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Ranking Saliency
Lihe Zhang, Chuan Yang, Huchuan Lu, Xiang Ruan, and Ming-Hsuan Yang

Abstract—Most existing bottom-up algorithms measure the foreground saliency of a pixel or region based on its contrast within a local
context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead
of only considering the contrast between salient objects and their surrounding regions, we consider both foreground and background
cues in this work. We rank the similarity of image elements with foreground or background cues via graph-based manifold ranking. The
saliency of image elements is defined based on their relevances to the given seeds or queries. We represent an image as a multi-scale
graph with fine superpixels and coarse regions as nodes. These nodes are ranked based on the similarity to background and
foreground queries using affinity matrices. Saliency detection is carried out in a cascade scheme to extract background regions and
foreground salient objects efficiently. Experimental results demonstrate the proposed method performs well against the state-of-the-art
methods in terms of accuracy and speed. We also propose a new benchmark dataset containing 5,168 images for large-scale
performance evaluation of saliency detection methods.

Index Terms—saliency detection, manifold ranking, multi-scale graph.
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1 INTRODUCTION

THE human visual system can spot salient objects in a
cluttered visual scene with selective visual attention.

Such capability is also of great importance to computational
visual systems to tackle the information overload problem.
Saliency detection aims to simulate selective visual attention
of humans for identifying the most important and informa-
tive parts of a scene. It has been widely applied to numerous
vision problems including image segmentation [1], object
recognition [2], image compression [3], content based image
retrieval [4], to name a few.

Saliency detection in general can be categorized by
bottom-up or top-down models. Bottom-up methods [1],
[5]–[21] are fast, data-driven and pre-attentive. These meth-
ods model saliency by visual distinctness or rarity using
low-level image information such as contrast, color, tex-
ture and boundary. Top-down models [22], [23] analyze
task-driven visual attention, which often entail supervised
learning with class labels from a large set of training ex-
amples. We note that saliency models have been developed
to predict visual attention with eye fixation in human vi-
sion [5]–[10], [24], and salient object detection in computer
vision [13], [14], [16], [18]–[20], [23]. In this work, we pro-
pose a bottom-up model to detect salient objects in images.

Existing algorithms mainly exploit visual cues of fore-
ground objects for saliency detection, e.g., color [16], [25],
distinct patterns [26], spatial compactness [17], [27], smooth
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Fig. 1. Main steps of the proposed algorithm. We rank the similarity of
image elements with foreground or background cues via graph-based
manifold ranking. In this first stage, the boundary priors is used as query
where the relevances of regions to each image side are ranked, and then
merged to generate a saliency map. In the second stage, all regions with
the soft labels are used as queries for the foreground salient objects. The
saliency of each node is computed based on its relevance to foreground
queries. In the third stage, the saliency probabilistic measures computed
in the second stage are used as mid-level features to construct a new
image manifold, based on which the regions are ranked to generate the
final saliency map.

appearance [28], focusness [29] and objectness measure [19],
[30]. Recently, methods that use the background cues to de-
tect salient objects have been developed [31]–[33]. The main
observation is that a pair of regions from the background are
more similar than a region from one foreground object and
another region from the background. For saliency detection,
an image is represented by a set of nodes to be labeled,
and the labeling task (either salient object or background) is
formulated as an energy minimization problem [31], [33] or
a random walk problem [32] based on this principle.

We observe that background regions are usually similar
to one of four image boundaries in terms of local or global
appearance. In contrast, foreground regions are similar in
terms of coherent and consistent visual appearance. In this
work, we exploit these principles to compute pixel saliency
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based on ranking of image elements. To detect salient objects
at different scale, we construct a multi-scale graph to simul-
taneously capture local and global structure information of
an image, where graph nodes are superpixels (at the bottom
level) or coarse regions (at the top levels). With a multi-scale
graph, the proposed model is able to incorporate long-range
spatial connections between pairwise pixels, such that pixel
saliency of detected objects is labeled more uniformly.

Specifically, we model saliency detection as a manifold
ranking problem and propose a cascade scheme for graph
labeling. Figure 1 shows the main steps of the proposed
algorithm. In the first stage, we exploit the boundary
prior [34], [35] by using the nodes on each image side as
labeled background queries. From each labeled result, we
compute the saliency of nodes based on their relevances
(i.e., ranking) to those queries as background labels. The
four labeled maps are then integrated to generate a saliency
map, which assigns each node a probabilistic measure of
belonging to the queried background class. In the second
stage, we take all nodes with the soft labels as salient
queries. The saliency of each node is computed based on
its relevance to foreground queries. The ranking procedures
are carried out on the image manifold constructed from low-
level image features. In the third stage, the saliency proba-
bilistic measures computed in the second stage are used as
mid-level features to construct a new image manifold, based
on which the nodes are ranked for the final saliency map.

Graph-based manifold ranking is essential for learning
an optimal affinity matrix [36] which fully captures intrinsic
structure information and describes local and global group-
ing cues for the graph labeling task. We integrate multi-scale
grouping cues across low-level and mid-level image features
with graph-based manifold ranking to uniformly highlight
the whole salient regions and generate well-defined bound-
aries of salient objects. The main contributions of this work
are summarized as follows:

• We propose a saliency detection algorithm based
on graph-based manifold ranking, and analyze the
learned affinities of graph nodes, which describe the
relevance of foreground and background regions in
an image.

