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Tracking in Computer Vision

Castle Point Structure from motion
Stanley Polar Express
Autonomous robotics Motion retargeting

@ Understand geometric correspondences over time
@ A fundamental problem in computer vision

@ A challenging and difficult task

@ Numerous applications
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Applications

Motion analysis

Sports medicine

Animation

Surveillance

Autonomous robots HCl
Appearance modeling

Object recognition

Human computer interaction

Games

Video indexing

ASIMO movie
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What to Track?

o High-level
o Rigid object
@ position
@ orientation
@ bounding box or ellipse
@ motion parameters: similarity or affine transform

o Non-rigid object
@ parts
@ pose: 2D or 3D
@ contour
@ shape deformation: thin-plate spline [Bookstein, 1989]
o fingers, hands, etc.

o Mid-level: region, contour

o Low-level: feature
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Motion Information

@ How to describe the motion contents:
2D/3D motion

position

scale

rotation

similarity transform

affine transform

dynamics
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Feature Tracking

@ Image features [Shi and Tomasi, 1994]
@ Interest point operator:

o Harris corner detector [Harris and Stephens, 1988]

SIFT (Scale-Invariant Feature Transform) [Lowe, 2004]
SURF (Speeded Up Robust Features) [Bay et al., 2006],
GLOH (Gradient Location and Orientation

Histogram) [Mikolajczyk and Schmid, 2005]

@ SIFT flow [Liu et al., 2008]
e SURFTrac [Ta et al., 2009]
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Model-based Tracking

Tracking articulated objects
e Digifingers [Rehg and Kanade, 1994]
@ Articulated hand tracking [Wu et al., 2001]
@ Model-based 3D tracking [Lepetit and Fua, 2005]
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Contour Tracking

Snake [Kass et al., 1987]

Active contour [Caselles et al., 1997, Isard and Blake, 1996,
Cootes et al., 1998]

Level set [Paragios and Deriche, 2000]
Exemplar-based tracker [Toyama and Blake, 2001]
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Human Tracking

@ Near-view

o 2D card board human [Ju et al., 1996]

[loffe and Forsyth, 2001] [Cham and Rehg, 1999]
[Pavlovic et al., 1999] [Hua and Wu, 2004]

o 3D human model [Bregler and Malik, 1998]
[Sidenbladh et al., 2000] [Deutscher et al., 2000]
[Sminchisescu and Triggs, 2001] [Sigal et al., 2004]
[Urtasun et al., 2006] [Li et al., 2006]

o Far-view

o Pfinder [Wren et al., 1997]
o W4 [Haritaoglu et al., 1998]
o Multiple objects [Okuma et al., 2004] [Tao et al., 2002]
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Background Subtraction

o Facilitate tracking task

@ Need online update
@ Representative methods:

o Mixture of Gaussians [Stauffer and Grimson, 1999]

o Non-parametric model [Elgammal et al., 2000]
[Elgammal et al., 2002]

o Fast Gaussian transform [Yang et al., 2004]
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Looking at People and Objects

Dudek Lee walking Tom and Jerry

Tracking and appearance modeling 3D human tracking Articulated object tracking

@ Who, what, where, when, how?
@ Detect, track, and recognize objects

@ Need to account for appearance variation
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Visual Tracking

e Goal:

o Locate the object of interest
o Object vs feature
@ Image position
@ Scale

e Estimate object motion
o Rigid objects
@ Non-rigid objects

David indoor

o Challenges:

e Appearance variation due to
change in illumination, view
angle, shape, and by occlusions

o Camera motion

o Articulated objects Figure skating
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Conventional Approach

2l fes les |

@ Object representation

o Model: Geometric/learning, 2D /3D, etc.
o Representation: Feature, appearance, etc.
e Invariance: Cope with variation in pose, lighting, etc.

@ At time t — 1, predict next state

e Linear/nonlinear optimization
e Sampling and particle filtering

@ At time t, verify predictions using image observations

o Generative model
e Discriminative model
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State of the Art: Then and Now

Isard Mean

Condensation [ECCV96, 1JCV98] Mean shift [CVPR00, PAMI03]
Toyama Fleet

Exemplar [ICCVO01, 1JCV02] WSL [CVPRO1, PAMIO3]

@ Most require offline training
@ Most do not have high-level notion (i.e., thing) of object
@ Most do not update appearance model
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In this Talk

@ Focus on recent advances in visual tracking

@ See [Yilmaz et al., 2006] [Cannons, 2008] for surveys on
object tracking

@ See [Forsyth et al., 2006] [Moeslund et al., 2006] for survey
on human motion
@ Online visual tracking algorithms that
o Learn and update appearance model constantly
e Handle large illumination and pose variation
o Operate with one moving, uncalibrated camera
e Have real-time, robust performance
@ Approach:
o Generative algorithm
e Discriminative algorithm
o Multiple instance learning
e Articulated object tracking
@ Concluding remarks
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Tracking: Taxonomy

Obviously numerous ways

High-level, mid-level, low-level

Rigid and non-rigid object

Single or multiple objects

Single or multiple homogeneous/heterogeneous trackers
Color-based or not

Generative and discriminative

Supervised or unsupervised

Real-time or batch-mode

Single or multi-view based

Probabilistic or deterministic
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Tracking: Representation

()
Fig. 1. Object representations. (a) Centroid, (b) multiple points, (c) rectangular

patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g)
complete object contour, (h) control points on object contour, (i) object silhouette.

