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Abstract
We propose a general dual convolutional neural network (DualCNN) for low-level vision problems, e.g., super-resolution,
edge-preserving filtering, deraining, and dehazing. These problems usually involve estimating two components of the target
signals: structures and details. Motivated by this, we design the proposed DualCNN to have two parallel branches, which
respectively recovers the structures and details in an end-to-end manner. The recovered structures and details can generate
desired signals according to the formation model for each particular application. The DualCNN is a flexible framework for
low-level vision tasks and can be easily incorporated into existing CNNs. Experimental results show that the DualCNN can
be effectively applied to numerous low-level vision tasks with favorable performance against the state-of-the-art methods that
have been specially designed for each individual task.
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1 Introduction

Stimulated by the success of deep learning for high-level
vision tasks (Krizhevsky et al. 2012; Girshick 2015; He et
al. 2016; Sun et al. 2014), numerous deep models have been
developed to tackle low-level vision tasks, e.g., image super-
resolution (Dong et al. 2014; Kim et al. 2016a; Dong et al.
2016a, b; Kim et al. 2016b; Liao et al. 2015), inpainting (Ren
et al. 2015; Liu et al. 2016), noise removal (Dong et al. 2015;
Jain and Seung 2008; Xie et al. 2012), image filtering (Xu
et al. 2015; Liu et al. 2016), image deraining (Eigen et al.
2013; Zhang et al. 2020), and dehazing (Ren et al. 2016; Cai
et al. 2016). Although achieving impressive performance,
the network architectures of these models strongly resemble
those developed for high-level classification tasks.

Recent methods for low-level vision tasks are mainly
based on plain neural networks (where the architecture is
a fully-connected feed-forward network without skip con-
nections) or deeper neural networks with residual learning.
As demonstrated in (Ren et al. 2015; Burger et al. 2012),
plain neural networks based on reconstruction errors do
not outperform the state-of-the-art statistical prior-based
approaches on a number of low-level vision problems, e.g.,
super-resolution (Timofte et al. 2014). Low-level vision
tasks usually involve the estimations of two components,
low-frequency structures and high-frequency details. It is
challenging for a single network to learn both compo-
nents simultaneously. Consequently, going deeper with plain
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(a) (b) (c)

(d) (e) (f)

(Dong et al. 2014)

Fig. 1 Super-resolution results by theVDSRmethod (Kim et al. 2016a)
(×4) with structures recovered by different methods, i.e., nearest neigh-
bor, bilinear, and bicubic upsampling. Residual learning algorithms
usually use upsampled images as the base structures and learn image
details (i.e., the difference between the upsampled and ground truth

images). However, residual learning is less effective in correcting low-
frequency errors in the structures, e.g., the structure obtained by the
nearest neighbor interpolation in (c). In contrast, our algorithm analyzes
low and high frequency components to learn both image structures and
details, and thus leads to better results

neural networks does not always lead to better perfor-
mance (Dong et al. 2016a).

Residual learning has been shown to be an effective
approach to achieve performance gain with a deeper neu-
ral network. The residual learning algorithms for low-level
vision tasks (e.g., Kim et al. 2016a) assume that the main
structure is given and mainly focus on estimating the resid-
ual (details) using a deep neural network. These methods
perform well on the premise that the main structures can
be properly recovered. Figure 1 shows the image super-
resolution results by the VDSR method (Kim et al. 2016a)
with structures recovered by different methods. The residual
network cannot deal with low-frequency errors contained in
the recovered structures (Fig. 1c).

To address this issue, we propose a dual convolutional
neural network (DualCNN) to jointly estimate the structures
and details. The DualCNN consists of two branches, one to
estimate the structures and the other to estimate the details.
The modular design of the DualCNN makes it a flexible
framework for a variety of low-level vision problems. When
trained end-to-end, DualCNNperforms favorably against the
state-of-the-art methods that are specially designed for each
individual task.

We first proposed the DualCNN framework in two
papers (Pan et al. 2018a; Yang et al. 2017), which have
inspired the following work, including image dehazing (Zhu
et al. 2018, 2021; Yang et al. 2019; Guo et al. 2019),

image deraining (Li et al. 2019), image denoising (Tian et
al. 2020), video super-resolution (Isobe et al. 2020), image
super-resolution/deblurring (Singh et al. 2020), and gen-
eral image restoration (Chen and Davies 2020), to name
a few. In this journal version, we extend our preliminary
work (Pan et al. 2018a; Yang et al. 2017) with the following
notable improvements. First, we develop an alternative way
to solve the proposed model and provide more analysis of
the proposed network designs. Second, we analyze that the
DualCNN model is not limited to the estimation of details
and structures, and can be generalized to the image restora-
tion problems (e.g., image dehazing, etc.) according to the
corresponding physics models. Third, we show that the pro-
posed DualCNN is a general framework that can be applied
to image denoising and non-blind image deconvolution. In
addition, we demonstrate that the proposed DualCNN can
accommodate existingCNNs for better performance. Finally,
we carry out more extensive experiments to demonstrate the
effectiveness of the proposed algorithm.

2 RelatedWork

Numerous deep learning methods have been developed for
low-level vision tasks. A comprehensive review is beyond
the scope of this work, and we discuss the most related ones
in this section.
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2.1 Super-Resolution

Significant progress has been made in super-resolution with
the advances of deep convolutional neural network (CNN)
models (Dong et al. 2014; Kim et al. 2016a, b; Shi et al.
2016; Ledig et al. 2017; Zhang et al. 2018b; Dong et al.
2016b; Haris et al. 2018; Zhang et al. 2018a; Bulat et al.
2018). The SRCNN method (Dong et al. 2014) uses a three-
layer CNN for super-resolution. As the SRCNN method is
less effective in recovering image details, Kim et al. (2016a)
propose a residual learning algorithm based on a deeper neu-
ral network, named as VDSR. The VDSR algorithm uses the
bicubic interpolation of the low-resolution input as the struc-
ture of the high-resolution image and estimates the residual
details using a 20-layer CNN. However, if the image struc-
tures are not well recovered, the generated results are likely
to contain substantial artifacts, as shown in Fig. 1.

Instead of using the interpolated results as the main image
structures, recent methods (Shi et al. 2016; Ledig et al. 2017;
Zhang et al. 2018b; Dong et al. 2016b; Haris et al. 2018;
Zhang et al. 2018a) directly estimate main high-resolution
contents from low-resolution images based on deep neural
networks. Different from thesemethods, we develop a frame-
work that simultaneously estimates structures and details for
image super-resolution.

