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Abstract. We address the problem of recovering 3D human pose from single 2D
images, in which the pose estimation problem is formulated as a direct nonlinear
regression from image observation to 3D joint positions. One key issue that has
not been addressed in the literature is how to estimate 3D pose when humans
in the scenes are partially or heavily occluded. When occlusions occur, features
extracted from image observations (e.g., silhouettes-based shape features, his-
togram of oriented gradient, etc.) are seriously corrupted, and consequently the
regressor (trained on un-occluded images) is unable to estimate pose states cor-
rectly. In this paper, we present a method that is capable of handling occlusions
using sparse signal representations, in which each test sample is represented as a
compact linear combination of training samples. The sparsest solution can then be
efficiently obtained by solving a convex optimization problem with certain norms
(such as l1-norm). The corrupted test image can be recovered with a sparse linear
combination of un-occluded training images which can then be used for estimat-
ing human pose correctly (as if no occlusions exist). We also show that the pro-
posed approach implicitly performs relevant feature selection with un-occluded
test images. Experimental results on synthetic and real data sets bear out our
theory that with sparse representation 3D human pose can be robustly estimated
when humans are partially or heavily occluded in the scenes.

1 Introduction
Estimating 3D articulated human pose from single view is of great interest to numerous
vision applications, including human-computer interaction, visual surveillance, activ-
ity recognition from images, and video indexing as well as retrieval. Notwithstanding
some demonstrated success in the literature, this problem remains very challenging for
several reasons. First, recovering 3D human poses directly from 2D images is inher-
ently ambiguous due to loss of depth information. This problem is alleviated with ad-
ditional information such as temporal correlation obtained from tracking, dynamics of
human motion and prior knowledge, or multiple interpretations conditioned on partial
image observations. In addition, the shape and appearance of articulated human body
vary significantly due to factors such as clothing, lighting conditions, viewpoints, and
poses. The variation of background scenes also makes the pose estimation more dif-
ficult. Therefore, designing image representations that are invariant to these factors is
critical for effective and robust pose estimation.

Human pose estimation algorithms can be categorized as generative (model-based)
and discriminative (model-free). Generative methods employ a known model (e.g., tree
structure) based on prior knowledge [1]. The pose estimation process includes two parts:
1) modeling: constructing the likelihood function and 2) estimation: predicting the most
likely hidden poses based on image observations and the likelihood function. However,



it is difficult to consider factors such as camera viewpoint, image representations and
occlusion in the likelihood functions. Furthermore, it is computationally expensive to
compute these functions and thus makes them unsuitable for inferring the hidden poses.
In contrast, discriminative methods do not assume a particular human body model,
and they can be further categorized as example-based [2] and learning-based [3–5].
Example-based approaches store a set of training samples along with their correspond-
ing pose descriptors. For a given test image, a similarity search is performed to find
similar candidates in training set and then obtain estimated poses by interpolating from
their poses [2]. On the other hand, learning-based approaches learn the direct mapping
from image observations to pose space using training samples [3–5]. While generative
methods can infer poses with better precision than discriminative ones, discriminative
approaches have the advantage in execution time.

Several image representations have been proposed in discriminative pose estima-
tion algorithms such as shape context of silhouettes [6], signed-distance functions on
silhouettes [7], binary principal component analysis of appearance [8], and mixture
of probabilistic principal component analysis on multi-view silhouettes [2]. However,
silhouettes are inherently ambiguous as different 3D poses can have very similar sil-
houettes. In addition, clean silhouette can be better extracted with robust background
subtraction methods, which is not applicable in many real-world scenarios (e.g., videos
with camera motion, dynamic background, sudden illumination change, etc.). To cope
with this problem, appearance features like block SIFT descriptors [9], Haar-like fea-
tures [10], Histogram of oriented gradients (HOG) [6, 11, 12] or bag-of-visual-words
representations [13] have been proposed for pose estimation. These descriptors contain
richer information than silhouette-based features, but they inevitably encode irrelevant
background clutter into the feature vector. These unrelated feature dimensions may have
accumulative negative effects on learning the image-to-pose mapping and thereby in-
crease errors in pose estimation. Agarwal et al. [6] deal with this problem by using
non-negative matrix factorization to suppress irrelevant background features, thereby
obtaining most relevant HOG features. In [10], relevant features are selected from a pre-
defined set of Haar-like features through multi-dimensional boosting regression. Okada
and Soatto [12] observed that the components related to human pose in a feature vector
are pose dependent. Thus, they first extract pose clusters using kernel support vector
machine, and then train one local linear regressor for each cluster with features selected
from the cluster.