[Yilmaz et al., 2006]
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Tracking: Prediction

Tracking: prediction, prediction, prediction
Kalman filter

Maximum likelihood estimation

Multiple hypothesis

Non-parametric model

Particle filter
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Optical Flow |

e For a pixel at /(x, y, t) that move by dx, dy, and Jt between
two frames,

I(x,y,t) =I(x+ dx,y + dy, t + dt)

Assume the motion is small, expand it with Taylor series

ol ol ol
/ =1 —0x+—0y+—0t+H.O.T.
(x+dx, y+dy, t+dt) = I(x, y, t)+5x(5x—|— 5 5y+5t(5t+ o

@ Assume brightness constancy, it follows
0l ox 8l oy 416t
_ _ 7 2 0
Sxot T syot | stot

; al  dl
where u v are the x, y component of optical flow and 5_, 5

and % are derivatives of the image at (x, y, t) in the

corresponding directions
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Optical Flow Il

@ Thus,
uly +vly =~ VIT -V =~
@ One equation with two unknowns, i.e., aperture problem

@ Lucas-Kanade method [Lucas and Kanade, 1981]: combining
information from nearby pixels (e.g., template)

uly(p1) + vly(p1) = —1:(p1)
uly(p2) + vly(p2) = —1:(p2)

Ul(Pn) + vy (Pn) = —1e(pn)

in matrix form, Au=b

I(p1) 1y(p1) —I(p1)
I(p2) 1y(p2) . H —I(p2)

h(Pn) 1y (Pn) 1(py)
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Optical Flow IlI

and the least squares solution is u = (ATA)"!ATb

= e ngf(/ry"k)r:f>(2pi)]_l R

@ Horn-Schunck method [Horn and Schunck, 1981]: introduce a
global smoothness constraint to solve the aperture problem

E= //(ulx + vl + 1) + &2(|Vu]? 4 |Vv[?)dxdy

where « is a regularization constant, and is minimized by

(uly 4+ vl, + 1It) — a’Au=0
I (uly + vl, + It) — a?Av =0

where. A= 5)—; + 6(‘)722 is.the Lapla.cian. o.pera.tor. The
equations can be approximated with finite differences and

solved with an iterative scheme
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Optical Flow IV

@ Parametric motion: Lucas-Kanade can be extended to
account for other transforms (e.g., similarity, affine)

@ Coarse-to-fine estimation with pyramids

@ Application: motion analysis, layered motion estimation,
registration, video stabilization, etc.

@ Performance evaluation and database for optical
flow [Barron et al., 1994] [Baker et al., 2007]

@ See "Lucas-Kanade 20 years and on”
[Baker and Matthews, 2004] for a discussion on alignment,
warp update rule, and gradient descent approximation
@ Summary:
e Pros:
@ easy to compute
@ many applications
e Cons:
o difficult to handle occlusion
@ use template
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Eigentracking |

o Main ideas:
o Use eigenbasis for representation [Black and Jepson, 1998]:
teat an image as “thing” rather than “stuff”
o Use robust statistics
e Assume subspace constancy
o Multi-scale eigenspace
@ Collect a set of images for training where each image is
converted to a vector, and find the eigenvectors

1
Xaxn = [X1,...,%n], C= ;xxT, Cu; = \ju;

where C is the covariance matrix (assume zero mean) and u;
is an eigenvector
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Eigentracking Il

@ Each image can be reconstructed from a subspace spanned by
a set of eigenvectors

q
Xdx1 & Xgx1 = E ciu;
i—1

where ¢; is computed by taking dot products of x and u; (i.e.,
projection onto each eigenvector)

@ Use singular value decomposition (SVD) to compute
eigenvectors

X=ULV", X =[x1,....,x5], U=][ug,...,up]

where U is an orthogonal matrix whose columns are
eigenvectors computed from XX, ¥ is a diagonal matrix
with singular values o1,...,0, and V is an orthogonal matrix
whose columns are eigenvectors computed from X T X
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Eigentracking Il

o Eigen-representation:

e With SVD, each image is represented as

q
Xdx1 R Xgx1 = E ciu; = Uc
i—1
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Eigentracking IV

@ Parameterized optical flow with eigenbasis
I(x +v(x,a)) = Uc(x), Vx

where v(x,a) = (u(x,a), v(x,a)) represents an image
transformation and u, v represent horizontal and vertical
displacements at a pixel and a are the motion parameters to
be estimated

u(x,a) = ag + ai1x + aqy
v(x,a) = az + asx + asy

where ¢; are parameters for affine warp

@ Robust subspace constancy objective function
= Dol vix.a)  Ue(x). o)

2

where p(x, o) is a robust norm function, p(x,0) = 7
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Eigentracking V

@ lterative optimization

e Fix a, find c (recognition) : matching with robust statistics
o Fix c, find a (motion): robust regression approach for optical
flow [Black and Anandan, 1996] based on

a) = 3" p(l(x + v(x,a), ) — I(x, t +1),0)

and change /(x, t + 1) with Uc(x)
e o is gradually reduced

o Coarse-to-fine motion estimation with multi-scale eigenspace
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Eigentracking VI

@ Experimental results

@“!I v

@ 7Up can undergoing translation and scale change while

rotating
Vel A T
T B
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Eigentracking VII

@ Summary
e Pros:

o tracking and recognition ( “thing” vs. “stuff”)
@ subspace constancy

o Cons:

@ iterative optimization
@ need to collect a training set at fixed views
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Template-based Tracking |

@ Hager and Belehumer [Hager and Belhumeur, 1998]

o efficient region tracking using parametric models of geometry
and illumination

e use a set of reference templates (e.g., basis images to account
for lighting variation [Belhumeur and Kreigman, 1997])

o efficient way to compute Jacobian matrix by factoring it into
two submatrix (one involving image gradient and one motion)

o The Jacobian matrix M(u, t) relate variation in motion
parameters to brightness values

)

Motion template (a)(b) x, y-translation (c) rotation (d) scale
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Template-based Tracking Il

5848
orer

Frame 0 Frame 120 Frame 180  Frame 280

Without lighting change

22AM

With lighting change and motion

@ See an efficient direct method that computes warping
parameters of thin-plate spline model for non-rigid motion
[Lim and Yang, 2005]
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Template-based Tracking Ill

