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Abstract. Through-plane super-resolution (SR) in brain magnetic reso-
nance imaging (MRI) is clinically important during clinical assessments. 
Most existing multi-contrast SR models mainly focus on enhancing in-
plane image resolution, relying on functions already integrated into MRI 
scanners. These methods usually leverage proprietary fusion techniques 
to integrate multi-contrast images, resulting in diminished interpretabil-
ity. Furthermore, the requirement for reference images during testing 
limits their applicability in clinical settings. We propose a TEst time 
reference-free through-plane Super-resoLution network using disentAn-
gled representation learning in multi-contrast MRI (TESLA) to address 
these challenges. Our method is developed on the premise that multi-
contrast images consist of shared content (structure) and independent 
stylistic (contrast) features. Thus, after progressively reconstructing the 
target image in the first stage, we divide it into shared and indepen-
dent elements during the structure enhancement phase. In this stage, we 
employ a pre-trained ContentNet to effectively disentangle high-quality 
structural information from the reference image, enabling the shared 
components of the target image to learn directly from those of the ref-
erence image through patch-wise contrastive learning during training. 
Consequently, the proposed model enhances clinical applicability while 
ensuring model interpretability. Extensive experimental results demon-
strate that the proposed model performs favorably against other state-of-
the-art multi-contrast SR models, especially in restoring structural fine 
details in the through-plane direction. The code is publicly available at 
https://github.com/Yonsei-MILab/TESLA. 
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1 Introduction 

The clinical necessity for Super-Resolution (SR) in the through-plane direction in 
brain Magnetic Resonance Imaging (MRI) has been highlighted due to its poten-
tial to induce patient discomfort during medical examinations. During regular 
medical examinations, T2 MR scans are commonly performed with thick-slice, 
while the spatial domain is acquired at relatively high-resolution (HR) to pre-
serve the signal-to-noise ratio of the data [ 9,12]. Conventional super-resolution 
approaches [ 5, 7] struggle to preserve sharp boundaries and fail to remove stair-
step artifacts. While the Low-Rank Total Variation (LRTV) method [ 19] shows  
improvement in MRI SR, it comes at a high computational cost. Deep learning-
based SR networks [ 15,16] designed for computer vision often rely on a single con-
trast image, making them less suitable for multi-contrast MR data. In contrast, 
recent reference-based image SR models [ 6,14,17] have demonstrated significant 
potential in recovering the high-frequency details of low-resolution (LR) target 
image (Tar) by utilizing features from reference images (Ref). This concept is 
especially advantageous for MRI-based SR networks leveraging multi-contrast 
MR data. These approaches enhance SR performance by using the complemen-
tary information from each MR contrast through either channel concatenation 
or self-attention fusion mechanisms to assess the correlation between LR Tar 
and HR Ref. However, the aforementioned SR methods have mostly focused 
on in-plane SR in brain MRI, which can be addressed with the function of the 
existing MR scanner [ 2]. Moreover, these implicit fusion techniques may lack 
interpretability and necessitate HR Ref at test time, thus reducing their clinical 
applicability. 

In this work, we propose a TEst time reference-free through-plane Super-
resoLution network using disentAngled representation learning in multi-contrast 
MRI (TESLA). Our framework consists of Progressive Reconstruction (PR) and 
Structure Enhancement (SE) stages (See Fig. 1). We assume that multi-contrast 
MR images can be decomposed into shared content information (i.e. structure) 
and distinct stylistic features (i.e. contrast), which we leverage in the second 
stage. In the PR phase, we progressively reconstruct the LR Tar, aiming to 
not only minimize structural distortion between LR Tar and HR Tar but also 
reduce the domain gap of shared content with HR Ref. In the SE phase, we 
utilize a pre-trained ContentNet to extract valuable content information from 
HR Ref. Then, we enable the smooth content feature decomposed from coarsely 
reconstructed SR Tar to learn features for HR Tar through contrastive learning 
explicitly. We also implement a data consistency (DC) term that allows the final 
output to retain structural fine details and physical meaning. The contributions 
of this work are: (1) We present a model that enables SR Tar to directly learn 
high-quality content information from HR Ref, thereby enhancing the inter-
pretability of the model. (2) Unlike multi-contrast SR techniques, the proposed
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Fig. 1. Overview of the proposed network TESLA. In the first stage, we progressively 
reconstruct LR Tar. In the second stage, we leverage the high-quality content informa-
tion disentangled from HR Ref with the pre-trained ContentNet to enrich the structural 
fine detail of Soft SR Tar with the patch-wise contrastive learning. HR Ref and Con-
tentNet are used only during training; inference requires only PR, the encoders (Ec 