Another important issue that has not been explicitly addressed in the literature is
how to robustly estimate 3D pose when humans in the scenes are partially or heavily
occluded. When parts of a human body are occluded, the extracted descriptors from
image observation (e.g., shape features from silhouettes, block SIFT, HOG, or part-
based features, etc.) are seriously corrupted. The learned regressor, induced from un-
occluded images, is not able to estimate pose parameters correctly when a human is
occluded in an image. While using tracking algorithm or making use of human motion
prior may alleviate this problem, an effective approach is needed to explicitly handling
occlusion.

In this paper, we show we are able to deal with such problems using sparse im-
age representations in which each test sample can be represented as a compact linear



combination of training samples, and the sparest solution can be obtained via solv-
ing a convex optimization problem with certain norms (such as l1-norm). Within this
formulation, the corrupted test image can be recovered with a linear combination of
un-occluded training images which can then be used for estimating human pose cor-
rectly (as if no occlusions exist). The proposed algorithm exploits both the advantages
of example-based and learning-based algorithms for pose estimation. In our algorithm,
when we represent a given image as a linear combination of training samples and ob-
tain a sparse solution, we are actually searching for a small number of candidates in
the training data set that best synthesizes the test sample. It is similar to the idea of
example-based approaches which perform efficient nearest neighbor search, but yet we
use a more compact representation that has been proven to be effective in dealing with
noise. We then learn a mapping between the compact representation and their corre-
sponding pose space using regression functions. The major difference between sparse
image representation and example-based approach (nearest neighbor search) is that we
consider all possible supports and adaptively select the minimal number of training
samples required for representing each test sample. Hence, with the recovered test sam-
ple, we can estimate 3D human pose when humans in the scenes are partially or heavily
occluded. Moreover, by using sparse representations we can implicitly perform relevant
feature selection. When representing each test sample as a compact linear combination
of training samples, those mismatched components are treated as part of reconstruction
error and discarded directly. Intuitively, we are replacing the background clutter in the
test samples with backgrounds in the training images. In this way, we achieve pose-
dependent feature selection without making any approximation (like clustering poses
in [12] or bag-of-visual-words in [13]) and avoid the need to increase the complexity of
the learning-based algorithms.

The contributions in this paper can be summarized in two main aspects. First, we
propose an algorithm to handle occlusion in estimating 3D human pose by representing
each test sample as a sparse linear combination of training samples. The prediction
errors are significantly reduced by using the reconstructed test samples instead of the
original ones when human in images are occluded. Second, we achieve pose-dependent
feature selection by solving sparse solution with reconstruction error. Our approach
improves over the learning-based algorithm without feature selection.

The remainder of this paper is organized as follows. Section 2 describes related
works on human pose estimation. In Section 3, we introduce the proposed image repre-
sentation scheme. We test our approach on both synthesized (INRIA) and real data set
(HumanEva I) to demonstrate the ability to handle occlusion and feature selection in
Section 4. We conclude this paper with comments on future work in Section 5.

2 Related Work
Due to its scope and potential applications, there has been a substantial amount of work
on the general problem of human motion capture and understanding. As such, we find
it useful to place the focus of our work within the taxonomy proposed by Moedlund
and Granum [14] whereby the field of work is presented in the categories of person
detection, tracking, pose estimation and recognition. Out approach fits best into the
category of pose estimation where the goal is to accurately estimate the positions of the
body parts. More specifically, our approach is to estimate 3D pose from a single image



without the use of temporal information. We will focus on previous work with a similar
goal and leave interested readers to consult one of the surveys for a more complete
listing of work in this general area [14, 15].