@ Template update problem for reducing
drifts [Matthews et al., 2004]

@ Use Lucas-Kanade algorithm to estimate warping parameters

(top) no update (center) update template every frame (bottom)
update template every frame but use first frame for correction

@ Apply similar idea for update with active appearance model
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Blob Tracker |

e Birchfield [Birchfield, 1998]
@ use image gradients and color histograms
e two modules aim to complete each other
o enclose the head region with ellipse

§* = argmax 0g(S1) + 6c(S0)

where ¢, and ¢. are normalized matching scores using image
gradients and color histograms

Zooming and rotation

e e

)l i 5

Three peopletrying to steal the ellipse from the subject
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Blob Tracker Il

@ Active blobs [Sclaroff and Isidoro, 1998]
@ Spatiograms vs. histograms [Birchfield and Rangarajan, 2005]
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Kernel-based Tracking |

@ Mean-shift tracker
[Comaniciu et al., 2000, Comaniciu et al., 2003]

e Non-parametric estimation with kernel density

o Feature histogram-based representation with spatial masking
and isotropic kernels

o Gradient-descent optimization to see
modes [Comaniciu and Meer, 2002]

e Use Bhattacharyya coefficient as similarity measure

o More effective when color features are used

football 1 football 2
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Kernel-based Tracking Il

@ Scale-space blob [Collins, 2003]: Adapt scale-space
theory [Lindeberg, 1998] with difference of Gaussian
mean-shift kernel for blob tracking through scale space

©)

(a) no scale adaption (b) 10% scale adaption (c) scale-space blob
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Sequential Kernel-based Approximation |

@ Parametric methods such as mixture of Gaussians are often
compact (with fixed number of modes) but less effective

@ Non-parametric models are often flexible but memory intensive

@ Idea: approximate multimodal density function with a mixture
of Gaussians with kernel density
approximation [Han et al., 2008]
e modes are found by variable-bandwidth mean
shift [Comaniciu, 2003]
e covariance of each Gaussian derived by fitting the curvature
around its mode
e for tracking, use mean-shift to detect new modes with efficient
sequential update
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Sequential Kernel-based Approximation Il
o Comparisons

(L) original (M) kernel density estimation (R) kernel density approximation

(L) original (M) kernel density estimation (R) kernel density

A

EM with MoG of (L) 4 (M) 5 (R) 6 components

(L) original (M) kernel density estimation (R) kernel density approximation
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@ Learning robust, adaptive appearance model
[Jepson et al., 2003]
@ Mixture of Gaussian at each pixel of target

e W: wandering motion information
o §: stable model
o L: outlier (“lost") component

o ldentity stable properties of appearance and weigh them
heavily for motion estimation

@ Three components, W, S, and L are combined

p(de|qe, me, dr—1) = my,py(de|di—1) + msps(de|ae) + mipi(de)

where m = (m,,, ms, m;) are the mixing probabilities, and
q: = (,us,t,crit) contains the mean and variance of the stable
component

@ Online EM algorithm to adapt appearance model parameters
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@ Wavelet-based appearance model: use phase structure of filter
response

@ Denote the appearance (phase) data from previous frame by
Dt—1 = {dx+—1}xen, , Observation density for a target region
Nt where each datum is dy ;1 = d(x,t — 1)

@ With warp parameters ¢;, the current data D; is warped back
to the previous frame of reference by dy ; = d(w(x; ct), t)

Dt = {dx,t}XENt

L(Dt|A¢-1, Dt—hct) = ~
ZXGNt—l log[msps(dx,t‘Q) + mwpw(dx,t‘dx,t—l) + mlpl]

where A;_1 is the appearance model at t — 1
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@ Components

Signal Value

Probabilty

Signal Value

300 400 500
Frame Number

(©

@ Experimental results
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WSL V

o Failure case

@ Summary:
e Pros:

@ online update
@ mixture model

o Cons:

o large ellipse of pixels
@ adaption
@ occlusion
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Kalman Filter |

See also [Welch and Bishop, 1995] for an introductory article

@ Optimal solution for linear dynamic system with Gaussian
noise

o Extended Kalman filter (EKF) can handle nonlinear and
non-Gaussian by linearizing the process and measurement
model with first-order approximation

@ Unscented Kalman filter (UKF) provides a better approximate

@ Both EKF and UKF estimate and propagate a unimodal
Gaussian over time
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Particle Filter |

@ Problem: difficult to deal with high dimensional state-space
o Extension:

o annealed particle filter [Deutscher et al., 2000]

e sampling methods [MacCormick and Isard, 2000]

[Sullivan and Rittscher, 2001] [Sminchisescu and Triggs, 2001]
piecewise Gaussian [Cham and Rehg, 1999]

Rao-Blackwellized particle filter [Khan et al., 2004]

nonlinear dimensionality reduction [Lin et al., 2004]

density approximation [Han et al., 2009]
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Particle Filter Il

@ Data association problem: When tracking multiple objects
using Kalman or particle filters, one first need to associate
measurement for a particular object to that object’s
state [Bar-Shalom, 1992]

@ Two widely used methods for data association:

e joint probability data association filtering
(JPDAF) [Bar-Shalom, 1992] [Rasmussen and Hager, 2001]

e multiple hypothesis
tracking [Reid, 1979] [Cham and Rehg, 1999]
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Online Feature Selection |

@ Pose the tracking problem as an online feature selection
problem Collins and Liu [Collins and Liu, 2003]

@ Aim to find pixel-based discriminant features that best
separate foreground object from the background