2.2 Noise/Artifacts Removal

Numerous algorithms based on CNNs have been devel-
oped to remove noise/artifacts (Dong et al. 2015; Jain and
Seung 2008; Xie et al. 2012) and unwanted components,
e.g., dirty/rainy pixels (Eigen et al. 2013; Zhang et al. 2020).
These methods are based on plain neural networks (Eigen et
al. 2013), residual learning (Fu et al. 2017a; Zhang and Patel
2018b) or generative adversarial models (Zhang et al. 2020;
Qian et al. 2018). However, plain neural networks cannot
recover fine details (Kim et al. 2016a; He et al. 2016; Ren
et al. 2015) and residual learning cannot correct structural
errors as mentioned before. In contrast to existing methods,
we formulate this problem as estimations of structures and
details of clear images.

2.3 Edge-Preserving Filtering

Significant efforts have been made to approximate image fil-
ters using CNNs (Liu et al. 2016; Xu et al. 2015; Chen et
al. 2017; Fan et al. 2018a, b). In Xu et al. (2015) develop
an efficient CNN model to approximate a number of edge-
preserving filters. Liu et al. (2016) use a hybrid network
model to approximate a number of edge-preserving filters
with favorable performance in terms of model parameter and
run time. In Chen et al. (2017) develop a fully136 convolu-
tional network to approximate a number of image processing

operators. While these methods aim to preserve main image
structures and remove details using a single network, this
imposes a difficult learning task. In this work, we show that
it is critical to accurately estimate both structures and details
for low-level vision tasks.

2.4 Image Dehazing

Existing CNN-based methods for image dehazing (Ren et
al. 2016; Cai et al. 2016) mainly focus on estimating the
transmission map from an input. Given an estimated trans-
mission map, the atmospheric light can be computed using
the air light model. As such, errors in the transmission maps
are propagated to the light estimation process. In contrast,
recent algorithms directly estimate clear images from hazy
images using a single deep neural network (Li et al. 2017;
Zhang and Patel 2018a; Li et al. 2018). However, it is difficult
to analyze the components of these methods that facilitate
the dehazing task. To generate more realistic and accurate
results, it is necessary to jointly estimate the transmission
map and atmospheric light in one model, which the Dual-
CNN is designed for.

A common theme is that we need to design a network
based on the corresponding formation models for every low-
level vision task. In this paper, we show that most low-level
visionproblemsusually involve the estimationof twocompo-
nents: structures and details. Thus we develop the DualCNN
that can be flexibly applied to a variety of low-level vision
problems, including the four tasks discussed above.

3 Proposed Approach

As shown in Fig. 2, the proposed dual model consists of two
branches, Net-S and Net-D, which respectively estimate the
structure and detail components of the target signals from
the input. We use super-resolution for illustration. Given a
low-resolution image, we first use the bicubic upsampled
image as the input. The dual network then learns details and
structures according to the formulation model of the image
decomposition.

Let X , S, and D denote the ground truth label, output
of Net-S, and output of Net-D, respectively. The dual com-
position loss function enforces the recovered structure S and
detail D can generate the ground truth label X using the given
formation model:

Lx (S, D) = 1

2
‖φ(S) + ϕ(D) − X‖22, (1)

where the forms of the functions φ(·) and ϕ(·) are known and
depend on the domain knowledge of each task. For example,
the functions φ(·) and ϕ(·) are identity functions for image
decomposition problems (e.g., filtering) and restoration prob-
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Fig. 2 Proposed DualCNN model. It contains two branches, Net-D and Net-S, and a formulation module. The DualCNN first estimates structures
and details and then reconstructs the final results according to the formulation module. The whole network is end-to-end trainable

lems (e.g., super-resolution, denoising, and deraining). We
will show that φ(·) and ϕ(·) can take general forms to deal
with specific problems.

3.1 Regularization of the DualCNNModel

The proposed DualCNN model consists of two branches,
which may cause instability if only the composition loss (1)
is used. For example, if Net-S andNet-D have the same struc-
ture, symmetrical solutions exist. To obtain a stable solution,
we use individual loss functions to regularize two branches
respectively. The loss functions for the Net-S and Net-D are:

Ls(S) = 1

2
‖S − Sgt‖22, (2)

Ld(D) = 1

2
‖D − Dgt‖22, (3)

where Sgt and Dgt are ground truths corresponding to the
outputs of Net-S and Net-D. Consequently, the overall loss
function to train DualCNN is:

L = αLx + λLs + γLd , (4)

where α, λ and γ are non-negative trade-off weights. Our
framework can also use other loss functions, e.g., perceptual
loss for style transfer.

In the training stage, the gradients for Net-S and Net-D
can be obtained by:

∂L
∂S

= αφ′(S)E + λ(S − Sgt ), (5a)

∂L
∂D

= αϕ′(D)E + γ (D − Dgt ), (5b)

where E = φ(S) + ϕ(D) − X , φ′(S) and ϕ′(D) are the
derivatives with respect to S and D.

In the test stage, we compute the high-quality output Xest

using the outputs of Net-S and Net-D according to the for-
mation model,

Xest = φ(S) + ϕ(D). (6)

3.2 Beyond Details and Structures Learning

Aside from image decomposition and restoration prob-
lems, the proposed model can handle other low-level vision
problems by modifying the composition loss function (1)
according to the corresponding formation models.

3.2.1 Image Dehazing

The image dehazing model can be described using the air
light model,

I = XD + S(1 − D), (7)

where I is the hazy image, S is the atmospheric light, and D
is themedium transmissionmap, which describes the portion
of the light that reaches the camera from scene surfaces. For
consistency, we still use X as the clear image in (7). With
the formulation model (7), we can set φ(S) = S(1− D) and
ϕ(D) = XD in (1) within the DualCNN framework.1 As a
result, the composition loss function (1) for image dehazing
becomes

Lx (S, D) = 1

2
‖XD + S(1 − D) − I‖22. (8)

The other two loss functions (2) and (3) remain the same. In
the training phase, we use the same method (Ren et al. 2016)
to generate the atmospheric light S, the transmission map

1 As an extension of the details and structures learning, we do not
assume that φ(·) is independent of ϕ(·).
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D and construct hazy/haze-free image pairs. The implemen-
tation details of the training stage are presented in Sect. 4.7.

In the test phase, the clear image Xest can be reconstructed
by the outputs of Net-D and Net-S, i.e.,

Xest = I − S

max{D, d0} + S, (9)

where d0 is used to prevent division by zero and a typical
value is 0.1.