Previous approaches to human pose estimation from a single image can be broadly
categorized as model-based or model-free based. In model-based approaches a para-
metric model that captures the kinematics of the human body is explicitly defined. This
model can be used in a predict-match-update paradigm in which maximal agreement
between the model and the image measurements is sought. One method for this is to
simultaneously detect body parts and assemble them in a bottom-up manner. Picto-
rial structures [16] presented a convenient discrete graphical form for this that can be
adapted for people using an efficient dynamic programming minimization proposed by
Felzenszwalb and Huttenlocher [17] and later used in various forms by a number of re-
searchers [18–20]. Mori et al. followed a similar line of thought, but employed “super-
pixels” for the task of segmenting and detecting body parts [21]. Sigal et al. presented
a bottom-up approach in a continuous parameter space using a modified particle filter
for the minimization [1]. In contrast, Taylor developed a method to invert a kinematic
model given an accurate labeling of joint coordinates that provides reconstruction up to
a scale ambiguity [22]. This method was combined with shape-context matching in a
fully automatic system by Mori and Malik [23].

Model-free based approaches, which include regression and example based meth-
ods, take a top-down approach to this problem and attempt to recover a mapping from
image feature space to pose parameter space directly. An early approach of this type
represented 3D pose space as a manifold that could be approximated by hidden Markov
models [24]. Agarwal and Triggs advocated the relevance vector machine (RVM) [25]
to learn this mapping where silhouette boundary points were used as features [26]. Ros-
ales and Sclaroff used specialized maps in addition to an inverse rendering process to
learn this mapping [27]. Along a different line, Shakhnarovich do not learn a regression
function, but instead directly make use of training examples in a lookup table using
an efficient hashing [28]. The feature space used for these types of methods, with few
exceptions, is global in the sense that the features carry no information about the body
region they describe. This provides a clean top-down approach that circumvents any
need to implement part detectors. One exception to this is recent work by Agarwal and
Triggs where the goal is pose estimation in cluttered environments that localized feature
with respect to the window of interest [6].

Our approach uses a regression model to learn the mapping from image feature
space to pose space, but differs from previous work in that sparse representations are
learned from examples with demonstrated ability to handle occlusions.

3 Image Representation
We represent each input image observation as x ∈ IRm and the output 3D human pose
vector as y ∈ IRk. Given a training set of N labeled examples {(xi,yi)|i = 1, 2...N},
the goal of a typical learning-based approach in human pose estimation is to learn
a smooth mapping function that generalizes well for unseen image observation b in
the testing set. As mentioned in the Section 1, straightforward appearance features in-
evitably encode unwanted background information in x, which may introduce signifi-
cant errors in estimating pose from the test samples since the background clutters may



be quite different. The performance of the learned mapping function will also be seri-
ously degraded if humans are occluded in images because part of feature dimensions
are corrupted. To address these two problems, we present a formulation to represent
test samples such that the occluded or the irrelevant parts of the test samples can be
recovered by solving convex optimization problems.

3.1 Test Image as a Linear Combination of Training Images
Given sufficient number of training samples, we model a test sample b by the linear
combination of the N training samples:

b = ω1x1 + ω2x2 + · · ·+ ωNxN , (1)

where ωi, i ∈ {1, 2, . . . , N} are the scalar coefficients denoting the weights of the i-th
training sample contributing for synthesizing the test samples b. By arranging the N
training samples as columns of a matrix A = [x1,x2, · · · ,xN ] ∈ IRm×N , the linear
representation of b can be written compactly as

b = Aω, (2)

where ω = [ω1, ω2, . . . , ωN ]T is the coefficient vector.
With this formulation, each test sample b can be represented using the correspond-

ing coefficient vector ω by solving the linear system of equations b = Aω. If the
number of the dimension of the image observation m is larger than the number of train-
ing samples N , then the unique solution for ω can usually be obtained by solving the
overdetermined system. However, with data noise or if N > m, then the solution is not
unique. Conventionally, the method of least squares can be used to find an approximate
solution to this case by solving minimum l2-norm solution:

min ||ω||2 subject to Aω = b. (3)

For the system Aω = b, the minimum l2-norm solution can be obtained by ω̂2 =
(ATA)−1ATb. However, the minimum l2-norm (energy) solution ω̂2 is usually dense
(with many nonzero entries), thereby losing the discriminative ability to select the most
relevant training samples to represent the test one. As the vectors of pose parameters
for articulated human body pose reside in an high-dimensional space, the resulting pose
variations are large and diverse. It is reasonable to assume that only very a small portion
of training samples are needed to synthesize a test sample (i.e., only a few nonzero
terms in the solution ω̂ for solving Aω = b). This is especially true when the training
set contain a large number of examples that densely cover the pose space.