@ Find the weight for color channels of each pixel

F= {W1R+ woG +w3B, w; € [*2,*1,0, 1,2]}

Object Background
Object

—
Feature Histograms Log Likelihood Ratio

Current Image

Background  opjecy
Variance Ratio h
(feature score) (}j \J

Likelihood Histograms

ORI e
Likelihood Image

@ Use linear discriminant analysis for feature selection
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Online Feature Selection Il

@ Use mean-shift to compute 2D location

Lk \h od May p
Samples from
Current Frame

8G

Feature Spact
'ng

New Location e th \vear SM + [Meanshift
median
Locali

@ Some results against mean-shift tracker

(top) mean-shift algorithm (bottom) [Collins and Liu, 2003]
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Incremental Learning for Robust Visual Tracking

@ Generative model

e Learn a compact appearance model online

o Track thing (structure information) rather than stuff
(collection of pixels)

e Simultaneously track and update appearance model

@ With incremental update

o Adapt to handle variation in lighting, pose, etc.
o Particle filter

e Sampling rather than optimization

@ Operate with moving, uncalibrated cameras with low
resolution images
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PCA Representation
900 - )

A01,03,.,0 ..L il!\ e
B=(0.7,0.1, ..., 0.9) \ dz—
HEERE ...
ESEEe
ERESS
- 1
SEEEE U

@ Recall from Principal Component Analysis (PCA),
q
Xdx1 A Xgx1 = Z ciu;
i=1
(assume zero mean) where u; are eigenvectors and \; are
eigenvalues from covariance matrix

Xaxn = [X1,-. ., xn], C=1XXT, Cu;=\u;
@ Interpret in a generative model with probabilistic PCA, where
the subspace is spanned by u;
e Compute with Singular Value Decomposition (SVD)

50 /135



Visual Tracking as Statistical Inference

o Observation: A raster scan vector of a small image patch

@ 0o; denotes an observation at time t and O; = {01, ..., 0}
denotes a set of observations up to time t

@ Assuming a Markovian state transition,

p(s:|O:) =k P(0t|5t)fP(5t|5t—1)P(5t—1|Ot—l)dst—l
where k is a constant,

@ p(st|s¢—1): Dynamic model
Model dynamics with Brownian motion

@ p(o¢|s:): Observation model
Model appearance with a generative model using PCA
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Dynamic Model: p(s¢|s:_1)

e . e

J ’P(s 5y

@ Model object motion using similarity or affine transform

e State: s = [x¢, V4, It, kt| describes the translation, rotation,
and scaling in similarity transform

@ State transition: Factorized Gaussians for Brownian motion,
p(st|se—1) = N(Xt;Xt—la U>2<) N(Yt?)/t—l,(f}z,) N(rt; re—1, 03)
N(/‘ét; Rt—1, 0,2{)

@ Can use other methods to learn complex motion, e.g.,
auto-regression and moving average (ARMA) models
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Observation Model: p(o;|s;)

@ Use probabilistic PCA to model image observation process

@ Compute the probability of the image patch o; being
generated from the current eigenbasis based on
distance-to-subspace, d;, and distance-within-subspace, d,,

o p(otlst) = pa,(0¢[st) pa,(0t[st) = N(os; pg,, uu’ +el)
N (ot pg,, UL 2UT)

S ot
F N\
A=01,03, ., 0.9 o R\
B=(0.7,0.1,...., 0.9) N —\
\
ENEE ..
eEEnE
EEESS
) 11
v EEEEE

at

B
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Incremental Subspace Update

e Update model with new observations to account for
appearance variation

@ Learn a compact representation while tracking

@ Almost all subspace update methods, e.g.,
R-SVD [Golub and Van Loan, 1996] and sequential
Karhunen-Loeve [Levy and Lindenbaum, 2000], assume fixed
or zero sample mean

@ Propose an efficient algorithm w.r.t. running
mean [Ross et al., 2008]

See also [Hall et al., 1998]
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R-SVD Algorithm

Let old data be X = ULV and newly arrived data be Y
To compute SVD of Z =[X Y] = U"L" V"7 efficiently
Scatter matrix: Sy = ZZT = Sx + Sy

Decompose Y into its projection on the subspace spanned by
U and its complement, L=UTY H=Y - UL = (11— UUT)Y

Let Y = UL+ JK where JK = QR(H), JTJ =1

o z-x - [ [

Compute SVD of a much smaller matrix E }LJ = Uz'Vv'T

11 "

Then SVD of Z = U'Y"V'T where

U// — [U J]U/7 Z// — Zl7 V// — |:\g (l)] V/
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Efficient R-SVD with Updated Mean

o Lemma: Let X = {x1,...,%Xn}, Y ={Xnt1,---,Xntm}, and
Z ={X1,...,Xn, Xp41, - -, Xn+m}. Denote the means and
the scatter matrices of as py, py, 7, and Sx, Sy, Sz
respective, then

nm
S7=5x+Sy+ p m(ﬂx —py)(px — py)T

o let X=X —px!, Y=Y —pyl,

A

X

A~

nm

@ Same update formula except adding a correction term

e Important for methods that rely on sample means (e.g., Fisher
linear discriminant)
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Put All Together

@ Initialize the location of the target

@ Draw sample state: p(s¢|st—1)

© Predict the most likely state: p(s¢|O¢)

@ Update eigenbasis with the most likely observation
@ Goto Step 2
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Experimental Setups

Videos recorded at 15 fps with 320 x 240 gray scale images
Use 6 affine motion parameters

15 eigenvectors

Normalize image patches to 32 x 32 pixels

600 particles with forgetting factor of 0.95

Update every 5 frames

7.5 frames per second with MATLAB and MEX
implementation on a 2.8 GHz machine

Code and data sets available on the web
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Does Incremental Update Work Well?

