new state is proposed by

the proposal density function.

Qj(X
j
t

∗
;Xj

t) = pj(X
j
t

∗∣Xj
t), (13)

where Qj denotes the proposal density function which uti-

lizes the j-th motion model in (12) and Xj
t

∗
represents the

new state proposed by Qj at time t.

Given the proposed state, the tracker T j
i decides whether

the state is accepted or not with the acceptance ratio in the

acceptance step:

parallel = min

[
1,

pi(Yt∣Xj
t

∗
)Qj(X

j
t ;X

j
t

∗
)

pi(Yt∣Xj
t)Qj(X

j
t

∗
;Xj

t)

]
. (14)

These two steps iteratively go on until the number of itera-

tions reaches a predefined value.

5. Integration by Interactive Markov Chain

Monte Carlo

While the sampling process goes on, the basic trackers

communicate information about the good configuration of

an object to other basic trackers as shown in Fig. 3. Since

each basic tracker utilizes a different pair of the observa-

tion and motion model, exchanging information results in

fusing all of these models and estimating the weight wi
t in

(3) and wj
t in (4) implicitly. To communicate with each

other, we introduce IMCMC [3] to our tracking problem.

Our method consists of two modes, parallel and interact-

ing. In the parallel mode, the method acts as the parallel

Metropolis Hastings algorithms explained in the previous

subsection. When the method is in the interacting mode,

Construct a Markov chain modeled by one pair of basic
observation and motion model
MAP estimate via the Metropolis Hasting algorithm

112 / 135

Visual Tracking Decomposition IV

VTD results

Summary:
Pros:

use mixture of representations and motion models

Cons:

numerous parameters

time consuming

113 / 135

PROST I

PROST (German word for “Cheers”) [Santner et al., 2010]:

Template correlation with normalized correlation (NCC): use
the first frame
Mean-shift in conjunction with a variant of optical flow
(FLOW)
Online random forest (ORF)

Tracker combination

FLOW is overruled by ORF if they are not overlapping and
ORF has a confidence above a threshold
ORF is updated only if it overlaps with NCC or FLOW

Random Forests have several advantages that make them
particularly interesting for computer vision applications,
i.e., they are fast in both training and evaluation and yield
state-of-the-art classification results while being less noise-
sensitive compared to other classifiers (e.g., boosting). Ad-
ditionally, RFs are inherently multi-class and allow, due to
their parallel structure, for multi-core and GPU [18] imple-
mentations.

Recently, Saffari et al. [17] proposed an online version
of RFs which allows to use them as online classifiers in
tracking-by-detection systems. Since recursive training of
decision trees is hard to do in online learning, they propose a
tree-growing procedure similar to evolving-trees [15]. The
algorithm starts with trees consisting only of root nodes and
randomly selected node tests fi and thresholds θi. Each
node estimates an impurity measure based on the Gini in-
dex (Gi =

∑K
i=1 p

j
i (1 − pji)) online, where pji is the label

density of class i in node K. Then, after each online update
the possible information gain ∆G during a potential node
split is measured. If ∆G exceeds a given threshold β, the
node becomes a split node, i.e., is not updated any more and
generates two child leaf nodes. The growing proceeds until
a maximum depth is reached. Even when the tree has grown
to its full size, all leaf nodes are further updated online.

The method is simple to implement and has shown to
converge fast to its offline counterpart. Additionally, Saf-
fari et al. [17] showed that the classifier is faster and more
noise-robust compared to boosting, which makes it an ideal
candidate for our tracking system.

3. Tracker Combination

A tracker has to incorporate two conflicting properties: It
has to (i) adapt to fast object appearance changes while (ii)
being able to recover in case of drifting. In other words, we
need an highly adaptive tracker that is corrected by system
components that are more inertial. Therefore, we combine
the three different tracking approaches discussed before in
a simple fall-back cascade (see also Figure 3): In order to
allow for fast changes, FLOW forms the main tracker. This
implies that FLOW can also easily lose the target, hence, it
can be overruled by ORF. NCC is employed to prevent ORF
from making too many wrong updates. Our cascade can be
summarized with the following simple rules:

1. FLOW is overruled by ORF if they are (i) not
overlapping and (ii) ORF has a confidence
above a given threshold.

2. ORF is updated only if it overlaps with NCC
or FLOW.

Figure 3. Highly-flexible parts of our system take care of tracking,
while the conservative parts correct the flexible ones when they
have drifted away.