3.2 Finding Sparse Solutions via l1-norm Minimization
To find the sparest solution to Aω = b, we can solve the optimization problem in (2)
with l0-norm

min ||ω||0 subject to Aω = b, (4)

where l0-norm counts the nonzero entries in the vector ω. However, solving the l0-norm
minimization problem is both numerically unstable and NP-hard (no polynomial time
solutions exist).



Recent theories from compressive sensing [29–32] suggest that if the solution of ω
is sparse enough, then the sparsest solution can be exactly recovered via the l1-norm
optimization:

min ||ω||1 subject to Aω = b, (5)

where the l1-norm sums up the absolute weights of all entries in ω (i.e., ||ω||1 :=∑
i |ωi|, where ωi stands for the i-th entry in the vector). This is a convex optimiza-

tion problem that can be solved by linear programming methods (e.g., generic path-
following primal-dual algorithm) [33], also known as basis pursuit [34].

3.3 Coping with Background Clutter and Occlusion
Although sparse solution for the coefficient ω can be obtained by solving an l1 opti-
mization in (5), in the context of human pose estimation we may not find the sparest
solution ω̂1 that well explains the similarity between the test sample b and the train-
ing samples A. This can be explained with several factors. First, the background clutter
may be quite different been training and testing samples, and thus there exist inevitable
reconstruction errors when representing the test sample by training samples. For exam-
ple, even the test sample contains pose exactly the same as one of the training samples,
the background could be quite different, causing reconstruction error in representing
the test sample. Second, when humans in the test images are occluded, the linear com-
bination of training samples may not able to synthesize the occluded parts. Third, if we
use dense holistic appearance features such as HOG or block SIFT, there may have mis-
alignments within the detected image regions. To account for these errors, we introduce
an error term e and then modify (2) as

b = Aω + e = [A I]
[
ω
e

]
= Bv, (6)

where B = [A I] ∈ IRm×(N+m) and v = [ω e]T. If the vector v is sparse enough, the
sparest representation can be obtained by solving the extended l1-norm minimization
problem:

min ||v||1 subject to Bv = b (7)

In this way, the first N entries of vector v obtained from solving (7) correspond to the
coefficients of the training samples that can represent the test sample best using mini-
mum nonzero entries. On the other hand, the latter m entries account for those factors
(occlusion, misalignment, and background clutter) which can not be well explained by
the training samples.

We validate the recovery ability of our approach using a synthetic data set [26] in
which 1927 silhouette images are used for training and 418 images for testing. These
images are first manually cropped and aligned to 128 × 64 pixels. For efficiency, we
further downsample these images by a factor of 4 and add random blocks to simulate the
occluded silhouettes. Fig. 1 shows that we can recover from the corrupted test feature
(c) to (d). The reconstructed feature vector (d) can then be used for regressing the output
3D joint angle vector.

We also demonstrate that our algorithm, as a result of using sparse representation,
is able to perform feature selection implicitly by discarding irrelevant background in-
formation in the feature vectors in Fig. 2. Fig. 2 shows the original test image, the



Fig. 1. Occlusion recovery on a synthetic dataset. (a)(b) The original input image and its fea-
ture. (c) Corrupted feature via adding random block. (d) Recovered feature via find the sparsest
solution (7). (e) Reconstruction error.

corresponding HOG feature vector, and the recovered feature vector, and the recon-
struction errors using our sparse representations (from (a) to (d)). Note that most of
the reconstruction errors appear at the locations corresponded to background clutters,
thereby validating our claim that the proposed sparse representation is able to filter out
irrelevant noise.