From image dehazing,we note that the formationmodel of
image dehazing actually constrains the DualCNN to ensure
that it is able to estimate the key components for image dehaz-
ing. This indicates that we can use other formation models
to constrain the DualCNN model to solve specific problems.

4 Experimental Results

We evaluate the DualCNNmodel on several low-level vision
tasks including super-resolution, edge-preserving smooth-
ing, deraining, and dehazing. More experimental results and
findings can be found in the supplementary material. The
source code and trainedmodels are available at https://github.
com/jspan/dualcnn.

4.1 Network Architectures

Motivated by the success of SRCNN and VDSR for super-
resolution, we use three convolution layers followed by the
ReLU function for the Net-S module. The filter sizes of each
layer are 9× 9, 1× 1, and 5× 5, respectively. The numbers
of each layer are 64, 32, and 1, respectively. For the Net-D
module, we use 20 convolution layers followed by the ReLU
function. The filter size of each layer is 3 × 3, and the filter
number in each layer is 64. The batch size is set to be 64 and
the learning rate is 10−4. Although each branch of the pro-
posedmodel is similar toSRCNNorVDSR, both our analysis
and experimental results show that the proposedmodel is sig-
nificantly different from these methods and achieves better
results.

4.2 Image Super-resolution

4.2.1 Training Data

For image super-resolution, we generate the training data by
randomly sampling 250,000 patches with the size of 41×41
pixels from291 natural images in theBSDS500 dataset (Mar-
tin et al. 2001). We apply the Gaussian filter to each ground
truth label X to obtain Sgt . The ground truth Dgt is the dif-
ference between the ground truth label X and the structure
Sgt .

For super-resolution, we set φ(S) = S and ϕ(D) = D.
The weights α, λ and γ in the loss function (4) are set to
be 1, 0.001 and 0.01, respectively. To achieve better results,
we use the pre-trained models of SRCNN and VDSR as the
initializations of Net-S and Net-D.

We present quantitative and qualitative comparisons
against the state-of-the-art methods including A+ (Timofte
et al. 2014), SelfEx (Huang et al. 2015), SRCNN (Dong et al.
2014), ESPCN (Shi et al. 2016), SRGAN (Ledig et al. 2017),
and VDSR (Kim et al. 2016a). Table 1 shows quantitative
evaluations on benchmark datasets. Overall, the proposed
method performs favorably against state-of-the-art methods.
The architecture of one branch in the DualCNN is either
similar to SRCNN or VDSR. However, the results generated
by the DualCNN have the highest average PSNR values,
which demonstrate the effectiveness of the proposed dual
model.

We note that Lai et al. (2019) propose an effective net-
work that progressively restores the sub-band residuals of
high-resolution images based on an image pyramid. Due to
the pyramid structure, this method generates better results
than the residual learning method (Kim et al. 2016a). In con-
trast, the proposedmethod develops two branches to estimate
structures and details separately, which does not require the
progressive restoration step and thus generates comparable
results as shown in Table 1.

To better understand the sources of performance gains
with respect to the VDSR method (Kim et al. 2016a), we
improve the VDSR method by adding more convolutional
layers to enlarge its model capacity so that it has similar
model parameters to that of the proposed method (VDSR-M
for short in Table 1). Table 1 shows that the proposed method
still generates better results than VDSR-M even though the
model parameter is fewer.

Figure 3 shows some super-resolution results by the eval-
uated methods. The proposed algorithm can better preserve
the main structures than state-of-the-art methods.

We note that the aforementioned method needs to gener-
ate image details and structures to train DualCNN. However,
separating image details and structures from clean images is
challenging in most cases. To avoid this complex step, we
adopt an alternative DualCNN-S model. We use Sgt as the
ground truth label X . As the Net-S module is less effective
to estimate details, we use the Net-D module to estimate the
errors between the output of Net-S and ground truth label X .
Table 1 shows that the DualCNN-S model achieves competi-
tive performance against the DualCNN model. Note that the
Net-D in DualCNN-S is used to learn the difference between
the predicted results of Net-S and ground truths. In addition,
given that the details are obtained by the difference (i.e., the
residual) between the ground truth label X and structure Sgt ,
we refer to the difference learned by the Net-D in DualCNN-
S as the pseudo detail. Table 2 summarizes the definitions of
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Table 1 Quantitative evaluations for the state-of-the-art super-
resolution methods on the benchmark datasets (Set5, Set14, B100,
Urban100, and Manga109) in terms of PSNR and SSIM. “VDSR-M”

denotes the improved VDSR method (Kim et al. 2016a) by using the
similar model parameters to the proposed method

Algorithms Scale Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.68/0.9303 30.33/0.8694 29.51/0.8425 26.86/0.8398 30.76/0.9344