• We construct two image manifolds using low-
level and mid-level features, and present a cascade
saliency detection scheme on a multi-layer represen-
tation of an image.

• We develop a new benchmark dataset containing
5,168 images for performance evaluation of saliency
detection methods. Experimental results on five
benchmark data sets show that the proposed algo-
rithm performs efficiently and favorably against the
state-of-the-art saliency detection methods.

2 RELATED WORK

Numerous saliency models have been proposed which ex-
ploit various cues for visual saliency and saliency detection.
A thorough review on this topic can be found [37] and we
discuss the most related methods in this section.

Based on cognitive studies of visual search [38], Itti et
al. [5] develop a saliency model based on local contrast
between pixels of the foreground object and the background

by computing the center-surround feature differences across
multiple scales. Numerous methods have since been pro-
posed based this principle with different measures and
features. Ma and Zhang [7] propose contrast-based saliency
detection method where pixels are merged by fuzzy clus-
tering. Klein and Frintrop [11] compute the center-surround
contrast for saliency detection based on the Kullback-Leibler
divergence of feature distributions. Achanta et al. [13] mea-
sure the saliency likelihood of each pixel based on its color
contrast to the entire image. In [16] Cheng et al. exploit
global color contrast of pixels and incorporate it with spa-
tial compactness to extract saliency regions. A supervised
method proposed by Liu et al. [23] combines a set of mid-
level features which describe local and global saliency of
pixels using a conditional random field model. Goferman et
al. [1] propose a context-aware saliency method based on
four principles of human visual attention, including local
low-level clues, global considerations, and visual organiza-
tion rules. Different visual cues have also been integrated
in unified energy minimization framework for saliency de-
tection [18], Gaussian filters [17], or within the Bayesian
inference framework [39]. Instead of using uniform prior
distributions [39], Xie et al. [40] compute a probabilistic prior
map by superpixel clusters as well as region locations, and
integrate it in a Bayesian inference framework for saliency
detection. In addition, Fourier spectrum [8], [41] and sparse
representations [42]–[44] have applied to predict locations
of salient objects.

A graph naturally represents relationships between im-
age elements with affinity measures and describes the un-
derlying geometric structure. Numerous saliency models
have been proposed based on graphs with different features
and affinity measures. Harel et al. [6] formulate the saliency
detection problem as a random walk on a graph, in which
salient regions are identified based on the frequency of node
visits at equilibrium. Similarly, Wang et al. [10] present a
visual saliency measure via entropy rate which denotes the
average information transmitted from a node to the others
during a random walk. Lu et al. [20] develop a hierarchical
graph model and utilize context information to compute
node affinities from which a graph is bi-partitioned for
salient object detection. In [19] Chang et al. use a graphical
model to integrate objectness [45] and saliency in which an
iterative energy optimization process concurrently improves
respective estimations through the interaction terms. On the
other hand, Mai et al. [46] develop a method that combines
visual cues in a conditional random field for saliency de-
tection. More recently, Jiang and Davis [47] model saliency
detection on a graph and detect salient objects by maximiz-
ing the total similarities between the hypothesized salient
region centers and the contained elements represented by
pixels as well as superpixels.

Gopalakrishnan et al. [12] formulate the object detection
problem as a binary segmentation or labeling task on a
graph. The seeds for the most salient object and background
are identified by the behavior of random walks on a com-
plete graph and a k-regular graph. A semi-supervised graph
labeling method [48] is used to infer the binary labels of the
unlabeled nodes. Different from [12], the proposed saliency
algorithm with manifold ranking requires only seeds from
one class, which are initialized with either the boundary
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prior or foreground cues. The boundary prior is based on
the recent findings of human fixations on images [49], which
shows that humans tend to gaze at the centers of images.
These priors have also been used in image segmentation
and related problems [31], [34], [35] with demonstrated suc-
cess. In contrast, the semi-supervised method [12] requires
seeds from the salient as well as background regions, and
generates a binary segmentation. Furthermore, it is difficult
to determine the number and locations of salient nodes as
they are generated by random walks, especially for scenes
with multiple salient objects. This is a known problem with
graph labeling where the results are sensitive to the selected
seeds. In this work, all the background and foreground
seeds can be easily generated via background priors and
ranking background queries (or seeds).

3 GRAPH-BASED MANIFOLD RANKING

The graph-based ranking problem is described as follows.
Given a node labeled as a query, the remaining nodes
are ranked based on their relevances to the given query.
The goal is to learn a ranking function, which defines the
relevance between unlabeled nodes and the query node. In
this work, the query is either a labeled node (e.g., region)
from the background or foreground salient objects.

3.1 Manifold Ranking
In [50], a ranking method that exploits the intrinsic manifold
structure of data points (e.g., images containing handwritten
digits) for graph labeling is proposed. Given a dataset
X =

{
x1, . . . , xl, xl+1, . . . , xn

}
∈ Rm×n, some data points

are labeled queries and the rest need to be ranked according
to their relevances to the queries. Let f : X → Rn denote
a ranking function which assigns a value fi to each point
xi, and f can be viewed as a vector f = [f1, . . . , fn]

>. Let
y = [y1, y2, . . . , yn]

> denote an indication vector, in which
yi = 1 if xi is a query, and yi = 0 otherwise. We define
a graph G = (V,E) on the dataset, where the nodes V
are the dataset X and the edges E are weighted by an
affinity matrix W = [wij ]n×n. Given G, the degree matrix
is D = diag{d11, . . . , dnn}, where dii =