Fig. 2. Feature selection example. (a) Original test image. (b) The HOG feature descriptor com-
puted from (a). (c) Recovered feature vector by our algorithm. (d) The reconstruction error.

4 Experimental Results
We test the proposed algorithm on synthetic [26] and real [4] data sets for empiri-
cal validation. In all experiments, we use Gaussian process regressor [35] to learn the
mapping between image features and the corresponding 3D pose parameters. We first
demonstrate the proposed method is able to estimate human pose from images with oc-
clusions. Even without occlusions, we show that the our algorithm still outperforms the
baseline methods as a result of implicit feature selection within our formulation.

4.1 Robustness to Occlusion
We use the synthetic data set in [26] to show that the proposed algorithm is able to
recover the un-occluded silhouettes from occluded ones. We generate random blocks
(with their width corresponds to the corruption level (CL)) to the all test sample to
synthesize occluded image silhouettes (see Fig. 3 for some sample test images under
various corruption level). We use two different feature representations in our experi-
ment. The first one is the principle component analysis (PCA) where each test image is
represent by its first 20 coefficients of principal components. The second image feature
is based on the image appearance (i.e., pixel values) of the downsampled images.



Fig. 4 shows the average errors in angles (degree) for three experiment settings:
1) features extracted from original test image (baseline), 2) features computed from
the corrupted images (see Fig. 3), and 3) recovered features using the proposed algo-
rithm. First we note that in both PCA and appearance settings, the proposed algorithm
improves the accuracy of pose estimation under occlusions. We also observe that our
method with appearance features (e.g., downsampled images) performs better than that
with holistic features (e.g., PCA). This can be explained by the fact holistic PCA is
known to be sensitive to outliers. Thus, when a silhouette is occluded, the PCA coeffi-
cients computed from the occluded images are likely to be very different from the ones
without occlusions. In contrast, only a small number of pixels of the occluded images
have been changed or corrupted, thereby facilitating the process of recovering the un-
occluded images. These results suggest that sparse and localized feature representations
are suitable for pose estimation from occluded images.

(a) CL=0.1 (b) CL=0.2 (c) CL=0.3 (d) CL=0.4 (e) CL=0.5 (f) CL=0.6

Fig. 3. Sample test images under various corruption levels (CL) in the synthetic data set. The
occlusions seriously corrupt the shape of the silhouette images.

(a) (b)

Fig. 4. Average error of pose estimation on synthetic data set using different features: (a) principle
component analysis with 20 coefficients. (b) downsampled (20×20) images.

To further gauge the performance of the proposed method, we use the synchronized
image and motion capture data from the HumanEva data sets [4] for experiments. The
HumanEva I data set consists of 4 views of 4 subjects performing a set of 6 predefined
actions (walking, jogging, gesturing, throwing/catching, boxing, combo) 3 times. For
efficiency and performance analysis, we chose the common motion walking sequences
of subjects S1, S2, S3 for experiments. Since we are dealing with pose estimation from
one single view, we use the images (2950 frames) taken from the first camera (C1).
The original HumanEva data set is partitioned into training, validation, and test subsets
(where the test subset is held out by [4]). For each subject, we use a subset of the



training set to train a Gaussian precess regressor [35] and test on a subset of the original
validation where both the images and motion capture data are available.

As there are no occluded cases in the original HumanEva data set, we randomly
generate two occluding blocks in the test images with various corruption level for syn-
thesizing images with occlusions. The center locations of these blocks are randomly
chosen within images and the block widths are correlated with the correction level. The
aspect ratio of each block are sampled from a uniform distribution between 0 and 1.

In Fig. 5, we show sample images taken from the walking sequence of three subjects
with various corruption levels. The corruption level ranges from 0.1 to 0.6. We can
see that although human vision can still infer the underlying poses under occlusion,
it is difficult for pose estimation algorithms to handle such test images due to heavy
occlusions.