@ Compute subspace of 605 images using

o Incremental update (every 5 frame)
o Conventional (batch mode) PCA

ﬂﬂ ‘#‘ ‘!m tracking results
&ﬂ“ ﬂ‘ ‘,“Qp!’ g reconstruction using our method

residue: 5.65 X 102 per pixel

&&ﬂh O\”‘ ‘aﬂp" & reconstruction using all images

residue: 5.73 X 102 per pixel

@ 30% faster than another related method [Hall and Martin 02]

59 /135



Experimental Results

David indoor Trellis Car

@ First panel: Tracking result

@ Second panel (from left to right): Mean, tracked image,
residue, reconstruction results

@ Third panel: Top 10 eigenvectors



Comparisons with State of the Art

David indoor Dudek Sylvester

@ Yellow box: Our tracker, ellipse: WSL
tracker [Jepson et al., 2001], dashed green box: Mean shift
tracker [Comaniciu et al., 2000]
@ Simultaneously track and update appearance model
e More qualitative/quantitative comparisons
in [Ross et al., 2008]
@ Can be explained with
o View-based eigenbasis for object recognition (handling pose
variation) [Murase and Nayar, 1995]
o lllumination cone (handling illumination
variation) [Belhumeur and Kriegman, 1998]
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Generative Model and Distance Metrics

@ Background patches may be confused with foreground ones
@ A generative model with Gaussian noise o

o Recall p(ot|st) = p4.(0¢|st) pa, (0t|st) =
N(o¢; pg,, UUT +el) N(og; pg,,, UE72UT)
@ The joint log likelihood of U, u, and o depends on
1
x"Cx= x'Uurtu'x + Sx"(1-UUT)x
S——r o2

Mahalanobis distance

distance to subspace
where X =x—p
@ Small o = weigh more on distance to subspace d;
@ Large 0 = weigh more on Mahalanobis distance d,,
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Adaptive Discriminative Generative Model

Frame (t) Frame (r 1) Probability Map Frame (t+1)
o\d location

@ Discriminative generative model: Find the optimal classifier
V* to separate positive/negative examples of two classes

@ Sampling: Draw a set of samples that are likely to “fool” the
generative model, and treat these as negative examples

e Maximizing log likelihood of (V, U, u, and o) where U is the
orthonormal basis of the generative model [Ross et al., 2008]

@ Imperative to update the means of between-scatter matrix S,
and within-scatter matrix S,

V* = arg maxl‘vgb\\ﬂl‘
@ Learn both appearance (i.e, U) and projection matrix (i.e., V)
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Experimental Results

Pedestrian Dudek Joyce

Use particle filter as incremental visual tracker
First row of second panel: Positive examples

°
°
@ Second row of second panel: Negative examples
°

Some negative examples may be similar to positive ones
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Discussion

Subspace: Orthonormal basis can also be computed efficiently
using the Gram-Schmidt algorithm

Distance metric: Uniform ¢, norm [Ho et al., 2004]

First order vs. second order statistics for object tracking
Better sampling scheme

For certain applications, it suffices to locate object positions
Treat visual tracking as a object detection problem

Exploit ensemble of weak classifiers and local features
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Support Vector Tracking |

@ Integrate support vector machine (SVM) classifier with optical
flow [Avidan, 2004]

@ Instead of minimizing intensity difference, SVT maximizes the
SVM classification score

e Given a data set {x;,y;} of n examples x; with labels
yi € {—1,+1}, the SVM classifier is

> yjajk(l, %)) + b (1)
j=1

where x; are support vectors, y; is the label, and «; are
Lagrange multiplier, k(/, x;) is the kernel
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Support Vector Tracking Il

@ Optical flow
Ifinal = Iinit + le + V/y (2)

where [, I, are the image gradients in the x, y directions, u,
v are the motion parameters.

@ Put these two together

n
manyjajk(l + uly + vy, x;) (3)
j=1

o Use quadratic polynomial kernel, k(x,x;) = (x'x;)?
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Support Vector Tracking Il

@ The function can be maximized as

E(u,v) = Zyjajk(l + uly + vy, x;) (4)
= > yia((+ b+ vl )x;)? ()
j=1

@ Taking the derivatives w.r.t. u and v

OE
o0 = Zy,a, (I +ul+vl)Tx;=0  (6)
OE
W = Zyjajl;—xj(/ + UIX + V/y)TXj =0 (7)

Jj=1
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Support Vector Tracking IV

o After rearranging the terms

where

A1l

A1z

A

b1

by

|

LR
Ay Ax| |v by

> ajyi(x] k)

=1

Aot =Y ayyi(x] K)(x] Iy)

=1
Z O‘jy](ij Iy)2
=1

=Y ayi(x B
j=1

= (x| ) (x] 1)
j=1

(8)

(9)

(10)

(11)

(12)

(13)
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Support Vector Tracking V

@ Resemble the standard optical flow equations
@ Support vectors replace the role of the second image

@ All computations are done on a single frame (not on a pair of
successive frame)

@ Similar to optical flow, large motion is handled by pyramid

@ Train on a set of 10,000 images of vehicles (sedans, SUVs,
trucks) and non-vehicles

@ Each example is normalized to the size of 20 x 20 pixels and
about 2,000 support vectors are extracted

@ Speed up the classification with a reduced set method with
400 SVs
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Support Vector Tracking VI

@ Error surface

@ Comparison
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Support Vector Tracking VII

@ Summary:
o Pros:

@ integrate SVM classifier into visual tracking

@ more robust than template-based visual tracking
e Cons:

@ need to collect a large training set

@ handle simple motion model

@ does not handle occlusion
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Relevance Vector Machine |

@ Pose the tracking problem as a regression
problem [Williams et al., 2005]

@ RVM: a probabilistic sparse SVM

@ Training

= 1235130
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Relevance Vector Machine Il

@ Learn the displacement expert with RVM regression
o Test

Al
R~ 2?
0 L]

relevance
vectors {z}

e 2 kernel function
- —>
eights

displacement

@ Works most effective with in-plane image transformation
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Tracking by Detection |

@ Formulate the tracking problem as a detection

Multi-target detection and tracking [Okuma et al., 2004]

Learn foreground/background classifiers
Collins [Collins and Liu, 2003]

Avidan [Avidan, 2007]

Grabner [Grabner and Bischof, 2006a]

@ See also P-N Learning [Kalal et al., 2010]
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Tracking and Detection |

@ Track varying number of non-rigid objects
@ Two main components:

e mixture of particle filters
e Adaboost-based object detection

Eithigh -‘ Al AAAAAAN " At

ailli J Tt L"' m,.unrmrr .
AN N i o et
FF{WN”'! lifigheaees HWWFM f'..