∑
j wij . Similar to

the PageRank and spectral clustering algorithms [51]–[53],
the optimal ranking of queries are computed by solving the
following optimization problem:

f∗ = argmin
f

1

2
[

n∑
i,j=1

wij(
fi√
dii
− fj√

djj
)2 +µ

n∑
i=1

(fi− yi)2],

(1)
where the parameter µ controls the balance of the smooth-
ness constraint (first term) and the fitting constraint (sec-
ond term). That is, a good ranking function should not
assign values such that those of nearby points (smoothness
constraint) should be similar and those from the initial
points should be similar to the initial assignments (fitting
constraint). The minimum solution is computed by setting
the derivative of the above function to be zero. The resulting
ranking function can be written as:

f∗ = (I− αS)−1y, (2)

where I is an identity matrix, α = 1/(1 + µ) and S is the
normalized Laplacian matrix, S = D−1/2WD−1/2 [51]–[53]

The ranking algorithm [50] is derived from the work on
semi-supervised learning for classification [54]. Essentially,
manifold ranking can be viewed as an one-class classifica-
tion problem [55], where only positive examples or negative
examples are required. We obtain a ranking function using
the unnormalized Laplacian matrix [51] in (2):

f∗ = (D− αW)−1y. (3)

Our empirical results show that salient objects can be better
detected using the unnormalized Laplaican matrix and we
adopt (3) in the following experiments.

3.2 Saliency Measure
Given an input image represented by a graph and queries,
the saliency of each node is defined by its ranking score
computed by (3) which is rewritten by

A = (D− αW)−1, f∗ = Ay, (4)

for ease of presentation. The affinity matrix A can be consid-
ered as a learned optimal affinity matrix. The ranking score
f∗(i) of the i-th node is the inner product of the i-th row of
A and y. As y is a binary indicator vector, f∗(i) can also be
viewed as the sum of the relevances of the i-th node to all
the queries.

We note for some images there exist small regions with
high contrast in the local surroundings. The nodes from
such high contrast regions often have weak correlation with
the other nodes of other parts of the same image, but strong
self-correlation in the learned affinity A. If such a node is
selected as one query, its ranking value in f∗ will contain
the relevance of this query to itself, which is meaninglessly
large and adversely weakens the contributions of the other
queries to the ranking score (See Figure 3). To address this
issue, we set the diagonal elements of an affinity matrix
A to 0 when computing ranking scores using (3). That is,
the saliency value of each query is defined by its ranking
score computed by the other queries. We note that this step
has significant effects on the final results (See Figure 10(d)).
Finally, we denote that the saliency of nodes using the
normalized ranking score f

∗
when foreground queries are

given, and 1− f
∗

when background queries are presented.

4 CONSTRUCTING MULTI-SCALE GRAPHS

As salient objects are likely to appear at different scales
consisting of numerous perceptually heterogeneous regions
in a scene, we consider multiple quantizations of the image
space with multi-scale graphs. The lower layers of this
hierarchical graph describe more detailed image structures,
while the higher layers encode holistic visual information.
The proposed multi-scale graph labeling allows visual con-
text to be incorporated at multiple quantization levels (See
Figure 2). With the connections between layers, the multi-
scale saliency inference can capture long-range grouping
cues for the foreground and background and encourage the
nodes with similar appearance across layers to have the
same label. In addition, since the parts of an object with
different visual appearance can be clustered together at the
higher layers, they are likely to have the same saliency
values. By exploiting multi-scale graphs and interactions,
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region-based layer

superpixel-based layer

intra-layer links

region-based layer

superpixel-based layer

inter-layer links

Fig. 2. Proposed multi-scale graph model. For the intra-layer links at the
superpixel-based layer, we extend the scope of node connection, which
is shown as the dark cyan nodes. Specifically, we define that the dark
cyan nodes sharing a common boundary (shown in thick line) with the
dark blue nodes are connected to the red node. In addition, the red line
along the four sides indicates that all the boundary nodes are connected
with each other.

Fig. 3. Saliency measure via ranking. From top to bottom: input images,
results without and with setting the diagonal elements of A to 0.

the proposed algorithm can handle size and appearance
variations of salient objects, and highlight the pixels therein
more uniformly.

4.1 Nodes

In this work, we construct a four-layer graph G = (V,E)
as shown in Figure 2, where the nodes V = {V1, . . . , V4}
contain one set of superpixels V1 and three sets of regions
{V2, V3, V4}. The superpixels are generated by the SLIC
algorithm [56]. We group superpixels to obtain a series of
region nodes at different scales by using spectral segmenta-
tion as detailed in Algorithm 1. There are fewer nodes at the
higher layers, i.e., |V4| < |V3| < · · · < |V1| (e.g., |V1| = 300,
|V2| = 80, |V3| = 50 and |V4| = 30 respectively in our
experiments).

4.2 Edges

The edges inE are undirected links either within or between
layers. As neighboring nodes are likely to share similar
appearance and saliency values, we use a k-regular graph
to exploit the spatial relationship. For the inter-layer links,
a region node is only connected to the superpixel nodes

Algorithm 1 Constructing Multi-Scale Graphs
Input: An image

1: Construct a single-scale graph G ′ = (V ′, E′) with
superpixels as nodes V ′, and the undirected edges
E′ connect any pair of superpixels sharing a com-
mon boundary, where the edge weight is defined as
w′ij = exp(−κ‖ ci − cj‖) (κ is a scaling parameter)

2: for K = {|V2|, |V3|, |V4|} do
3: Apply the K-way segmentation method [36] to

group superpixels and use the results as the nodes of
the multi-scale graph G .