and Es), and decoder (G) in SE.  

network operates independently of HR Ref during the testing phase, significantly 
increasing its clinical applicability. (3) Our experimental findings demonstrate 
that the proposed model outperforms alternatives in accurately preserving fine 
details of the brain on the IXI, HCP, In-house, and BraTS21 datasets. 

2 Method  

The proposed method aims to improve the slice thickness resolution of LR Tar 
by utilizing multi-contrast MR images. The framework comprises two principal 
components, as depicted in Fig. 1. 

Progressive Reconstruction. In the first stage, a simulated 2n fold LR Tar 
(x2n 

LRT ar) is progressively reconstructed using an optimized nnU-Net [ 8] for grad-
ually reducing the domain gap of shared content with HR Ref as well as miti-
gating structural distortion between LR Tar and HR Tar using 

LPR  
recon = 

1 

i=n 

Ll1+ssim x2i−1 

SRT ar, x
2i−1 

LRT ar , n  = 1, 2, 3, . . . (1)
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Table 1. Utilized datasets on several tasks. Tar indicates low-resolution (LR) target 
images, and Ref denotes high-resolution (HR) reference images. We employed the sagit-
tal plane images as an input on all datasets. Tar and Ref are described in the form of 
modality/slice thickness. 

Task Through-plane SR Pseudo-vessel recon 
Dataset IXI HCP BraTS21 IXI In-house 
Train Tar LR T2/4.8mm  LR T2/5.6mm  LR FLAIR/4.0mm  LR T2/4.8 mm  – 

Ref HR T1/1.2mm  HR T1/0.7mm  HR T1CE/1.0mm  HR T1/1.2 mm  – 
Test Tar LR T2/4.8mm  LR T2/5.6mm  LR FLAIR/4.0mm  – LR T2/4.0 mm  

where LPR  
recon means reconstruction loss on PR phase, Ll1+ssim denotes the 

weighted combination of L1 and SSIM loss, with a ratio 1:1, and x2i−1 

SRT ar = 
f 2

i 

2i−1 x2i 

LRT ar indicates 2i−1 fold reconstructed SR Tar, respectively. 

Structure Enhancement. Although CNN-based reconstruction networks can 
minimize the disparity between the input and the label, they often smooth out 
structural information in the process [ 3]. To address this issue, the SE phase 
employs a pre-trained ContentNet Eref 

c that has been fine-tuned to effectively 
disentangle high-quality content features (cHRRef ) from HR Ref. The Content-
Net denotes the content encoder of MUNIT [ 11]. It comprises multiple con-
volutional layers for downsampling the input and a residual block designed to 
extract additional semantic structure. We show that integrating L1 and SSIM 
loss for reconstruction, and adversarial loss for pretraining ContentNet effectively 
extracts the most dynamic content information from HR Ref. In contrast to 
MUNIT, which uses LSGAN, we enhance the structural details of the extracted 
content features from HR Ref by using PatchGAN as the discriminator condi-
tioned on the edge image obtained by the Canny edge filter from HR Ref (See 
Fig. 4). The losses for pre-training the ContentNet are: 

Lx 
recon = Ex∼p(x)[Ll1+ssim (G(Ec(x), Es(x)), x)] (2) 

Lc 
recon = Ec∼p(c),s∼q(s)[Ll1+ssim (Ec(G(c, s)), c))] (3) 