@ Numerous false positives from detection
@ Detection helps tracking and vice versa
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Tracking and Detection Il
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Ensemble Tracking |

@ Train an ensemble of weak classifiers online using Adaboost
[Avidan, 2007]

@ Each pixel is classified to belong to the object or background,
thereby giving a confidence map

@ The peak of the map is found using mean-shift

Image Feature space Confidence map Image Feature space

(a) (b)
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Ensemble Tracking Il

@ Weak classifier h: represent each pixel as a d-dimensional
feature, x; with its label y;, using weighted least squares
regression

Ax =y h=(ATA)1ATy (14)
WAx = Wy h=(ATWTWA)TATWT Wy (15)

where each row of A is x; and W is a diagonal weight matrix
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Ensemble Tracking Il

@ General ensemble tracking
Initialization:
Train T weak classifiers and add them to the ensemble
For each new frame /; do:

e test all pixels using the current strong classifier and create a
confidence map L;

e run mean shift on the confidence map and report new object
rectangle r;

o label pixels within r; as object and all those outside as
background

o keep K “best” weak classifiers

o train new T — K weak classifiers on frame /; and add them to
the ensemble

@ Use Adaboost to construct a boosted classifier
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Ensemble Tracking IV

@ Using 11-d feature vector (8-bin local histogram of oriented
gradients and RGB)

e Using 9-d feature vector (8-bin local histogram of oriented
gradients and intensity)

—
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Ensemble Tracking V

@ Summary:

e Pros:
e tracking as online classification/detection problem
@ online update
@ handle partial occlusion
@ work on gray scale images

e Cons:
@ treat the target as a bag of pixels
@ drifting problem
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Online Boosting |

e Exploit the online Adaboost algorithm by Oza [Oza, 2001]

@ Importance (difficulty) of a sample can be estimated by
propagating it through the set of weak classifiers

@ Offline setting: all samples are used to update and select one
weak classifier

@ Online setting: one sample is used to update all weak
classifiers and the corresponding weight

@ Grabner and Bischof [Grabner and Bischof, 2006b] present an
online boosting algorithm for visual tracking using a pool of
weak classifiers

@ Online boosting for feature selection
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Online Boosting |l

raning
sample

ay
current strong dlassifer hStrong

2

repeat for each
rainingsample
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Online Boosting Il

evaluate classifier on sub-patches

' update classifier (tracker) create confidence map and

analyse it

o Weak classifier: Gaussian distributions of Haar-like, HOG
(histogram of gradients), and LBP (local binary pattern)
features with Kalman filter

@ 50 selectors, and each can choose from 250 weak classifiers

o Experimental results
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Semi-supervised Tracking |

@ Idea: Pure online visual tracking often leads to drifting
problem

o [Grabner et al., 2008] apply semi-boost
algorithm [Mallapragada et al., 2007] to visual tracking

Object Detector Our approach Object Tracker

D ——)N

Fixed Training set Fixed Prior for updating an Onine update
General object detector  Adaptive on-line classifier  Object vs. Background

rior
classifier

evaluate classifier pdate classifi
onsub-patches map and analyse it (tracker)
1

@ Use first frame to learn the prior
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Semi-supervised Tracking |l

Semiboost

@ Other semi-supervised methods

o Co-inference [Wu and Huang, 2001]
o Co-training [Javed et al., 2005]
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FragTrack |

e FragTrack [Adam et al., 2006]

use multiple local image fragments or patches

use integral histogram [Porikli, 2005]

every patch votes on the possible position and scale
minimize a robust statistic to combine vote maps

use Earth Mover Distance (EMD) [Rubner et al., 2000] to
compute similarity between histograms

I:l le— Patch P
Templgte T

Patch P(I; X,Y)

'
1 Hypothesized position
(X.Y) within radius r of

Image | previous position

Previous position (XY )
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FragTrack Il

frame 849

initial template frame 66 frame 134 frame 456

FragTrack face FragTrack woman
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Online Multiple Instance Learning (MIL)

(B)

)( 2,0), (X3,0)}

Classifier Classifier M”.‘.
Classifier

Inherent ambiguity of positive examples in sampling
Multiple Instance Learning [Dietterich et al., 1997]
Learning with positive bags and negative bags offline
e Positive bag: At least one instance is positive
o Negative bag: All instances are negative
Batch mode discrete MILBoost for face
detection [Viola et al., 2005]
Develop continuous online MILBoost for visual
tracking [Babenko et al., 2009]
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Boosting and MILBoost

@ Boosting: Given x; — y; (instance)

K
= akh(x)
k=1

where h(s) is a weak classifier and prediction via sgn(Hxk(x))
e MILBoost: Given X; — y; (bag)

ZYI IOg ,D, 1 - YI) IOg(l - pl)

where

pi = plyi=1|X))=1-TI;(1 - pj) (Noisy-Or)
pi = Pl =1lxy) (as LogitBoost)
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Batch MILBoost

@ Train weak classifiers in a greedy fashion
hy 1 = argmax L(Hk + h)
heH

@ For batch MILBoost, can optimize using functional gradient
descent [Viola et al., 2005]