4: end for
Output: Multi-Scale graphs

it contains, which enforces that there exist no edges be-
tween any two region-based layers. Through the inter-layer
links, we capture cross-scale grouping cues among different
scales, thereby obtaining more reliable saliency results. For
the intra-layer links, at the region-based layers there exists
an edge if two nodes share a common boundary; and at
the superpixel-based layer, each node is connected to the
neighbors and the nodes sharing common boundaries with
its neighboring nodes (See Figure 2). By extending the scope
of node connection with the same degree of k, we effectively
utilize local smoothness cues. Furthermore, we enforce that
the superpixel nodes on the four image sides are connected,
i.e., any pair of boundary superpixel nodes are considered
to be adjacent. Thus, we obtain a close-loop graph at the
superpixel level. This close-loop constraint significantly im-
proves the performance of the proposed algorithm as it
tends to reduce the geodesic distance of similar superpixels
and thereby improves the ranking results. Figure 4 shows
some examples where the ranking results with and without
these constraints. We note that these constraints facilitate
detecting salient objects when they appear near the image
boundaries or in scenes with complex backgrounds.

4.3 Weights

With the constraints on edges, the constructed graph is
sparsely connected and most elements of the affinity matrix
W are zero. In this work, the weight between two nodes is
defined by

wij =

{
exp−

‖ci−cj‖
σ2 if i, j ∈ Vl,

γ if i ∈ V1, j ∈ Vl, l 6= 1,
(5)

and satisfies wij = wji, where ci and cj denote the means
of the superpixels or regions corresponding to two nodes in
the CIE Lab color space, and σ is a constant that controls
the affinity scale of the intra-layer weights. The weights
are computed based on the distance of feature vectors in
the color space as they have been shown to be effective
in saliency detection [14], [57]. In (5), γ is a constant that
determines the inter-layer weights.

By ranking the nodes on the constructed graph, the
inverse matrix (D−αW)−1 in (3) can be regarded as a com-
plete affinity matrix, i.e., there exists a nonzero relevance
value between any pair of nodes on the graph. This affinity
matrix naturally captures spatial relationship information.
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Fig. 4. Saliency maps based on top boundary prior and geodesic
connection constraints of superpixels at the image boundary. Top: In-
put images. Middle: Results without enforcing the geodesic distance
constraints. Bottom: Results with geodesic distance constraints. The
geodesic constraints help detect salient objects when they appear near
the image boundaries or in scenes with complex backgrounds.

The relevance between nodes is large when the spatial
distance is small, which is an important cue for saliency
detection [16].

5 CASCADE SALIENCY DETECTION

In this section, we detail the proposed cascade scheme in
three stages for bottom-up saliency detection via ranking
with background and foreground queries.

5.1 Ranking with Background Queries
Based on the attention theory for visual saliency [5], we use
the superpixel nodes on the image boundary as background
seeds (i.e., the labeled data as query samples) to rank the
relevances of all the other nodes of a graph. While this
simple prior is unlikely to be correct in all images, we
show that the use of several boundaries is effective and
efficient. Specifically, we construct four saliency maps using
boundary priors and integrate them for the final map, which
is referred as the separation/combination (SC) approach in
the following sections.

Taking the top image boundary as an example, we use
the superpixel nodes on this side as the background queries
and other nodes as the unlabeled data. With the indicator
vector y for labeled and unlabeled data, all the nodes are
ranked by (3) in f∗, which is a N -dimensional vector (N is
the total number of nodes of the graph). Each element in f∗

indicates the relevance of a node to the background queries,
and its complement is the saliency measure. We extract the
corresponding sub-vector of f∗ for the superpixel nodes and
normalize it to the range between 0 and 1, and the saliency
map using the top boundary prior, St can be written as:

St(i) = 1− f
∗
(i) i = 1, 2, . . . , Ns, (6)

where i indexes a superpixel node on graph, Ns is the
number of superpixel nodes and f

∗
denotes the normalized

sub-vector.
Similarly, we compute the other three maps Sb, Sl and

Sr , using the bottom, left and right image boundary as
queries. We note that the saliency maps are computed with

(a) (b) (c) (d)

Fig. 5. Saliency maps using different queries. (a) Input images. (b)
Results of using all the boundary nodes together as queries. (c) Results
of integrating four maps from each side. (d) Results of ranking with
foreground queries.

different indicator vector y while the weight matrix W
and the degree matrix D are fixed. That is, we need to
compute the matrix inverse (D − αW)−1 only once for
each image. Since the number of superpixels is small, the
matrix inverse in (3) can be computed efficiently, and the
overall computational load for the four maps is low. The
four saliency maps are integrated by the following process:

Sbq(i) = St(i) ◦ Sb(i) ◦ Sl(i) ◦ Sr(i). (7)

where ◦ is an integration operator (i.e., {+,×,min,max}
operators) on each node. Based on our experiments, it
is shown that higher accuracy can be achieved with the
product operator and adopted in this work.