A+ ×2 36.58/0.9546 32.44/0.9060 30.67/0.8706 29.22/0.8935 35.29/0.9669

SelfEx ×2 36.60/0.9547 32.48/0.9060 31.14/0.8853 29.55/0.8980 35.82/0.9690

SRCNN ×2 36.36/0.9523 32.35/0.9045 31.09/0.8841 29.10/0.8893 34.96/0.9644

ESPCN ×2 36.73/0.9547 32.40/0.9056 31.45/0.9032 29.24/0.8920 35.01/0.9652

VDSR ×2 37.55/0.9588 33.21/0.9130 31.85/0.8954 30.76/0.9137 37.32/0.9731

SRGAN ×2 37.01/0.9548 32.69/0.9049 31.41/0.8892 29.44/0.8745 35.21/0.9662

LapSRN ×2 37.53/0.9591 33.15/0.9127 31.74/0.8942 30.40/0.9096 37.22/0.9739

VDSR-M ×2 37.54/0.9584 33.06/0.9126 31.87/0.8953 30.70/0.9131 37.35/0.9732

DualCNN ×2 37.73/0.9589 33.30/0.9131 31.92/0.8957 30.99/0.9157 37.61/0.9733

DualCNN-S ×2 37.73/0.9589 33.31/0.9132 31.93/0.8959 31.01/0.9158 37.61/0.9735

Bicubic ×3 30.42/0.8691 27.64/0.7753 27.17/0.7378 24.44/0.7344 26.91/0.8558

A+ ×3 32.66/0.9094 29.26/0.8201 28.15/0.7767 26.03/0.7972 29.88/0.9100

SelfEx ×3 32.67/0.9106 29.34/0.8227 28.26/0.7838 26.45/0.8100 27.57/0.8210

SRCNN ×3 32.46/0.9039 29.16/0.8165 28.18/0.7795 25.87/0.7882 29.79/0.9032

ESPCN ×3 33.07/0.9134 29.54/0.8251 28.28/0.8052 25.92/0.7897 29.81/0.9033

VDSR ×3 33.70/0.9218 29.91/0.8326 28.79/0.7972 27.13/0.8275 32.15/0.9336

SRGAN ×3 33.54/0.9170 29.54/0.8227 28.68/0.8163 26.62/0.8159 29.98/0.9120

LapSRN ×3 33.85/0.9230 29.92/0.8327 28.78/0.7964 27.05/0.8266 32.17/0.9342

VDSR-M ×3 33.71/0.9225 29.88/0.8331 28.79/0.7972 27.13/0.8280 32.15/0.9336

DualCNN ×3 33.90/0.9233 29.96/0.8334 28.82/0.7975 27.24/0.8296 32.22/0.9344

DualCNN-S ×3 33.90/0.9234 29.96/0.8334 28.82/0.7976 27.23/0.8295 32.19/0.9342

Bicubic ×4 28.44/0.8114 26.10/0.7044 25.93/0.6670 23.13/0.6574 24.87/0.7868

A+ ×4 30.35/0.8623 27.43/0.7514 26.74/0.7046 24.33/0.7186 27.00/0.8482

SelfEx ×4 30.36/0.8635 27.54/0.7550 26.81/0.7106 24.83/0.7400 27.83/0.8660

SRCNN ×4 30.15/0.8551 27.33/0.7441 26.69/0.7018 24.15/0.7057 26.88/0.8380

ESPCN ×4 30.27/0.8540 27.17/0.7401 26.68/0.7218 24.15/0.7031 26.89/0.8382

VDSR ×4 31.35/0.8838 28.06/0.7685 27.20/0.7236 25.14/0.7523 28.91/0.8859

SRGAN ×4 31.35/0.8797 27.84/0.7588 26.92/0.7426 24.38/0.7301 28.13/0.8636

LapSRN ×4 31.57/0.8870 28.20/0.7707 27.29/0.7256 25.20/0.7547 29.07/0.8890

VDSR-M ×4 31.38/0.8843 28.06/0.7687 27.21/0.7242 25.15/0.7528 28.87/0.8859

DualCNN ×4 31.55/0.8858 28.17/0.7699 27.26/0.7247 25.25/0.7546 29.01/0.8873

DualCNN-S ×4 31.55/0.8858 28.16/0.7697 27.26/0.7248 25.25/0.7545 29.00/0.8870

The results of the best performance are denoted in bold

φ(·) and ϕ(·) in the DualCNN and DualCNN-S for different
tasks.

4.2.2 Run Time andModel Parameter

We evaluate the run time and model parameter of the com-
pared methods on a machine with an Intel Core i7-7700 CPU
and an NVIDIA GTX 1080Ti GPU. Table 3 shows that the
run time of the DualCNNmodel is comparable to VDSR and
VDSR-M, but the proposed model achieves better results

on the super-resolution benchmark datasets than VDSR and
VDSR-M.

In addition, the proposed method has relatively fewer
model parameters but with favorable performance than the
LapSRN method (Lai et al. 2019), which demonstrates that
the major performance is mainly due to the use of the Dual-
CNN model instead of using large capacity models.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Super-resolution (×2) results. While state-of-the-art methods do not preserve the main structures of the images, the proposed method is able
to upsample this image well

Table 2 We summarize how φ(S) and ϕ(D) are used for different vision tasks, where S and D denote the outputs of the Net-S and Net-D

DualCNN DualCNN-S

φ(S) ϕ(D) φ(S) ϕ(D)

Super-resolution

Denoising

Non-blind Image Deconvolution S: structure D: detail S: pseudo structure D: pseudo detail

Edge-preserving Filtering

Deraining

Dehazing S(1 − D) XD – –

S: atmospheric light X : clear image

D: transmission map D: transmission map

Table 3 Average run time (seconds) and model parameter of the evaluated methods on image super-resolution (×4) using the Set5 test dataset

Methods SRCNN VDSR VDSR-M SRGAN LapSRN EDSR RDN DBPN DualCNN
(SRCNN+VDSR)

Average run time 0.0011 0.0045 0.0051 0.0120 0.0456 0.0190 0.0488 0.0235 0.0057

Model parameter 0.01M 0.66M 0.70M 1.55M 0.87M 43.09M 5.58M 10.43M 0.67M
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4.3 Image Denoising

As image denoising methods are typically evaluated quan-
titatively with synthetically generated images, we generate
noisy images from clear ones with additive noise for exper-
iments. Similar to Zhang et al. (2017c), we use the training
dataset from the BSDS dataset (Martin et al. 2001) to gener-
ate the training data.

In the training stage, we first generate the noisy images
using three noise levels by setting the standard deviation of
the Gaussian function to be 15, 25, and 50, respectively. Then
we train three models based on the three noise level settings,
respectively. In addition,we randomly add theGaussiannoise
to each image, where the noise level ranges from 0 to 10%
and train the proposed model on this training dataset with the
mixed noise levels.

In the test stage, we use the test dataset with 200 clear
images by Martin et al. (2001) to evaluate the proposed
method. Similar to Zhang et al. (2017b), we use three noise
levels by setting the standard deviation of the Gaussian func-
tion to be 15, 25, and 50, respectively. In addition, we add
the noise with different noise levels to each test image, where
the test images and training images do not overlap.

We quantitatively and qualitatively evaluate the proposed
DualCNNmodel against the state-of-the-art denoising meth-
ods based on statistical priors (BM3D (Dabov et al. 2007),
EPLL (Zoran and Weiss 2011), CSF (Schmidt and Roth
2014)) and deep neural networks (MLP (Burger et al. 2012),
DNCNN (Zhang et al. 2017b), IRCNN (Zhang et al. 2017c)).
Table 4 summarizes the denoising results on the BSDS test
dataset. Although the proposed method is not designed for
image denoising, it is able to remove noise and generates
high-quality images compared to the state-of-the-art denois-
ing methods.

In addition, we add the random noise with the noise levels
of 0 to 10% to each test image and evaluate the proposed
model trained on the images with mixed noise levels. The
results in Table 4 (i.e., mixed) demonstrate that the proposed
method performswell on the images withmixed noise levels.