4. Experiments

During the experiments, we compare our algorithm
to current state of the art methods on publicly available
datasets. We also created several new challenging video se-
quences, which are available on our website together with
ground truth annotation and results 2. The major conclusion
from the experiments is that our algorithm is more adaptive
and stable at the same time compared to other tracking-by-
detection systems. Please note that we always use the same
parameters throughout the experiments in this section.

4.1. Implementation

For FLOW, we employ the GPU-based implementation
of Werlberger et al. [23], which is available online. NCC is
based on the cvMatchTemplate() function implemented in
the OpenCV library, ORF is based on the code of Saffari et
al. [17], which is also publicly available. We achieve real-
time performance with our system, however, NCC and es-
pecially ORF could benefit largely from being implemented
on the GPU.

4.2. Quality Score

To evaluate the performance of their tracker, Babenko et
al. [3] use a score representing the mean center location er-
ror in pixels. This is not a good choice, as the ground truth
rectangles are fixed in size and axis-aligned whereas the se-
quences exhibit scale and rotational changes. Furthermore,
their score does not take into account the different size of
the objects in different sequences.

To overcome these problems, we additionally use a score
based on the PASCAL challenge [8] object detection score:
Given the detected bounding box ROID and the ground
truth bounding box ROIGT , the overlap score evaluates as

score =
area(ROID ∩ROIGT)

area(ROID ∪ROIGT)
.

2www.gpu4vision.org

114 / 135

Tracking with Reference Objects

Object-centered activity analysis: With known objects, it is
easier to analyze the activity associated with
objects [Laxton et al., 2007]

Context-aware visual tracking [Yang et al., 2009]

Tracking with the invisible (using relationship between target
and surrouding objects) [Grabner et al., 2010]

Human tracking via interactive
objects [Kjellstrom et al., 2010]

115 / 135

Performance Evaluation

Evaluation metrics:

time
accuracy: position, overlapping area, angle
motion information: similarity/affine transform
consistency
off-line training
recover from failure
qualitative and quantitative
lighting
feature
multiple objects
image sensor
single tracker

Data sets:

“ground truth”

116 / 135

Open Issues

Heavy occlusion

Articulated non-rigid motions

Failure recovery

Drifting problems

Multiple targets

Markless 3D human tracking

Context and prior knowledge

Simultaneous detection, tracking, and recognition

Long term and short term memory

117 / 135

Concluding Remarks

Application-dependent

Much work has been done, and yet much more work is to be
done

“Robust” tracking

Cognitive vision

118 / 135

References I

Adam, A., Rivlin, E., and Shimshoni, I. (2006).

Robust fragments-based tracking using the integral histogram.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 798–805.

Avidan, S. (2004).

Support vector tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):1064–1072.

Avidan, S. (2007).

Ensemble tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2):261–271.

Babenko, B., Yang, M.-H., and Belongie, S. (2009).

Visual tracking with online multiple instance learning.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 983–990.

Baker, S. and Matthews, I. (2004).

Lucas-Kanade 20 years on: A unifying framework.
International Journal of Computer Vision, 56(3):221–255.

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M., and Szeliski, R. (2007).

A database and evaluation methodology for optical flow.
In Proceedings of the IEEE International Conference on Computer Vision.

Bar-Shalom, Y., editor (1992).

Multitarget-multisensor tracking.
Artech House.

119 / 135

References II

Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994).

Performance of optical flow techniques.
International Journal of Computer Vision, 12(1):43–77.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006).

Surf: Speeded up robust features.
In Proceedings of European Conference on Computer Vision, pages 404–417.

Belhumeur, P. and Kreigman, D. (1997).

What is the set of images of an object under all possible lighting conditions.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 270–277.

Belhumeur, P. N. and Kriegman, D. J. (1998).