There are two reasons for using the SC approach to
generate saliency maps. First, the superpixels on different
sides are often disimilar and the distance between them
should be large. If we use all the boundary superpixels from
four sides as queries (i.e., indicating these superpixels are
similar), the labeled results are usually less optimal as these
query nodes are not compatible in terms of their features.
Note that the superpixels from opposite sides discussed in
Section 4 can be considered as weakly labeled as only a few
nodes are involved (i.e., only the superpixels from opposite
sides that are close in the feature space are considered as
similar) whereas the case with all superpixels from four
sides can be considered as strongly labeled (i.e., all the
nodes from four sides are considered as similar). Figure 5
shows some labeling results when all nodes from four
sides are considered as queries, or four query maps are
constructed (using nodes from each side) and integrated.
Second, it reduces the effects of imprecise queries, i.e., the
ground-truth salient nodes are inadvertently selected as
background queries. As shown in Figure 6(b), the saliency
maps generated using all the boundary nodes are poor. Due
to the imprecise labeling results, the pixels with the salient
objects have low saliency values. However, as salient objects
are often compact “things” (such as a people or a car) as
opposed to “stuff” (such as grass or sky) and therefore they
rarely occupy three or all sides of image, the proposed SC
approach ensures at least two saliency maps are effective
(Figure 6(c)). By integration of four saliency maps, some
salient parts (e.g., regions away from the boundary) can be
identified, which provide sufficient cues for further process-
ing in the second stage.
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Fig. 6. Examples in which the salient objects appear at the image
boundary. (a) Input images. (b) Saliency maps using all the boundary
nodes together as queries. (c) Four saliency maps by different boundary
priors. (d) Integration of four maps. (e) Saliency maps after the second
stage.

While most regions of the salient objects are highlighted
in the first stage, some background nodes may not be
adequately labeled with proper saliency measures (See Fig-
ure 5 and Figure 6). To alleviate this problem and improve
the results especially when objects appear near the image
boundaries, the saliency maps are further improved via
ranking with foreground queries.

5.2 Ranking with Foreground Queries
The saliency map generated in the first stage indicates the
confidence of each superpixel being salient. The indicator
vector y of foreground queries in the second stage is

yi =

{
Sbq(i) if i ∈ superpixel nodes
0 if i ∈ region nodes,

(8)

where the elements have values between 0 to 1. Given y, a
new ranking vector f∗ is computed using (3). As is carried
out in the first stage, the ranking sub-vector that superpixel
nodes correspond to is extracted and normalized between
the range of 0 and 1 to form a saliency map by

Sfq(i) = f
∗
(i) i = 1, 2, . . . , Ns, (9)

where i indexes superpixel node on a graph, Ns is the
number of superpixel nodes and f

∗
denotes the normalized

sub-vector.
We note that there are cases where nodes may be incor-

rectly selected as foreground queries in this stage. Despite
some imprecise labeling, salient objects can be detected
by the proposed algorithm as shown in Figure 7. This
can be explained as follows. The salient object regions are
usually relatively compact (in terms of spatial distribution)
and homogeneous in appearance (in terms of feature dis-
tribution), while background regions are the opposite. In
other words, the intra-object relevance (i.e., two nodes of
the salient objects) is usually much larger than the object-
background and intra-background relevances, which can be
inferred from the affinity matrix A. Therefore, the sum of the
relevance values of object nodes to the ground-truth salient
queries is considerably larger than that of background nodes
to all the queries. Thus background saliency measures can
be computed effectively (Figure 7(c)). In spite of the saliency
maps after the first stage of Figure 6 are not precise, salient
objects can be better detected after ranking with foreground
queries in the second stage.

To analyze the effects of ranking results based on the
affinity matrix A, we compute the average intra-object,

(a) (b) (c) (d)

Fig. 7. Two examples in which imprecise salient queries are selected
in the second stage. (a) Input images. (b) Saliency maps of the first
stage. (c) Saliency maps of the second stage. (d) Final saliency maps.
Although some nodes are mistakenly highlighted in the first stage,
salient objects can be detected by the proposed algorithm based on
intra-object relevance of foreground and background regions.

intra-background and object-background relevance values
(referred as roo, rbb and rob respectively) for each of the
300 images randomly sampled from the MSRA dataset with
ground truth labels [23]. The roo value is computed by aver-
aging all the learned relevances between any pair of object
superpixel nodes in the affinity matrix A, and rbb as well as
rob are computed in a similar manner. Figure 8(a) shows that
the intra-object relevance values are much larger than the
object-background and intra-background relevance values.
In addition, we also compute the sum of the relevances of
each superpixel node to all other superpixel nodes, which
is equivalent to computing a saliency map by (3) and (9)
with all superpixel nodes (i.e., the whole image) as salient
queries. This approach is essentially similar to the meth-
ods based on global contrast [16], [28]. Despite numerous
queries are not correct (i.e., the background superpixels are
mistakenly labeled as foreground queries), most regions of
the salient objects can be detected, which also show the
learned intra-object relevances are much larger.

5.3 Re-ranking with Mid-level Features
A number of mid-level features have been used to estimate
the likelihood of a superpixel belonging to a generic ob-
ject [45]. In the third stage, we use the output of the second
stage Sfq as mid-level features to construct a new graph
where the node connections remain the same as the graph
used in the first two stages. That is, the weights wij are still
defined using (5), but the only differences are that ci and cj
in (5) denote the features based on saliency measures Sfq

rather than low-level color features.
Similar to the second stage, we define indicator vector y

in (10), and then all nodes are re-ranked on the new graph
by using (3),

yi =

{
Sfq(i) if i ∈ superpixel nodes
0 if i ∈ region nodes.