(a) CL=0.1 (b) CL=0.2 (c) CL=0.3 (d) CL=0.4 (e) CL=0.5 (f) CL=0.6

Fig. 5. Synthesized images with occlusions with HumanEva data set I (all walking sequence).
Top row: Subject 1, Second row: Subject 2, and Third row: Subject 3. Each corrupted test image
contains two randomly generated blocks with their widths equal to corruption level (CL) times
original image width and with their centers located at the position from uniformly random sample
from image. Each column shows the sample corruption at certain corruption level.

We use histograms of oriented gradients as our feature vectors to represent train-
ing and test images. In our experiments, we compute the orientation of gradients in
[0, π] (unsigned) and construct the histograms using 6 bins in each cell. We use 10×10
pixels per cell, 3×3 cells per block, and uniformly place 3×3 blocks overlapping with
neighbor blocks by one cell. Thus, for each image window we obtain a 486-dimensional
feature vector. We then learn the mapping function between the feature vectors and their
corresponding pose parameters.

We carry out a series of experiments with three different settings: 1) HOG feature
vectors from original testing images without synthetically generated occluding blocks,
2) corrupted HOG feature vectors computed from the occluded images (see Fig. 5),
and 3) the recovered test feature vectors by solving the extended l1-norm minimization
problem (7). In the third setting, after solving (7), we discard the reconstruction error
vector e and use Aω as our recovered feature vector. All feature vectors obtained in
the above three settings are used to regress the pose vector using Gaussian process
regressor. We present in Fig. 6 the mean errors of relative joint positions on the testing



sub-set of HumanEva data set under various corruption levels (from 0.06 to 0.6). We
show the increasing error curves on three settings in terms of joint position error in
millimeters of our approach over the baseline (i.e., using HOG feature vectors computed
from occluded images.) In all three subjects, we show that from occluded images our
approach is able to recover the un-occluded images and then the pose parameters. It
is also worth noting that our algorithm also often outperforms the baseline algorithm
(trained and tested on un-occluded images). This can be explained by the fact that our
algorithm also implicitly performs feature selection whereas the performance of the
baseline algorithm is inevitably affected by noise contained in the training data.

(a) S1 (b) S2 (C) S3

Fig. 6. Results of pose estimation on HumanEva data set I in walking sequences. (a) Subject 1. (b)
Subject 2. (c) Subject 3. Images in the first row show the 3D mean errors of relative joint position
in millimeters (mm) under various corruption level (from 0.06 to 0.6). The blue lines indicate
the results from the original test samples, thus the predicted errors are independent of corruption
level. The green curves stand for the results from the corrupted test samples with different level
of corruption and the red curve are the results from recovered test samples using sparse signal
representation.

4.2 Robustness to Background clutter
In this section, we show that the proposed method is able to select relevant feature
vectors. We use the same 486 dimensional HOG feature vectors to describe the image
observation. We compare two settings: 1) HOG features computed from the original test
image sequences, and 2) features extracted from our sparse representation. The mean
3D joint position errors (mm) for each frame are plotted in Fig. 7 for the whole test
set. The blue and green error curves correspond to the results using the original HOG
feature vectors and the ones extracted from our method, respectively. The improvements
(i.e. reduction) of mean position errors (mm) of our method in three subjects are 4.89,
10.84, and 7.87 for S1, S2 and S3, respectively.

5 Conclusion
In this paper, we have presented a method capable of recovering 3D human pose when
a person is partially or heavily occluded in the scene from monocular images. By repre-
senting the test images as a sparse linear combination of training images, the proposed
method is able to recover the set of coefficients from the corrupted test image with min-
imum error via solving l1-norm minimization problem, and therefore obtains robust
pose estimation results. In addition, our algorithm improves the pose estimation accu-
racy even on images without occlusions by implicitly selecting relevant features and
discarding unwanted noise from background clutter. Our future work includes more ex-
periments with real image data where synchronized ground truth pose parameters and



Fig. 7. Mean 3D error plots for the walking sequences (S2). The blue line indicates the errors
by using the original test samples. The green line represents the error predicted from recovered
feature vectors by the proposed algorithm. The results are comparable or better than the original
test samples thanks to the ability of selecting relevant feature entries.

occluded images are available. We also plan to extend our sparse representation algo-
rithm to temporal domain, making use of motion dynamics to further help disambiguate
different poses with similar image observations.
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