What is the set of images of an object under all possible illumination conditions?
International Journal of Computer Vision, 28(3):245–260.

Birchfield, S. (1998).

Elliptical head tracking using intensity gradient and color histograms.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 232–37.

Birchfield, S. and Rangarajan, S. (2005).

Spatiograms vs. histograms.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1158–1163.

Black, M. and Anandan, P. (1996).

The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding, 63(1):75–104.

120 / 135

References III

Black, M. J. and Jepson, A. D. (1998).

Eigentracking: Robust matching and tracking of articulated objects using a view-based representation.
International Journal of Computer Vision, 26(1):63–84.

Bookstein, F. (1989).

Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585.

Bregler, C. and Malik, J. (1998).

Tracking people with twists and exponential map.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 8–15.

Cannons, K. (2008).

A review of visual tracking.
Technical Report CSE-2008-07, York University.

Caselles, V., Kimmel, R., and Sapiro, G. (1997).

Geodesic active contours.
International Journal of Computer Vision, 22(1):61–79.

Cham, T.-J. and Rehg, J. (1999).

A multiple hypothesis approach to figure tracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 239–245.

Collins, R. T. (2003).

Mean-shift blob tracking through scale space.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 234–240.

121 / 135

References IV

Collins, R. T. and Liu, Y. (2003).

On-line selection of discriminative tracking features.
In Proceedings of the IEEE International Conference on Computer Vision, pages 346–352.

Comaniciu, D. (2003).

An algorithm for data-driven bandwidth selection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):281–288.

Comaniciu, D. and Meer, P. (2002).

Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603 –619.

Comaniciu, D., Ramesh, V., and Meer, P. (2000).

Real-time tracking of non-rigid objects using mean shift.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 142–149.

Comaniciu, D., Ramesh, V., and Meer, P. (2003).

Kernel-based object tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):564–577.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998).

Active appearance models.
In Proceedings of European Conference on Computer Vision, pages 383–498.

Deutscher, J., Blake, A., and Reid, I. (2000).

Articulated body motion capture by annealed particle filtering.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 126–133.

122 / 135

References V

Dietterich, T. G., Lathrop, R. H., and Perez, L. T. (1997).

Solving the multiple-instance problem with axis parallel rectangles.
Artificial Intelligence, 89(1-2):31–71.

Elgammal, A., Duraiswami, R., Harwood, D., and Davis, L. S. (2002).

Background and foreground modeling using non-parametric kernel density estimation for visual surveillance.
Proceedings of the IEEE, 90(7):1151–1163.

Elgammal, A. M., Harwood, D., and Davis, L. S. (2000).

Non-parametric model for background subtraction.
In Proceedings of European Conference on Computer Vision, pages 751–767.

Forsyth, D., Arikan, O., Ikemoto, L., O’Brien, J., and Ramanan, D. (2006).

Computational studies of human motion: Part 1, Tracking and motion synthesis.
Now publishers.

Golub, G. H. and Van Loan, C. F. (1996).

Matrix Computations.
The Johns Hopkins University Press.

Grabner, H. and Bischof, H. (2006a).

On-line boosting and vision.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 260–267.

Grabner, H. and Bischof, H. (2006b).

On-line boosting and vision.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 260–267.

123 / 135

References VI

Grabner, H., Leistner, C., and Bischof, H. (2008).

Semi-supervised on-line boosting for robust tracking.
In Proceedings of European Conference on Computer Vision, pages 234–247.

Grabner, H., Matas, J., Gool, L. J. V., and Cattin, P. C. (2010).

Tracking the invisible: Learning where the object might be.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1285–1292.

Hager, G. D. and Belhumeur, P. N. (1998).

Efficient region tracking with parametric models of geometry and illumination.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10):1025–1039.

Hall, P., Marshall, D., and Martin, R. (1998).

Incremental eigenanalysis for classification.
In Proceedings of British Machine Vision Conference, pages 286–295.

Han, B., Comaniciu, D., Zhu, Y., and Davis, L. S. (2008).

Sequential kernel density approximation and its application to real-time visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7):1186–1197.