(10)

We extract the ranking scores of superpixel nodes and
normalize them to obtain the final saliency map. By re-
ranking on the image manifold constructed using mid-level
features, better saliency detection results can be achieved
in which pixels of salient objects are more uniformly high-
lighted and the effects of those in the background are
suppressed. Figure 7(d) and Figure 9 shows examples where
the saliency detection results after re-ranking are better than
those obtained in the first two stages.
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Fig. 8. Analysis of learned relevances between nodes in the affinity matrix A. (a) Intra-object roo, intra-background rbb, and object-background
rob relevance values. (b) Saliency detection results using the row-sum of the sub-matrix of A corresponding to superpixel nodes. (c) The ratios
computed with mid-level features are much larger than the corresponding ones computed with low-level features for most of the images. (d) The
variances computed with mid-level features are smaller than those computed with low-level features.

The use of mid-level features in ranking better describes
the affinity of graph nodes and further widens the distances
between the pairs of average relevance values (roo, rbb)
and (roo, rob). The salient regions are thus highlighted
with sharper contrast from the background. For ease of
presentation, we use superscript l and m to denote the
ranking operations on the image manifold constructed with
low-level and mid-level features. We compute four ratios
of rmoo/r

m
bb , rmoo/r

m
ob, rloo/r

l
bb and rloo/r

l
bb for each image of

the MSRA dataset, and observe that for most of the images,
the former two ratios computed with mid-level features are
much larger than the corresponding ones computed with
low-level features (See Figure 8(c)).

Ranking on graph nodes with mid-level features also
decreases the variances of intra-object, intra-background,
and object-background relevances in A (referred to as voo,
vbb and vob) especially for the images containing non-
homogeneous regions of foreground objects and back-
grounds. As a result, salient regions are more uniformly
highlighted. We compute three ratios of vloo/v

m
oo, vlbb/v

m
bb

and vlob/v
m
ob for each image of the MSRA dataset, and

observe that the variances computed with mid-level features
are smaller than those computed with low-level features
for most images (See Figure 8(d)). The main steps of the
proposed saliency detection algorithm are summarized in
Algorithm 2.

5.4 Discussions
There are significant differences between bottom-up
saliency models and top-down goal-driven mechanisms. For

Algorithm 2 Saliency Detection via Manifold Ranking
Input: An image and default parameters.

1: Hierarchically segment the input image into superpixels
and different scale regions, construct a four-layer graph
G with superpixels and region as nodes, and compute
its degree matrix D and weight matrix W by (5).

2: Compute (D− αW)−1 and set its diagonal elements to
0.

3: Form an indicator vector y with nodes on each side
of image as queries, and compute their corresponding
saliency maps by (3) and (6). Compute saliency map Sbq

by (7).
4: Obtain an indicator vector y by (8), and compute

saliency map Sfq by (3) and (9).
5: Substitute Sfq(i) for ci in (5) to re-compute weight

matrix W and degree matrix D, and repeat Step 2.
6: Use indicator vector y in (10) to re-rank graph nodes

by (3), and normalize the resulting ranking scores to get
the final saliency map.

Output: Full-resolution saliency map.

example, human faces may not stand out from the other
salient objects in a complex scene using a bottom-up model
(due to size, occlusion, and contrast) but human observes
are likely to fixate on the region containing faces [59]. In
such cases, integrating additional prior information, such
as face locations, can improve the performance of bottom-
up saliency models. The proposed model can be naturally
integrated with other prior for salient object detection.
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Fig. 9. Examples showing the benefits of the multi-scale analysis. From top to down: input images, results of using single-layer graph [58], results
of the second stage with multi-layer graph, results of the third stage. The objects can more completely stand out from the backgrounds by the
proposed method.

In addition, existing methods (e.g., RC [16] and CB [60])
do not specifically take the label smoothness (i.e., neighbor-
ing pixels or regions with similar appearance should have
the same saliency measure) into account. Consequently,
pixels within salient objects are not uniformly highlighted
especially near the boundaries. With the post-processing
step via the proposed ranking-based model (3) and (9),
similar regions are encouraged to have similar saliency
measures, thereby improving the performance of existing
saliency methods.

6 EXPERIMENTAL RESULTS

We evaluate the proposed algorithm on five benchmark
datasets. The MSRA dataset [23] contains 5, 000 images with
ground-truth salient regions enclosed by bounding boxes.
The ASD dataset, a subset of the MSRA set, consists of 1, 000
images with segmentation masks of salient objects [14].
Each of the 10, 000 images in the THUS dataset [61] con-
tains one salient object with ground-truth region annota-
tion. In addition, we develop the DUT-OMRON dataset,
which is composed of 5, 168 labeled images containing
multiple objects at different scales and locations in cluttered
backgrounds. We also evaluate the proposed algorithm on
the MIT300 dataset [62] for eye fixation prediction. This
dataset contains 300 images with eye tracking data from 39
observers. Experimental results with twenty state-of-the-art
saliency detection methods, including IT [5], GB [6], MZ [7],
SR [8], AC [13], Gof [1], FT [14], LC [15], RC [16], SVO [19],
SF [17], CB [60], GS [31], Xie [40], DGI [63], eDN [64], SC [65],
MrCNN [66], RCJ [61], and LS [25], are presented.