Figure 4 shows denoised results from the evaluated meth-
ods.While state-of-the-art methods do not effectively restore
the structural details, the proposed algorithm can accurately
estimate both clear details and structures from the input
image and generates a better-denoised image. We note that
the Net-D module is able to separate image noise (Fig. 4f)
from main structures (Fig. 4e) of the input.

4.4 Non-blind Image Deconvolution

Weapply theDualCNNmodel to imagedeconvolution (Levin
et al. 2007; Zhang et al. 2017c, a; Dong et al. 2021) using the
same training dataset as Zhang et al. (2017a). For this task,
we first use the inverse filter which is implemented by the fast Ta
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 Image denoising results. In contrast to the deep end-to-end trainable networks-based methods, the proposed DualCNNmodel simultaneously
estimates structures and details according to the dual composition model. The denoised image in (h) contains fine details

Table 5 Quantitative evaluations on non-blind image deconvolution using the datasets (Levin et al. (2009) and Martin et al. (2001)) in terms of
PSNR and SSIM

Methods Blurred
images

HL (Krishnan and
Fergus 2009)

CSF (Schmidt
and Roth 2014)

FCNN(Zhang
et al. 2017a)

IRCNN (Zhang
et al. 2017c)

VDSR-M DualCNN-S

Dataset (Levin
et al. 2009)

22.81/0.6895 28.43/0.8868 28.68/0.8826 24.29/0.7177 28.64/0.9026 28.39/0.8615 29.20/0.8912

Dataset (Martin
et al. 2001)

22.19/0.5495 31.65/0.9034 31.65/0.9034 23.48/0.7683 32.71/0.9200 32.02/0.9018 32.21/0.9200

The results of the best performance are denoted in bold

Fourier transformation algorithm (Levin et al. 2007) to gen-
erate intermediate latent images and feed them as the inputs
of the DualCNN model. Other settings are the same as those
for image denoising.

We quantitatively evaluate the DualCNN model on the
image deblurring dataset by Levin et al. (2009). We use the
blind deblurring algorithm (Pan et al. 2018b) to generate blur
kernels for test and then apply our DualCNNmodel to deblur
images. The results in Table 5 demonstrate that the proposed
DualCNN model generates competitive results against the
state-of-the-art deep learning based methods (Zhang et al.
2017c, a).

4.5 Edge-Preserving Filtering

Similar to the methods in Liu et al. (2016) and Xu et al.
(2015), we apply the DualCNN to learn edge preserving
imagefilters including L0 smoothing (Xuet al. 2011), relative
total variation (RTV) (Xu et al. 2012), and weighted median
filter (WMF) (Zhang et al. 2014). We generate the training
data by randomly sampling 1 million patches (clear/filtered
pairs) from 200 natural images in Martin et al. (2001). Each

image patch is of 64 × 64 pixels, and other settings of gen-
erating training data are the same as those used in Xu et al.
(2015).

We evaluate the proposed DualCNN model against meth-
ods (Liu et al. 2016; Xu et al. 2015) using the dataset fromXu
et al. (2015). Table 6 summarizes the PSNRvalues of all eval-
uated methods. As Xu et al. (2015) use image gradients to
train their model and the filtered results are reconstructed by
solving a constrained optimization problem, it performs bet-
ter for approximating L0 smoothing. However, our method
does not need additional steps and generates high quality
filtered images with significant improvements over the state-
of-the-art deep learning based methods, particularly on RTV
and WMF.

We note that the architecture of Net-D is similar to that of
VDSR. As such, we retrain the network of VDSR for these
problems. The results in Table 6 show that only using resid-
ual learning does not always generate high-quality filtered
images.

Figure 6 shows the filtering results of the approximating
RTV (Xu et al. 2012). The state-of-the-art methods (Liu et
al. 2016; Xu et al. 2015) fail to smooth the structures (e.g.,
the eyes in the green boxes) that are supposed to be removed
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Non-blind image deconvolution results. The proposed DualCNN model generates the deblurred image with few artifacts and fine details

Table 6 PSNR values for
learning various image filters on
the test dataset (Xu et al. 2014)

Xu et al. (2015) Liu et al. (2016) VDSR (Kim et al. 2016a) Net-S DualCNN-S

L0 32.8 30.9 31.5 28.0 31.4

WMF 31.4 34.0 38.5 29.2 39.1

RTV 32.1 37.1 41.6 32.0 42.1

The results of the best performance are denoted in bold

(a) (b) (d)(c) (e) (f)

Fig. 6 Images generated by the learning-based relative total variation
(RTV) filters. Existing deep learning based methods are not able to
remove the details and structures that are supposed to be removed [the

boxes in (a, b)]. c, dOutputs of the two branches of the proposedmodel.
f Result by the original implementation of RTV. Better enlarge and view
on a screen

using theRTVfilter (Fig. 6f). In addition, the resultswith only
one branch (i.e., Net-S) have lower PSNR values (Table 6)
and some remaining tiny structures (Fig. 6d). In contrast, the
proposed method with joint learning of structures and details
preserves more accurate results, and the filtered images are
significantly closer to the ground truth.

We further evaluate the run time of the proposed algorithm
against state-of-the-art methods. Table 7 shows that the pro-
posed algorithm is much more efficient than state-of-the-art
methods.

4.6 Image Deraining

The goal of deraining is to recover clear contents from rainy
images. This process can be regarded as recovering details
(rainy streaks) and structures (clear images) from inputs.

To train the proposed DualCNN for image deraining, we
generate the training data by randomly sampling 1 million
patches (rainy/clear pairs) from the rainy image dataset used
in Zhang et al. (2020). The size of each image patch used
in the training stage is 64 × 64 pixels. We use the test
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Table 7 Average run time (seconds) for learning various image filters on the images with size of 1920 × 1080 pixels

Original implementation Xu et al. (2015) Liu et al. (2016) VDSR
(Kim et al. 2016a)

DualCNN-S

L0 8.4478

WMF 2.7079 5.3996 0.9514 0.0162 0.0198

RTV 9.1364

Table 8 Quantitative evaluations using the synthetic rainy dataset (Zhang et al. 2020) in terms of PSNR, SSIM, and model parameter

Methods SPM (Kang
et al. 2012)

PRM (Chen and
Hsu 2013)

CNN(Fu et al.
2017a)

GMM (Li et
al. 2016)

ID-CGAN
(Zhang et al.
2020)

DID-MDN
(Zhang and
Patel 2018b)

Net-S DualCNN-S

Avg. PSNR 18.88 20.46 19.12 22.27 22.73 21.26 22.75 24.60

Avg. SSIM 0.5832 0.7297 0.6013 0.7413 0.8133 0.7632 0.7781 0.8190

Model parameter – – 0.75M – 1.82M 0.56M 0.01M 0.67M

The results of the best performance are denoted in bold

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Image deraining results. The proposed method is able to remove rainy streaks from the input image

dataset (Zhang et al. 2020) for evaluation where the test
images and training images do not overlap.