Han, B., Zhu, Y., Comaniciu, D., and Davis, L. S. (2009).

Visual tracking by continuous density propagation in sequential Bayesian filtering framework.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):919–930.

Haritaoglu, I., Harwood, D., and Davis, L. S. (1998).

W4: A real time system for detecting and tracking people.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, page 962.

124 / 135

References VII

Harris, C. and Stephens, M. (1988).

A combined corner and edge detector.
In Proceedings of The Fourth Alvey Vision Conference, pages 147–151.

Ho, J., Lee, K.-C., Yang, M.-H., and Kriegman, D. (2004).

Visual tracking using learned linear subspaces.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 782–789.

Horn, B. K. P. and Schunck, B. (1981).

Determining optical flow.
Artificial Intelligence, 17:185–203.

Hua, G. and Wu, Y. (2004).

Multi-scale visual tracking by sequential belief propagation.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 826–833.

Ioffe, S. and Forsyth, D. (2001).

Human tracking with mixtures of trees.
In Proceedings of the IEEE International Conference on Computer Vision, pages 690–695.

Isard, M. and Blake, A. (1996).

Contour tracking by stochastic propagation of conditional density.
In Proceedings of European Conference on Computer Vision, pages 343–356.

Isard, M. and MacCormick, J. (2001).

BraMBLe: A Bayesian multiple blob tracker.
In Proceedings of the IEEE International Conference on Computer Vision, pages 34–41.

125 / 135

References VIII

Javed, O., Ali, S., and Shah, M. (2005).

Online detection and classification of moving objects using progressively improving detectors.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 696–701.

Jepson, A. D., Fleet, D. J., and El-Maraghi, T. F. (2001).

Robust online appearance models for visual tracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 415–422.

Jepson, A. D., Fleet, D. J., and El-Maraghi, T. F. (2003).

Robust online appearance models for visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):1296–1311.

Ju, S. X., Black, M. J., and Yacoob, Y. (1996).

Cardboard people: A parameterized model of articulated image motion.
In Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pages 38–44.

Kalal, Z., Matas, J., and Mikolajczyk, K. (2010).

P-n learning: Boostrapping binary classifiers by structural constraints.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Kass, M., Witkin, A., and Terzopoulos, D. (1987).

Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331.

Khan, Z., Balch, T. R., and Dellaert, F. (2004).

A rao-blackwellized particle filter for eigentracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 980–986.

126 / 135

References IX

Kjellstrom, H., Kragic, D., and Black, M. J. (2010).

Tracking people interacting with objects.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 747–754.

Kwon, J. and Lee, K. M. (2010).

Visual tracking decomposition.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Laxton, B., Lim, J., and Kriegman, D. (2007).

Leveraging temporal, contextual and ordering constraints for recognizing complex activities.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Leichter, I., Lindenbaum, M., and Rivlin, E. (2006).

A general framework for combining visual trackers - The “black boxes” approach.
International Journal of Computer Vision, 67(3):343–363.

Lepetit, V. and Fua, P. (2005).

Monocular model-based 3d tracking of rigid objects: A survey.
Foundations and trends in computer graphics and vision, 1(1):1–89.

Levy, A. and Lindenbaum, M. (2000).

Sequential Karhunen-Loeve basis extraction and its application to images.
IEEE Transactions on Image Processing, 9(8):1371–1374.

Li, R., Yang, M.-H., Sclaroff, S., and Tian, T.-P. (2006).

Monocular tracking of 3D human motion with a coordinated mixture of factor analyzers.
In Proceedings of European Conference on Computer Vision, pages 137–150.

127 / 135

References X

Li, Y., Ai, H., Yamashita, T., Lao, S., and Kawade, M. (2007).

Tracking in low frame rate video: a cascade particle filter with discriminative observers of different lifespans.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1728–1740.

Lim, J. and Yang, M.-H. (2005).

A direct method for modeling non-rigid motion with thin plate spline.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1196–1202.

Lin, R.-S., Liu, C.-B., Yang, M.-H., Ahuja, N., and Levinson, S. (2004).