6.1 Experimental Setup and Evaluation Metrics

The parameter α in (3) balances the smooth and fitting
constraints of the proposed manifold ranking algorithm.
When the value of α is small, the initial labeling of nodes
plays a more important role. On the other hand, the label
consistency among neighboring nodes is more important

when the α value is large. In this work, α is empirically
set to be 0.99, for all the experiments. The Gaussian kernel
width σ2 of (5) is set to be 0.1 for the weights between
superpixel nodes, and 1 between region nodes, respectively.
In addition, the inter-layer weights γ are defined to be 0.1.
Figure 10(e) shows the sensitivity of the proposed algorithm
to the parameter γ. Overall, the proposed algorithm is
insensitive to a wide range of γ.

We evaluate salient object detection methods by pixel
level precision, recall, F-measure, Area Under Curve (AUC)
and Mean Absolute Error (MAE), and evaluate fixation
prediction methods by AUC, Normalized Scanpath Saliency
(NSS) and Similarity (S). The precision value corresponds
to the ratio of salient pixels correctly assigned to all pixels
of the extracted regions, while the recall value is defined
as the percentage of detected salient pixels with respect to
the ground-truth data. Given a saliency map with intensity
values normalized to the range of 0 and 255, a number of
binary maps are produced by using every possible fixed
threshold in [0, 255]. We compute the precision/recall pairs
of all the binary maps to plot the precision-recall curve.
Meanwhile, we obtain true positive and false positive rates
to plot the ROC curve and AUC score. The F-measure is the
overall performance indicator computed by the weighted
harmonic of precision and recall [14]. The MAE computes
the average difference between the saliency map and the
ground truth [17]. The average normalized salience value
across all fixation locations is taken as the NSS score [67].
For the similarity metric, fixation maps are used as proba-
bility distributions from which the histogram intersection is
measured [24].

6.2 Algorithmic Design Options

We first examine the design options of the proposed algo-
rithm using the ASD dataset. The ranking results using the
normalized (2) and unnormalized (3) Laplacian matrices for
ranking are analyzed. Figure 10(a) shows that the ranking
results with the unnormalized Laplacian matrix are better,
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Fig. 10. Precision-recall curves on the ASD dataset by the proposed algorithm with different design options. (a) Ranking with normalized and
unnormalized Laplacian matrices. (b) Graph construction with different constraints. (c) SC approach. (d) Ranking using A with zero and nonzero
diagonal elements. (e) Results with different value of γ.
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Fig. 11. Performance comparisons of each stage. (a) Results on the
MSRA dataset. (b) Results on the DUT-OMRON dataset.

and used in all the experiments. Next, we demonstrate the
effectiveness of the proposed graph construction scheme
with different constraints. We compute the precision-recall
curves for four cases of node connection on the graph
(discussed in Section 4.2): close-loop constraint without
extending the scope of node with k-regular graph, without
close-loop constraint and with k-regular graph, without
either close-loop constraint or k-regular graph, and close-
loop constraint with k-regular graph. Figure 10(b) shows
that the proposed algorithm with the close-loop constraint
and k-regular graph performs best.

The effects of the proposed SC approach in the first
stage is also evaluated. Figure 10(c) shows that our approach
using the integration of saliency maps generated from dif-
ferent boundary priors performs better in the first stage. We
further evaluate the effect of setting the diagonal elements
of A to 0 in (4). Figure 10(d) shows that it is more important
to use null diagonal elements when the recall is low (e.g.,
less than 0.5), which is consistent to the examples shown in
Figure 3.

We demonstrate the performance for each stage of the
proposed algorithm and compare it with our work [58]. Fig-
ure 11 shows that the saliency map of the second stage with
foreground queries is significantly better than the results of
the first stage with background queries. Likewise, the re-
ranking results in the third stage are better than those from
the second stage. In addition, the performance improvement
from the first stage of the proposed algorithm over our early
work shows the effectiveness of the multi-scale graph. The
proposed algorithm consistently performs better than our
early method [58] on these datasets with 2.9% and 14.2%
improvement in terms of AUC and MAE scores as shown in
Table 1.

TABLE 1
Comparison of the proposed algorithm with multi-scale graph and early

method with single-scale graph-based manifold ranking (MR) [58].

Metric Method Dataset
ASD MSRA THUS DUT-OMRON

AUC MR [58] 0.962 0.927 0.930 0.845
Ours 0.979 0.951 0.956 0.883

MAE MR [58] 0.075 0.128 0.126 0.187
Ours 0.063 0.108 0.101 0.177

6.3 Performance Evaluation

ASD. We first examine the proposed algorithm against
fourteen state-of-the-art saliency detection methods on the
ASD dataset. Figure 12(a) shows the precision-recall curves
of all evaluated methods. The proposed algorithm outper-
forms the SVO [19], Gof [1], CB [60] and RC [16] methods
which are top-performing methods for saliency detection in
a recent benchmark study [57]. In addition, the proposed
method significantly outperforms the GS [31] model which
is also based on boundary priors. The precision, recall and F-
measure with an adaptive threshold and the AUC score are
presented in Figure 12(b), which shows that the proposed al-
gorithm achieves the highest precision, F-measure and AUC
values. Overall, the proposed algorithm performs favorably
against the state-of-the-art methods using all four evaluation
metrics. Figure 15 shows a few saliency maps generated by
the evaluated methods. We note that the proposed algorithm
uniformly highlights the salient regions and preserves finer
object boundaries than the other methods.