The evaluated state-of-the-art methods are based on sta-
tistical priors (SPM (Kang et al. 2012), PRM (Chen and Hsu
2013), GMM (Li et al. 2016)) and deep neural networks
(i.e., CNN (Fu et al. 2017a) , ID-CGAN (Zhang et al. 2020),
DID-MDN(Zhang andPatel 2018b)). Table 8 shows the aver-

agePSNRvalues of restored images on the test dataset (Zhang
et al. 2020). Overall, the proposed method generates the
results with the highest PSNR and SSIM values.

Figure 7 shows derained results by the evaluated meth-
ods. The proposed algorithm is able to estimate two key
components (i.e., ϕ(D) and φ(S) in Fig. 7f, g) to better facil-
itate image deraining. We note that the two estimated key
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Image deraining results on real examples by deep learning-based methods. The proposed method is able to remove rainy streaks from the
input image and generates clearer images with fine details

components (i.e., ϕ(D) and φ(S) in Fig. 7f, g) do not exactly
correspond to the image details and structures. This is mainly
because the Net-D in the proposed DualCNN-S model is not
required to estimate the details of the clear images. It is used
to estimate the errors between the output of the Net-S and
ground truth clear images. Thus, the learned errors by the
Net-Dwith the output of the Net-S can facilitate better image
restoration.

Figure 8 shows the derained results of the evaluated meth-
ods on a real image. We note that the algorithm in Fu et
al. (2017b) removes rain streaks by a deep detail network.
However, this method depends on whether the image decom-
positionmethod is able to extract details or not. The results in
Fig. 8c demonstrate the algorithm by Fu et al. (2017b) is less
effective in removing rain streaks in the real image. In con-
trast, our method generates much clearer images compared
to state-of-the-art algorithms.

4.7 Image Dehazing

Asdiscussed in Sect. 3.2, the proposedmethod can be applied
to the image dehazing. Similar to the method in Ren et
al. (2016), we synthesize the hazy image dataset using the
NYU depth dataset (Silberman et al. 2012) and Make3D
dataset (Saxena et al. 2009) and generate the training data

including hazy/clear pairs (I /J ), atmospheric light (S), and
transmission map (D). The size of each image patch used in
the training stage is 64×64 pixels. Theweightsα,λ and γ are
set to be 0.1, 0.9, and 0.9, respectively. In the test stage, we
randomly choose 64 hazy images from the synthetic dataset
for evaluations, where the test images and the training images
do not overlap.

We quantitatively evaluate our method on the above syn-
thetic hazy test images. As summarized in Table 9, the
proposedmethod performs favorably against the state-of-the-
art methods for image dehazing.

Figure 9 shows dehazed results from the test dataset. The
proposed DualCNN model is able to remove haze and gen-
erate better dehazed results.

The dehazed results on real images in Fig. 10 show that the
proposedmethod can recover the atmospheric light (Fig. 10e)
and transmission map (Fig. 10f) well, thereby facilitating to
recover the clear image (Fig. 10g).

5 Analysis and Discussion

In this section, we analyze the DualCNNmodel and compare
it with the most related methods.
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Table 9 Quantitative evaluations using the proposed synthetic hazy test images in terms of PSNR, SSIM, and model parameter

Methods DCP (He et
al. 2009)

Meng et al.
(Meng et al.
2013)

NLP
(Berman
et al. 2016)

DehazeNet
(Cai et al.
2016)

MSCNN
(Ren et al.
2016)

PDN (Zhang
and Patel
2018a)

PhysicsGAN
(Pan et al.
2021)

DualCNN

Avg. PSNR 21.52 16.62 15.91 19.22 19.99 27.18 31.94 27.28

Avg. SSIM 0.9149 0.8805 0.8196 0.8368 0.9102 0.8703 0.9369 0.9526

Model parameter – – – 0.01M 0.01M 69.66M 16.91M 0.67M

The results of the best performance are denoted in bold

Fig. 9 Image dehazing results on a synthetic image. Constrained by the formulation model of image dehazing, the proposed DualCNN model
simultaneously estimates atmosphere light and transmission maps and thus performs comparably to the state-of-the-art methods

5.1 Effect of the DualCNN Architecture

Lin et al. (2015) develop a bilinear model to extract com-
plementary features for fine-grained visual recognition. In
contrast, the proposed DualCNN is motivated by decompos-
ing signals into structures and details. More importantly, the
formulation of the proposed model facilitates incorporating
the domain knowledge of each individual application. Thus,
the DualCNN model can be effectively applied to numer-
ous low-level vision problems, e.g., super-resolution, image
filtering, deraining, and dehazing.

Numerous deep learning methods have been developed
based on a single branch for low-level vision problems, e.g.,
SRCNN (Dong et al. 2014) and VDSR (Kim et al. 2016a).

One natural question is why deeper architectures do not nec-
essarily lead to better performance. In principle, a sufficiently
deep neural network has sufficient capacity to solve any prob-
lem given enough training data. However, it is difficult to
learn very deep CNNmodels for these problemswhile ensur-
ing high efficiency and simplicity.

For experimental validation, we use the SRCNN and a
deeper model, i.e., VDSR, for image filtering and derain-
ing. The experimental settings are discussed the same as
discussed in Sect. 4.