@ For tracking, we need an online version
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Online MILBoost

@ At all times, keep a pool of M > K weak classifier candidates

@ At time t get more training data

e Update all candidate classifiers
o Pick best K in a greedy fashion

h = L(H,+h
k1 =arg,  max  L(Hith)

@ Can be applied for classification and regression problems
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Online MILBoost for Tracking

EELED

¢y N
B m
iy = ="

Tracking by learning boosted detector online

Online MILBoost: H(x) = S_K_; axhy(x)

Weak classifier hy(x): Univariate Gaussian densities of
generalized Haar-like features

Maximize bag likelihoods via stochastic gradient descent

Online selection of weak classifiers (i.e., Haar-like features)
that best separate foreground and background
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Visual Tracking with Online MILBoost: Results

@ 20 fps on 3GHz machine with C4++ implementation
e Handle fast motion, lighting/pose variation, and occlusion
@ Only a few fixed parameters (no tuning)
@ Quantitative and qualitative results
@ Code and data available on the web
David Indoor Tiger Face

Boris Tom and Jerry Tomyand Jerry 2
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Online Articulated Object Tracking

r— /ulgl T " Vinen Q- | O
- ] } >
/
i = v 7

@ Tracking by detection with parts-based
representation [Nejhum et al., 2008]

@ Appearance: Represent an articulated object, W, with
weighted integral histograms of blocks /\,-H)-N
@ Shape: Find contour with fast graph cut segmentation
@ Tracking articulated objects:
o Detection: Scan the image and find W* = n‘}\?/xS(WQW),
where S(W/, W) = S5 Xip(HY', HW)
o Refinement: Apply segmentation locally to find foreground and

background
o Update: Adjust block configuration locally, Hf = Z,K:1 a,-H)-N
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Online Articulated Object Tracking: Results

@ Online update of shape and appearance [Nejhum et al., 2008]
@ Use efficient graph cut algorithm for segmentation

@ 4 frames per second on a 3GHz machine with MATLAB and
MEX implementation

@ Code and data available on the web

Lipinski Lysacek

Guillem Tom and Jerry
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@ Online visual tracking algorithms with robust performance

Simultaneously track and update appearance model
Adaptive discriminative generative model

Online MILBoost for visual tracking

o Tracking articulated objects with appearance and shape

@ Able to track objects undergoing change in illumination and
pose, with occlusions, and motion blurs

@ Code and data are available on the web
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Sparse Representation |

@ Motivated by recent success in sparse representation
@ Sparsify object representation with trivial templates

o Each target candidate is sparsely represented by target and
trivial templates [Mei and Ling, 2009]

target templates T pos. trivial templates I neg. trivial templates —I

trivial templates

y = T=atitato+- - +ant,
a
y = [T 1] [e]

@ Enforce non-negative coefficients
@ Sparsify is achieved by ¢; minimization

@ Used with a particle filter
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Sparse Representation I

‘Good target candidate approximated by templates

50 100 150 200 250 %00 350
coefficients
Bad target candidate approximated by templates

Top to bottom: [Mei and Ling, 2009] mean-shift tracker,

covariance-based tracker [Porikli et al., 2006], and appearance-based
particle filter [Zhou et al., 2004]
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Sparse Representation Il

Top to bottom: [Mei and Ling, 2009] mean-shift tracker,
covariance-based tracker [Porikli et al., 2006], and appearance-based
particle filter [Zhou et al., 2004]

101/135



Multiple Trackers

@ In layer [Toyama and Hager, 1999]
o In parallel [Birchfield, 1998] [Perez et al., 2002a]
[vermaak et al., 2003]
@ Homogeneous tracker [Li et al., 2007] [Kwon and Lee, 2010]
@ Heterogeneous trackers [Stenger et al., 2009]
[Santner et al., 2010]
o Feature level: [Bar-Shalom, 1992]
[Isard and MacCormick, 2001] [Perez et al., 2002a]
[Yu and Wu, 2004] [Wu and Huang, 2004]
[Perez et al., 2002b]
@ Tracker level:
o Rapid face motion [Li et al., 2007]
o Black box approach [Leichter et al., 2006]
o Multiple observers [Stenger et al., 2009]: off-line training to
find the best combination of tracking methods
o Visual tracking decomposition [Kwon and Lee, 2010]
o PROST [Santner et al., 2010]

@ Connection with multi-view learning
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Multiple Observers with Different Lifespans |

e Multiple observers (observation model) for face
tracking [Li et al., 2007]

@ Handle fast and abrupt motion with low frame rate images

@ Each observer is learned from different ranges of samples, with
different subsets of features

Current frame

Offline Sample Pool_| Online Sample Sequence
) T
..... .'.. Eu e

Observall e
Model 3 Sevice Period

Observation " »

et EEmET
Gbservation Learning pservice Period

Model 1

103 /135



Multiple Observers with Different Lifespans |l

Figure 3. Feature set of each observation model.

[k [1 [2 [3 |
Ly A S-dimension | Discrete Ad- | Real AdaBoost
LDA classifier aBoost on a | on histogram
pool of P LDA | weak classifiers
classifiers
Fy, 5 pre-selected | 50  pre-selected | 10,000s of
Haar-like features | Haar-like features | Haar-like
features
|F] |5 <50 ~ 500 per view
Sk Samples of the | Samples of the | 10,000s of of-
previous frame previous 5 frames | fline samples
oo | OURPISID | O(RPIS2] + | 0
|52|P?)
Thoop | Negligible Negligible Several days
Th.test | O(|Fi]) O(|F2]) O(|F3))

@ With a cascade particle filter

@ Tracking results
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Multiple Observers with Different Lifespans Il

(@) Trag kgby ning (yellow

Li CVPRO7
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Learning with Multiple Trackers |