Learning nonlinear manifolds from time series.
In Proceedings of European Conference on Computer Vision, pages 239–250.

Lindeberg, T. (1998).

Feature detection with automatic scale selection.
International Journal of Computer Vision, 30(2):79–116.

Liu, C., Yuen, J., Torralba, A., Sivic, J., and Freeman, W. T. (2008).

Sift flow: Dense correspondence across different scenes.
In Proceedings of European Conference on Computer Vision, pages 28–42.

Lowe, D. (2004).

Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110.

Lucas, B. and Kanade, T. (1981).

An iterative image registration technique with an application to stereo vision.
In Proceedings of International Joint Conference on Artificial Intelligence, pages 674–679.

128 / 135

References XI

MacCormick, J. and Isard, M. (2000).

Partitioned sampling, articulated objects, and interface-quality hand tracking.
In Proceedings of European Conference on Computer Vision, pages 3–19.

Mallapragada, P., Jin, R., Jain, A., and Liu, Y. (2007).

Semiboost: Boosting for semisupervised learning.
Technical report, Michigan State University.

Matthews, I., Ishikawa, T., and Baker, S. (2004).

The template update problem.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):810–815.

Mei, X. and Ling, H. (2009).

Robust visual tracking using `1 minimization.
In Proceedings of the IEEE International Conference on Computer Vision.

Mikolajczyk, K. and Schmid, C. (2005).

A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630.

Moeslund, T., Hilton, A., and Kruger, V. (2006).

A survey of advances in vision-based human motion capture and analysis.
Computer Vision and Image Understanding, 104(2):90–126.

Murase, H. and Nayar, S. K. (1995).

Visual learning and recognition of 3-D objects from appearance.
International Journal of Computer Vision, 14:5–24.

129 / 135

References XII

Nejhum, S. M. S., Ho, J., and Yang, M.-H. (2008).

Online articulate object tracking with appearance and shape.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Okuma, K., Taleghani, A., de Freitas, N., Little, J., and Lowe, D. (2004).

A boosted particle filter: Multitarget detection and tracking.
In Proceedings of European Conference on Computer Vision, pages 28–39.

Oza, N. C. (2001).

Online Ensemble Learning.
Ph.D. Thesis, University of California, Berkeley.

Paragios, N. and Deriche, R. (2000).

Geodesic active contours and level sets for the detection and tracking of moving objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(3):266–280.

Pavlovic, V., Rehg, J. M., Cham, T.-J., and Murphy, K. P. (1999).

A dynamic Bayesian network approach to figure tracking using learned dynamic models.
In Proceedings of the IEEE International Conference on Computer Vision, pages 94–101.

Perez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002a).

Color-based probabilistic tracking.
In Proceedings of European Conference on Computer Vision, pages 661–674.

Perez, P., Vermaak, J., and Blake, A. (2002b).

Data fusion for visual tracking with particles.
In Proceedings of European Conference on Computer Vision, pages 495–513.

130 / 135

References XIII

Porikli, F. (2005).

Integral histogram: A fast way to extract histograms in Cartesian spaces.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 829–836.

Porikli, F., Tuzel, O., and Meer, P. (2006).

Covariance tracking using model update based on Lie algebra.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 728–735.

Rasmussen, C. and Hager, G. D. (2001).

Probabilistic data association methods for tracking complex visual objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):560–576.

Rehg, J. and Kanade, T. (1994).

Visual tracking of high DOF articulated structures: An approach to human hand tracking.
In Proceedings of the IEEE International Conference on Computer Vision, pages 35–46.

Reid, D. (1979).

An algorithm for tracking multiple targets.
IEEE Transactions on Automatic Control, 24(6):843–854.

Ross, D., Lim, J., Lin, R.-S., and Yang, M.-H. (2008).

Incremental learning for robust visual tracking.
International Journal of Computer Vision, 77(1-3):125–141.

Rubner, Y., Tomasi, C., and Guibas, L. (2000).

The earth mover’s distance as a metric for image retrieval.
International Journal of Computer Vision, 40(2):91–121.

131 / 135

References XIV

Santner, J., Leistner, C., Saffari, A., Pock, T., and Bischof, H. (2010).