Sample results using the VDSR model are shown in
Fig. 11. While the residual learning (i.e., VDSR) approach
performs better than the SRCNN, the generated images with
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Fig. 10 Image dehazing results on a real image. Constrained by the formation model of image dehazing, the proposed algorithm simultaneously
estimates the atmosphere light in (e) and transmission map in (f) and thus performs comparably to the state-of-the-art methods

Fig. 11 Effectiveness of the proposed DualCNN model. c–f Compar-
isons between existing CNNs (including plain net and ResNet) and
the proposed net in edge-preserving filtering and image deraining. The

plain net (i.e., c), ResNet and its deeper version (i.e., d, e) generate
results with significant artifacts. Quantitative evaluations are included
in Table 12

Table 10 Quantitative evaluations of different network architectures on
the image super-resolution (×2) datasets in terms of PSNR, SSIM, and
model parameter. The “Cascade-feature-input” denotes that the inter-
mediate output of the network is {input image, output features of the

Net-S, and output image of the Net-S}. Although usingmore features in
“Cascade-feature-input” leads to the performance improvement com-
pared to “Cascade”, it leads to a larger deep model. Moreover, it does
not perform well compared to the proposed method

Different nets Set5 Set14 B100 Urban100 Manga109 Model parameter

Cascade 37.51/0.9581 33.13/0.9123 31.82/0.8946 30.75/0.9130 37.27/0.9731 0.67M

Cascade-feature-input 37.73/0.9589 33.25/0.9129 31.91/0.8954 31.01/0.9161 37.55/0.9732 0.85M

DualCNN-S 37.73/0.9589 33.31/0.9132 31.93/0.8959 31.01/0.9158 37.61/0.9735 0.67M
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Fig. 12 An alternative cascaded architecture that estimates the structure and details sequentially

Table 11 Quantitative evaluations of single branch networks on the
image super-resolution (×2) datasets in terms of PSNR and SSIM. The
“SRCNN-Split” denotes the single branch using the SRCNN network

and “VDSR-Split” denotes the single branch using the VDSR network.
The “DualCNN w/all GTs” denotes that each branch in the proposed
DualCNN model uses GT images as the constraint

Different nets Set5 Set14 B100 Urban100 Manga109

SRCNN-Split 36.58/0.9528 32.47/0.9051 31.24/0.8859 29.26/0.8910 35.34/0.9649

VDSR-Split 37.68/0.9585 33.22/0.9126 31.88/0.8947 30.88/0.9147 37.33/0.9729

DualCNN w/all GTs 37.65/0.9588 33.25/0.9131 31.90/0.8956 30.92/0.9149 37.47/0.9731

DualCNN-S 37.73/0.9589 33.31/0.9132 31.93/0.8959 31.01/0.9158 37.61/0.9735

The results of the best performance are denoted in bold

the plain CNN model (Dong et al. 2014) contain blurry
boundaries or rainy streaks (Fig. 11d).

Although the proposed DualCNN consists of two
branches, an alternative is to combine the Net-S and Net-
D in a cascaded manner as shown in Fig. 12. In this cascaded
model, the first stage estimates the main structure while the
second stage estimates details. This network architecture is
similar to that of the ResNet (He et al. 2016). However, this
cascaded architecture does not generate high-quality results
compared to the proposed DualCNN (Fig. 11e and Table 12).

We note that the network based on the cascaded archi-
tecture outputs an image in the intermediate layer (Fig. 12).
We further evaluate the network based on a cascaded archi-
tecture, where the outputs of the intermediate layer are the
feature maps. To this end, we set the number of features in
the intermediate convolutional layer to be 64. In addition, we
concatenate the input image and the output image of the Net-
S and use the concatenated result as the input of the Net-D
(“Cascade-feature-input” for short in Table 10). We train this
baseline using the same settings as the proposed method and
evaluate it on image super-resolution. Because the outputs
of the intermediate layer are features, we cannot constrain
the intermediate features using (2) as in the cascaded model
(i.e., “Cascade” in Table 10). Compared to the “Cascade”
model, the “Cascade-feature-input” uses additional features
and its model parameter is more than that of the “Cascaded”
model. Thus, the “Cascade-feature-input” model generates
better results as shown in Table 10. However, the perfor-
mance gains by the “Cascade-feature-input” model are likely
due to the use of a larger capacity networkmodel. In contrast,
the proposed model generates better results compared to the
“Cascade-feature-input” even though themodel parameter of
the proposed method is fewer than that of “Cascade-feature-
input” as shown in Table 10.

We clarify why the proposed network design performs
better than the cascaded network designs as follows. For the
proposed DualCNN model, the output of Net-D and ground
truth images will affect the parameter updating process of
Net-S. However, for the cascaded architecture, the parameter
updating process of Net-S is not only affected by the output
of Net-D and ground truth images but also the intermediate
network parameters of Net-D. Thus, the back-propagation
process of the cascaded architecture is much longer than
that of the DualCNN model. This leads to a more complex
optimization process, where small errors in the intermediate
layers may significantly affect the final estimation.

5.2 Difference from the Single Branch Network
with Two Outputs

As the proposed DualCNN involves two branches to esti-
mate key components for image restoration, it may not be
clear whether the proposed model is a special case of the
single branch networkwith two outputs. To answer this ques-
tion, we compare the proposedmethodwith the single branch
network with two outputs on the image super-resolution task
using the same experimental settings as the proposedmethod.
Specifically, the single branch splits the output as the struc-
tures anddetails andgenerates thefinal output using the struc-
tures and details. Table 11 shows the quantitative evaluations
on the image super-resolution task, where “SRCNN-Split”
denotes the single branch using the SRCNN network and
“VDSR-Split” denotes the single branch using the VDSR
network. Table 11 shows that using a single branch by split-
ting it into two branches according to channel dimension
does not generate good results. As the details usually corre-
spond to the high-frequency information while the structures
correspond to the low-frequency information, it is necessary
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Table 12 Quantitative evaluations of different network architectures on
the image filtering (Xu et al. 2015) and deraining (Zhang et al. 2020)
datasets in terms of PSNR

Different nets SRCNN VDSR Cascade DualCNN-S

Filtering 32.0 41.6 42.0 42.1

Deraining 22.3 23.9 23.5 24.1

The results of the best performance are denoted in bold

Table 13 Quantitative evaluations of the proposed dual composition
loss function on the proposed image dehazing test dataset in terms of
PSNR and SSIM

(λ/α, γ /α) (0, 0) (1, 0) (0, 1) (9, 9)

Avg. PSNR 24.66 26.65 27.12 27.28

Avg. SSIM 0.8979 0.9265 0.9512 0.9526

The results of the best performance are denoted in bold

to use different branches to jointly estimate them for image
super-resolution and related low-level vision problems.Thus,
the proposed DualCNN model is not a special case of one
branch network with two outputs and generates better super-
resolution results.

In addition, as the commonly used single branch networks,
e.g., SRCNN, VDSR, usually adopt ground truth images to
constrain the network training, we further evaluate the pro-
posed DualCNN model when the Net-S and the Net-D are
both constrained by the ground truth images. Table 11 shows
that using GT images to regularize both the Net-S and Net-
D does not generate better results. This can be attributed to
that if the two branches are both constrained by the ground
truth images, the image details may not be learned well thus
affecting the final image restoration.