Ls 
recon = Ec∼p(c),s∼q(s)[Ll1+ssim (Es(G(c, s)), s))] (4) 

Lx 
Adv = Ec∼p(c), s∼q(s) log 1 − Dis G(c, s), xedge 

HRRef 

+ Ex∼p(x) log Dis(x, xedge 
HRRef ) (5) 

where x = xHRRef , p(c) is given by c = cHRRef = Ec(x) =  Eref 
c (x), and q(s) 

is given by s = Es(x), respectively. Here, Ec and Es indicate the content and 
style encoders. Additionally, G and Dis refer to the generator and discrimina-
tor, respectively. Equation 2 through Eq. 5 are all applied at the same rate. We 
applied the same losses as ContentNet to the training process of the SE phase. 
In this case, we simply replaced xHRRef with xSof t  

SRT ar.



588 Y. Choi et al.

Patchwise Contrastive Learning. Technically, cSRT ar and cHRRef are not 
identical, although they share some content. In this context, we can observe 
that the degree of correlation between each region in cSRT ar and cHRRef varies. 
When considering a patch representing the cerebrospinal fluid (CSF) in cSRT ar, 
the corresponding region in cHRRef exhibits a stronger correlation compared 
to other patches in cHRRef . Instead of using pixel-level loss, we maximize the 
mutual information in the latent space between positive feature pairs extracted 
from each patch of cSRT ar and cHRRef and minimize the corresponding infor-
mation between negative feature pairs from each patch of them. As such, we use 
PatchNCE loss [ 18] based on contrastive learning to enable cSRT ar to explicitly 
learn the mutual information with cHRRef . To extract the feature stack from 
cSRT ar and cHRRef , we employ Ec and the pre-trained Eref 

c , respectively. Each 
layer and spatial position within this feature stack corresponds to a patch of the 
input image, where deeper layers are associated with larger patches. We select 
L layers of interest and pass the feature maps through a small two-layer MLP 
network (Hl), as in SimCLR [ 4]. This results in the feature stack denoted as 
{zl}L = Hl E

l 
c (cSRT ar) L

, where El 
c indicates the output of the lth selected 

layer. We index the layers as l ∈ {1, 2, . . .  , L} and denote spatial locations as 
s ∈ {1, . . . , Sl}, where Sl represents the number of spatial locations in each layer. 
The corresponding feature is referred to as zs l ∈ RCl , while the other features 
are denoted as z S\s 

l ∈ R(Sl−1)×Cl , with Cl being the number of channels at each 
layer. Similarly, we encode cHRRef into {ẑl}L = Hl E

ref ·l 
c (cHRRef ) 

L
. 

LPatchN  CE  = 
L 

l=1 

S 

s=1 

CE z s l , ẑl , z
S \s 
l (6) 

where CE is Cross Entropy loss. The zs l ,ẑl, and  z S\s 
l are mapped query, positive, 

and negatives. To maintain the physical significance of the reconstructed xenhan 
SRT ar, 

we average xenhan 
SRT ar along the through-plane direction to ensure it matches x2n 

raw, 

DC = Ll1+ssim avg xenhan 
SRT ar , x

2n 

raw (7) 

The total loss in the SE phase is computed by Eqs. 2–7 with equal weights. 

Implementation Details. The proposed framework is trained with batch size 
10 on an NVIDIA A5000 GPU with 24GB memory for 100 epochs, which takes 
about 10 h for each experiment. We use Adam optimizer with a learning rate of 
1 × 10−4 for all experiments.
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Table 2. Quantitative comparison results of different tasks on several datasets. All 
metrics are expressed in the format of mean(std). 