PROST: Parallel robust online simple tracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Sclaroff, S. and Isidoro, J. (1998).

Active blobs.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1146–1153.

Shi, J. and Tomasi, C. (1994).

Good features to track.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 593–600.

Sidenbladh, H., Black, M., and Fleet, D. (2000).

Stochastic tracking of 3D human figures using 2D image motion.
In Proceedings of European Conference on Computer Vision, pages 702–718.

Sigal, L., Bhatia, S., Roth, S., Black, M., and Isard, M. (2004).

Tracking loose-limbed people.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 421–428.

Sminchisescu, C. and Triggs, B. (2001).

Covariance scaled sampling for monocular 3D body tracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 447–454.

Stauffer, C. and Grimson, W. E. L. (1999).

Adaptive background mixture models for real-time tracking.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 246–252.

132 / 135

References XV

Stenger, B., Woodley, T., and Cipolla, R. (2009).

Learning to track with multiple observers.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Sullivan, J. and Rittscher, J. (2001).

Guiding random particles by deterministic search.
In Proceedings of the IEEE International Conference on Computer Vision, pages 323–330.

Ta, D.-N., Chen, W.-C., Gelfand, N., and Pulli, K. (2009).

Surftrac: Efficient tracking and continuous object recognition using local feature descriptors.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 2937–2944.

Tao, H., Sawhney, H., and Kumar, R. (2002).

Object tracking with Bayesian estimation of dynamic layer representations.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):75–89.

Toyama, K. and Blake, A. (2001).

Probabilistic tracking in a metric space.
In Proceedings of the IEEE International Conference on Computer Vision, pages 50–57.

Toyama, K. and Hager, G. (1999).

Incremental focus of attention for robust vision-based tracking.
International Journal of Computer Vision, 35(1):45–63.

Urtasun, R., Fleet, D., and Fua, P. (2006).

3d people tracking with Gaussian process dynamical models.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 238–245.

133 / 135

References XVI

vermaak, J., Doucet, A., and Perez, P. (2003).

Maintaining multimodality through mixture tracking.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1110–1106.

Viola, P., Platt, J. C., and Zhang, C. (2005).

Multiple instance boosting for object detection.
In Advances in Neural Information Processing Systems, pages 1417–1426.

Welch, G. and Bishop, G. (1995).

An introduction to the Kalman filter.
Technical Report TR 95-041, University of North Carolina at Chapel Hill.

Williams, O. M. C., Blake, A., and Cipolla, R. (2005).

Sparse Bayesian learning for efficient visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1292–1304.

Wren, C., Azarbayejani, A., Darrell, T., and Pentland, A. (1997).

Pfinder: real-time tracking of the human body.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):780–785.

Wu, Y. and Huang, T. (2001).

A co-inference approach for robust visual tracking.
In Proceedings of the IEEE International Conference on Computer Vision, pages 26–33.

Wu, Y. and Huang, T. S. (2004).

Robust visual tracking by integrating multiple cues based on co-inference learning.
International Journal of Computer Vision, 58(1):55–71.

134 / 135

References XVII

Wu, Y., Lin, J., and Huang, T. (2001).

Capturing natural hand articulation.
In Proceedings of the IEEE International Conference on Computer Vision, pages 426–432.

Yang, C., Duraiswami, R., and Davis, L. S. (2004).

Efficient kernel machines using the improved fast Gauss transform.
In Advances in Neural Information Processing Systems, pages 1561–1568.

Yang, M., Wu, Y., and Hua, G. (2009).

Context-aware visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7):1195–1209.

Yilmaz, A., Javed, O., and Shah, M. (2006).

Object tracking: A survey.
ACM Computing Surveys, 38(4):1–45.

Yu, T. and Wu, Y. (2004).

Collaborative tracking of multiple targets.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 834–841.

Zhou, S. K., Chellappa, R., and Moghaddam, B. (2004).

Visual tracking and recognition using appearance-adaptive models in particle filters.
IEEE Transactions on Image Processing, 13(11):1491–1506.

135 / 135