5.3 Effect of the Loss Functions in DualCNN

We evaluate the effect of different loss functions on image
dehazing. Table 13 shows that adding two regularization
losses Ls in (2) and Ld in (3) significantly improves the
performance.

5.4 Different Architectures of Two Branches
in DualCNN

We use different network structures for two branches of
DualCNN in the experiments in Sect. 4. It is of interest to
analyze the performance by using the same structures for
both branches. To this end, we set the two branches in the
DualCNN using the network structures of SRCNN (Dong
et al. 2014) (DualCNN2SRCNN for short) or VDSR (Kim
et al. 2016a) (DualCNN2VDSR for short) and train the
DualCNN according to the same settings used in the image
super-resolution experiment. Table 14 shows that the Dual-
CNN2SRCNN method does not generate better results than
those by DualCNN2VDSR, which demonstrates that Dual-
CNN with a deeper model generates better results when the
architectures of two branches are the same. However, the
DualCNN where one branch is SRCNN and the other one is
VDSR performs better. In addition, we note that the Dual-
CNNwhoseonebranch is SRCNNand the other one isVDSR
has fewer model parameter compared to DualCNN2VDSR.
This further demonstrates that the performance gains are not
due to the use of the large capacity models.

We quantitatively evaluate the DualCNN when the two
branches are the same on image deraining using synthetic
rainy dataset (Zhang et al. 2020). Similar to the image
super-resolution experimental settings, the two branches
in the DualCNN are set to be the network structures of
SRCNN (Dong et al. 2014) and the network structures
of VDSR (Kim et al. 2016a), respectively. The results in
Table 15 also demonstrate that the DualCNN where one
branch is SRCNNand the other one isVDSRperforms better.

In addition, we note that the proposed DualCNN model
can accommodate other CNNs (e.g., Haris et al. 2018;
Lim et al. 2017) for image super-resolution. To validate

Table 15 Quantitative evaluations of two branches in DualCNN using
the synthetic rainy dataset (Zhang et al. 2020) in terms of PSNR and
model parameter

DualCNN2SRCNN DualCNN2VDSR DualCNN-S

Avg. PSNR 22.42 23.58 24.11

Model parameter 0.02M 1.32M 0.67M

The results of the best performance are denoted in bold

Table 14 Quantitative evaluations of two branches in DualCNN on image super-resolution (×2) in terms of PSNR, SSIM, and model parameter

Different nets Set5 Set14 B100 Urban100 Manga109 Model parameter

DualCNN2SRCNN 36.58/0.9528 32.48/0.9050 31.24/0.8855 29.27/0.8909 35.32/0.9649 0.02M

DualCNN2VDSR 37.74/0.9589 33.26/0.9131 31.92/0.8958 31.01/0.9160 37.47/0.9734 1.32M

DualCNN-S 37.73/0.9589 33.31/0.9132 31.93/0.8959 31.01/0.9158 37.61/0.9735 0.67M

The results of the best performance are denoted in bold
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Table 16 Quantitative evaluations of the flexibility of the proposed
DualCNN on the image super-resolution (Set 5, ×2) datasets in terms
of PSNR and SSIM. The “EDSR+VDSR” denotes that the proposed
DualCNN model uses EDSR as the Net-S and VDSR as Net-D. The
“EDSR+16ResBlocks” denotes that the proposedDualCNNmodel uses
EDSR as the Net-S and 16ResBlocks as Net-D

EDSR EDSR+VDSR EDSR+16ResBlocks

Avg. PSNR 38.11 38.21 38.25

Model parameter 0.9602 0.9614 0.9615

The results of the best performance are denoted in bold

the effectiveness of the proposed method, we use the
EDSR method (Lim et al. 2017) as the Net-S (DualCNN
(EDSR+VDSR) in Table 16) and train the proposed method
according to the same protocols of Lim et al. (2017). Table 16
shows that using the proposed DualCNNmodel can improve
the performance of the EDSR method on image super-
resolution, where the PSNR value of the proposed method is
at least 0.1dB higher than that of the EDSR method. More-
over, we use the network with 16 residual blocks (Lim et
al. 2017) as the Net-D. Table 16 shows the proposed Dual-
CNN model still performs better than the EDSR method,
suggesting that the proposed DualCNN model is able to
accommodate other CNNs for the performance gain.

5.5 Intermediate Results by the Proposed DualCNN
and DualCNN-S

To better understand what the DualCNN and DualCNN-S
models can learn, we show the intermediate results by the
DualCNN and DualCNN-S on the image super-resolution
task. Figure 13b, g show the estimated details and structures
by theDualCNNare visually similar to the ground truths. Fig-

ure 13c, h show two key components by the DualCNN-S.We
note thatDualCNN-S is able to learn the pseudo detailswhich
help restore high-quality image details. Although there are
some differences in the intermediate results byDualCNNand
DualCNN-S (e.g., details by the DualCNN and the pseudo
ones by theDualCNN-S), the final restored images are almost
the same based on the decomposition model (6).

5.6 Convergence Property

We evaluate the convergence properties of our method on
the Set5 dataset for super-resolution. Although the proposed
network contains two branches, Fig. 14 shows that it has
the similar convergence property to the SRCNN (Dong et al.
2014) and VDSR (Kim et al. 2016a).

Fig. 14 Quantitative evaluations of the convergence property on the
super-resolution dataset (Set5, ×2)

(b)cibuciB(a) D by DualCNN (c) D by DualCNN-S (d) GT detail for DualCNN (e) DualCNN
34.374/0.9468

(g)TG(f) S by DualCNN (h) S by DualCNN-S (i) GT structure for DualCNN (j) DualCNN-S
34.379/0.9470

Fig. 13 Intermediate results by the DualCNN and DualCNN-S on
the image super-resolution problem (×2). As both the proposed Dual-
CNN and DualCNN-S can estimate two key components from the input

images, the generated images are of high quality with finer details (best
viewed on high-resolution displays). The pixel values of the details are
re-scaled for visualization purpose
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6 Concluding Remarks

In this paper, we propose a DualCNN model for low-level
vision tasks. The DualCNN extracts both structures and
details from inputs with minimum reconstruction errors for
a specific task. We analyze the effectiveness of the Dual-
CNN and demonstrate that it is a generic framework and
can be effectively and efficiently applied to numerous low-
level vision tasks, including image super-resolution, image
denoising, image deconvolution, edge-preserving filtering,
image deraining, and image dehazing. Experimental results
show that the DualCNN model performs favorably against
the state-of-the-artmethods that havebeen specially designed
for each task.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-022-01583-
y.
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