Task Through-plane SR Pseudo-vessel recon 
Dataset(scale factor) IXI(×4) HCP(×8) BraTS21(×4) In-house(×4) 
Method SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR 
LRTV [19] 0.6707(0.04) 14.48(1.06) 0.7633(0.01) 22.44(0.60) 0.7861(0.04) 17.32(1.55) 0.7755(0.02) 15.72(0.65) 
MINet [ 6] 0.9414(0.03) 28.91(1.65) 0.9236(0.02) 27.46(1.29) 0.9325(0.02) 28.33(2.06) 0.8402(0.01) 24.17(0.71) 
MASA [17] 0.9189(0.01) 26.86(0.94) – – 0.9299(0.02) 28.02(2.11) 0.9002(0.02) 24.53(0.92) 
MC-VarNet [14] 0.9343(0.03) 28.27(1.63) 0.9306(0.02) 27.38(1.27) 0.9298(0.02) 27.90(2.11) 0.8629(0.02) 23.60(0.80) 
TESLA(ours) 0.9532(0.01) 29.23(0.77) 0.9489(0.02) 28.50(0.73) 0.9432(0.01) 29.11(1.89) 0.9144(0.01) 25.67(0.87) 

Fig. 2. Qualitative comparison results of through-plane SR on IXI and HCP dataset. 

3 Experimental Results 

Utilized Datasets for Different Tasks. We employ four datasets: IXI [ 10], 
HCP [ 20], BraTS21 [ 1], and In-house, each with different conditions for the 
respective tasks, as shown in Table 1. For Tar and Ref in all datasets, we utilize 
center 100 key slices per subject, inclusive of brain tissue and absent of sub-
stantial artifacts. We normalize the intensity to a range of 0 to 1 without any 
additional augmentations. To simulate LR Tar, we use b-spline interpolation, 
which effectively generates a realistic representation of the stair-step artifact in 
the through-plane direction. Note that all LR Tar is simulated except for the 
in-house dataset. We utilize the IXI [ 10], HCP [ 20], and BraTS21 [ 1] datasets 
for the through-plane SR. Unlike HCP and BraTS21, which are aligned, we use 
Elastix [ 13] to register between Tar and Ref for the IXI dataset. It is important 
to note that Tar and Ref are paired during the training process. In general, 50 
subjects are randomly selected from each dataset, with 40 designated for train-
ing and 10 for testing. For the IXI and BraTS21 datasets, sagittal plane images 
are utilized as input. In contrast, for the HCP dataset, axial plane images, which
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Fig. 3. Qualitative comparison results of pseudo-vessel reconstruction on in-house 
dataset when the scaling factor is ×4. 

Fig. 4. Qualitative results of the ablation study on the loss combinations in ContentNet 
on the IXI dataset, which effectively decomposes high-quality structural information 
from HR Ref. First row: MUNIT (L1 + Perceptual + Adversarial) + LSGAN, Second 
row: MUNIT (L1 + Perceptual + Adversarial) + PatchGAN, and Third row: MUNIT 
(L1 + SSIM + Adversarial) + PatchGAN. ci HRT 1, (i = 1, 2, 3) indicates randomly 
selected content information decomposed from HR T1 on each condition. 

are perpendicular to the sagittal direction, are employed as input, as the data 
are originally acquired in the sagittal orientation. Each dataset has the following 
matrix sizes: IXI: 128×256, HCP: 320×320, BraTS21: 192×192. The modalities 
used as Tar and Ref in each dataset are shown in Table 1. In the pseudo-vessel 
reconstruction task, the model trained on the IXI dataset is evaluated using LR 
T2 from the in-house dataset, which has one subject with a slice thickness of 
4 mm. To validate clinical applicability, the pseudo-vessel is simulated to resem-
ble a quarter ellipse when viewed in the coronal plane, as illustrated in Fig. 3. 

Comparative Experiments. To evaluate the effectiveness of the proposed 
TESLA, we conduct a comparative analysis against one model-based single-
contrast SR method: LRTV [ 19] and three deep learning-based multi-contrast 
SR networks: MINet [ 6], MASA [ 17], MC-VarNet [ 14]. Note that these three 
approaches require HR Ref during testing. Furthermore, for the pseudo-vessel 
reconstruction, an additional HR T1 with a slice thickness of 1.0mm is acquired 
and utilized as HR Ref for testing the comparison models. Figure 2(a) demon-
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Table 3. Ablation study on the contribution of each stage and term. 