@ Learning to fuse multiple
trackers for face and
hand tracking off-
line [Stenger et al., 2009]

@ Motivation example:
tracking with single
template using
normalized cross
correlation (NCC), and
local features with
randomized tree (RT)

r (scale-normalized)

106 /135



Learning with Multiple Trackers Il

@ 14 observers

Method Observation Estimate Confidence value

NCC Normalized cross correlation max correlation coriefascore

SAD Sum of absolute differences min distance distance score

BOF Block-based optical flow of & 3 mean motion mean NCC score

KLT[17] Kanade-Lucas-Tomasi sparse optical flow using 50 features centroid of good features  fraction of good features

FF[1] Flocks of features: Tracking 50 local features with highoco centroid of good features  fraction of good features
probability and ‘flocking’ constraints

RT[] Randomized templates: NCC track of eight subwindows, witbentroid of good features  fraction of good features
motion consensus and resampling

MS [6] Mean shift: Color histogram-based mean shift trackinghwitmin histogram distance histogram distance
background weighting

C[27] Color probability map, blob detection scale space maximum probability score

M[27] Motion probability map, blob detection scale space maximu probability score

CM[14] Color and motion probability map scale space maximum fodibascore

OBD [9] On-line boosted detector: Classifier boosted from pookof+ max classifier output classifier margin
angle features updated on-line

LDA[16] LDA classifier computed from five rectangle features in the-p max classifier output classifier margin
vious frame (Observer 1 in [])

BLDA[16] Boosted LDA classifier using 50 LDA classifiers from a pool ofmax classifier output classifier margin
150, trained on the previous five frames (Obs. 2lifj)

OFS ] On-line feature selection of 3 out of 49 color-based feagur centroid of top features mean variance ratio of st

based on fg/bg variance ratio

lected features
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Learning with Multiple Trackers Ill

@ Evaluation of observer combinations

(left) pairs, parallel evaluation, (middle) pairs, cascaded evaluation, (right)
triplets, cascaded evaluation. Only a small subset of data points near the upper

right frontier with both high robustness and precision are shown here.
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Learning with Multiple Trackers IV

NCC-FF-MS cascade

Observation: cascade
evaluation gives similar
performance to parallel
evaluation at much higher
efficiency
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Visual Tracking Decomposition |

@ Bayesian formulation and its weighted components
[Kwon and Lee, 2010]
p(Xt|Y1:t) X P(Yt|Xt)/P(Xt|Xt1)P(Xt|Xt1P(Xt1|Y1:t1)dXt1

@ Observation model : Decompose into multiple basic basic
ones

Yt|Xt Z th, Yt‘Xt Z Wt =1 (16)

@ Motion model: Decomposg into multiple basic motion models

p(Xe|Xe-1) = Z W{Pj(Xt|Xt—1),Z W{ =1 (17)
j=1 j=1

@ Multiple basic trackers are designed by associating the basic
observation and motion models and each account for certain
change of the object

@ All basic trackers are integrated with an interactive Makrov

Chain Monte Carlo framework
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Visual Tracking Decomposition |l

@ Basic observation model

Template set S,

EEILEL)

Object models

WAL )

Basic observation models

P (Y1 X) (Y X)) eee p.(Y X))

e mixture of different types of feature templates, e.g., hue,
saturation, intensity, and edge

o find a sparse set of templates by sparse PCA

@ using first 5 frames and the most recent 4 frames

e use a diffusion distance to compute distance between
histograms
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Visual Tracking Decomposition IlI

@ Basic motion model
o random walk: pj(X¢|Xe—1) = N(Xt_l,cij)
e two types of motion with small and large variance

@ Basic tracker models

Basic observation models

Basic motion models

Tracker T;

Tracker TII Tracker T

P.(Y X)) P IX) b BEXCATS)

p(X, [X.y) P, (X, X)) P,(X X))

£ . £ g

3 Interaction 3 3

z 3 B
Interaction Interaction

e Construct a Markov chain modeled by one pair of basic

observation and motion model
o MAP estimate via the Metropolis Hasting algorithm
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Visual Tracking Decomposition 1V

VTD results

@ Summary:
e Pros:

@ use mixture of representations and motion models
e Cons:

@ numerous parameters
@ time consuming
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e PROST (German word for “Cheers") [Santner et al., 2010]:
e Template correlation with normalized correlation (NCC): use
the first frame
e Mean-shift in conjunction with a variant of optical flow
(FLOW)
e Online random forest (ORF)

@ Tracker combination

e FLOW is overruled by ORF if they are not overlapping and
OREF has a confidence above a threshold
e OREF is updated only if it overlaps with NCC or FLOW

Frames
l corrects .
r — corrects
:/lentlpt:.ate Online I —
atching
Random Optical Flow
Forest
. - v
stability <« » plasticity Tracking Output
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Tracking with Reference Objects

@ Object-centered activity analysis: With known objects, it is
easier to analyze the activity associated with
objects [Laxton et al., 2007]

e Context-aware visual tracking [Yang et al., 2009]

e Tracking with the invisible (using relationship between target
and surrouding objects) [Grabner et al., 2010]

@ Human tracking via interactive
objects [Kjellstrom et al., 2010]
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Performance Evaluation

o Evaluation metrics:

time

accuracy: position, overlapping area, angle
motion information: similarity/affine transform
consistency

off-line training

recover from failure

qualitative and quantitative

lighting

feature

multiple objects

image sensor

e single tracker

@ Data sets:
e “ground truth”
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Open lIssues

Heavy occlusion

Articulated non-rigid motions
Failure recovery

Drifting problems

Multiple targets

Markless 3D human tracking
Context and prior knowledge

Simultaneous detection, tracking, and recognition

Long term and short term memory
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Concluding Remarks

Application-dependent

Much work has been done, and yet much more work is to be
done

“Robust” tracking

Cogpnitive vision
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