PR SE DC SSIM PSNR 
0.9318(0.01) 25.63(1.15) 
0.9521(0.01) 28.34(1.09) 
0.9532(0.01) 29.23(0.77) 

Fig. 5. Qualitative results of the ablation study analyzing the optimal HR Ref on 
the IXI dataset when the scaling factor is ×4. xenhan 

SRT 2 means the final output of the 
proposed network on each condition. ci SRT 2(i = 1, 2, 3) indicates randomly selected 
content information decomposed from SR T2 on each condition. xref denotes HD Ref. 

strates that, in the through-plane SR task, the proposed model most effectively 
recovers the intricate CSF structure in the upper region of SR T2 when the 
slice thickness of LR T2 on the IXI dataset is scaled by a factor of 4. While the 
compared SOTA models require upsampling in two axes due to their in-plane 
SR design, TESLA performs SR only along the through-plane axis, yet still 
achieves superior reconstruction of anatomical details along the z-axis. The yel-
low arrow in Fig. 2(b) highlights that only the proposed framework successfully 
reconstructs the hypo-intensity structure adjacent to the longitudinal cerebral 
fissure in LR T2 when the HCP dataset is scaled by a factor of 8. 

Figure 3 depicts the reconstruction outcomes of a pseudo-vessel simulated 
within LR T2 of an in-house dataset, acquired with a slice thickness of 4mm, 
presented in coronal and sagittal views. Especially, Fig. 3 demonstrates that 
TESLA outperforms other models in reconstructing both the pseudo-vessel and 
the intricate anatomical structures of the brain. To enhance clinical applicabil-
ity, we also conduct through-plane SR on the BraTS21 dataset at a scale of 
4. Table 2 displays quantitative metrics demonstrating that our method con-
sistently outperforms the alternatives on Structural Similarity Index Measure 
(SSIM) and Peak Signal-to-Noise Ratio (PSNR) in both the through-plane SR 
and pseudo-vessel reconstruction tasks. 

Ablation Study. We conduct three ablation studies: an assessment of the con-
tribution of each stage of the proposed framework, an evaluation of the loss
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combination in ContentNet that most effectively separates high-quality struc-
tural information from HR Ref, and an analysis of the optimal MR contrast to 
use as HR Ref for restoring the structural details of LR Tar in multi-contrast 
SR networks. As shown in Fig. 4, in contrast to the original MUNIT [ 11](first 
row in Fig. 4), where they utilize L1 and perceptual loss as the reconstruction 
loss with the adversarial loss, we effectively disentangle the structural informa-
tion of HR Tar by training the MUNIT generator with L1 and SSIM loss as 
the reconstruction loss. Additionally, we use PatchGAN as the discriminator, 
conditioned on edge images extracted from HR Tar using the Canny edge filter. 
The yellow box in Fig. 4 demonstrates that fine-tuning ContentNet under these 
specific conditions yields artifact-free reconstructions of T1 images that closely 
resemble the original. Table 3 demonstrates that the proposed model achieves 
the highest average score in both SSIM and PSNR metrics when incorporating 
PE, SE, and DC terms. Figure 5 demonstrates that xenhan 

SRT 2 exhibits the most 
dynamic structural features when T1 is used as HR Ref. 

4 Conclusion 

The proposed method effectively reconstructs the structural details of LR Tar 
by employing disentangled content information from HR Ref. This method 
improves the interpretability of network performance enhancements, in contrast 
to traditional models that solely extract features from HR Ref and utilize spe-
cific fusion techniques in a “black-box” scheme. In contrast to state-of-the-art 
methods, the proposed model does not require HR Ref during the test phase, 
which substantially benefits clinical practice by tackling the common challenge of 
absent modalities. Our approach demonstrates significant potential for enhanc-
ing through-plane SR capabilities while adequately meeting the clinical require-
ments in brain MRI. 
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