MSRA. Each image of the MSRA dataset is annotated
with nine bounding boxes by different users. The pixels
with consistency score higher than a threshold (e.g., 0.5)
are considered as parts of salient regions and enclosed by
bounding boxes. Jiang et al. [68] provide more accurate
labeling results for the MSRA dataset, based on which we
evaluate the performance of the proposed algorithm against
ten state-of-the-art approaches using the original source
code including the CB [60], SVO [19], RC [16], Xie [40],
Gof [1], FT [14], GB [6], SR [8], LC [15] and IT [5] methods.
Figure 12(c),(d) shows that the precision-recall curve of the
proposed method is higher than those by the other methods
on the MSRA dataset (e.g., performance gain of 8.3% and
3.7% over the second best method (CB [60]) in terms of
the F-measure and AUC score). The reported F-measure
score in [12] is 0.694 (based on bounding box ground-truth
annotation). With the same ground-truth annotation, the F-
measure score of the proposed method is 0.883.
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Fig. 12. Quantitative comparisons. (a), (b) Results on the ASD dataset. (c), (d) Results on the MSRA dataset. The proposed method performs well
in all these metrics.
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Fig. 13. Quantitative comparisons. (a), (b) Results on the THUS dataset. (c), (d) Results on the DUT-OMRON dataset. The proposed method
performs well in all these metrics.

THUS. The number of images in the THUS dataset is
an order of magnitude larger than the ASD and MSRA
datasets for evaluation of saliency detection [14]. Each of
the 10, 000 images in the THUS dataset contains one salient
object with ground-truth pixel-wise boundary annotation.
Figure 13(a),(b) shows that the proposed algorithm con-
sistently performs well using the four evaluation criteria
with improvement of 9.5% and 3.2% over the second best
method (CB [60]) in terms of F-measure and AUC score.

DUT-OMRON. As most images in the existing datasets
mainly contain single salient objects, we develop a challeng-
ing dataset with 5, 168 images where each one contains one
or multiple salient objects in cluttered background. Each
image is resized to be no larger than 400 × 400 pixels
and labeled by 5 subjects to obtain pixel-wise ground-truth
annotation in a way similar to what is carried out in the
MSRA dataset. We use k-means algorithm to classify the
fixations from 5 subjects into 3 clusters, and then retain
90% of the fixations based on Euclidean distance from the
cluster centers as eye-fixation ground-truth. In addition,
we also provide bounding box ground-truth annotation
for each image. The source images, ground-truth labels
and detailed description of this dataset can be found at
http://saliencydetection.net/dut-omron/.

Figure 13(c),(d) shows the results on the DUT-OMRON
dataset. As this is a challenging dataset, the performance
of all evaluated methods decreases significantly in terms
all metrics (as opposed to the results in other datasets
where there is little room for further improvement). Overall,
the proposed method achieves the highest precision-recall
curve, the highest F-measure and AUC values.

MIT300. This is an eye fixation benchmark dataset in which
the image resolution is from 450 × 1024 to 1024 × 1024

TABLE 2
Quantitative comparisons on the MIT300 dataset.

Metric DGI [63] eDN [64] SC [65] MrCNN [66]
AUC 0.84 0.82 0.80 0.79
NSS 1.22 1.14 1.47 1.37

S 0.39 0.41 0.45 0.48
Metric RCJ [61] LS [25] MR [58] Ours
AUC 0.79 0.78 0.75 0.80
NSS 1.18 1.02 1.12 1.25

S 0.48 0.43 0.41 0.49

pixels. For computational efficiency, the images are resized
to no more than 400 pixels in width and height while main-
taining the aspect ratios. Similar to previous eye fixation
prediction methods [25], [69], we smooth the resulting maps
by Gaussian blurs with a small kernel for visualization.
We evaluate the proposed algorithm against seven state-
of-the-art approaches including the DGI [63], eDN [64],
SC [65], MrCNN [66], RCJ [61], LS [25] methods and our
early work (MR) [58]. Table 2 shows quantitative results
using three metrics (some taken from the MIT saliency
benchmark website [70]) in which the first four methods
based on deep convolutional networks require long training
time and a large number of images. Overall, no single
method dominates the other approaches in all three metrics.
The proposed algorithm achieves the highest S scores and
performs slightly worse than the DGI [63], eDN [64] and
SC [65] methods in terms of the AUC score.

Features. We use the LBP, HOG and DRFI features to repre-
sent graph nodes. The DRFI feature consists of regional con-
trast and background cues which is used to learn a regressor
for salient object detection [68]. As shown in Figure 14,
the proposed algorithm with the LAB+DRFI or LAB+HOG
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Fig. 14. Performance evaluation of the proposed algorithm with different
features.

representations achieves comparable performance with the
LAB features on the MSRA and DUT-OMRON datasets.
On the other hand, the proposed algorithm with the DRFI
or HOG features do not perform well. These results show
that the color cues play a more important role in saliency
detection for the two datasets.

6.4 Run Time Performance

The average run time of different methods on the ASD
database are presented in Table 3 based on a machine with
an Intel i7 3.40GHz CPU and 32GB RAM. Overall, the pro-
posed algorithm performs effectively and efficiently when
compared with the state-of-the-art methods. The MATLAB
code of the proposed algorithm will be made available to
the public.

7 CONCLUSION

We propose a bottom-up method to detect salient regions
in images with manifold ranking on a graph which incorpo-
rates local grouping cues and boundary priors. We construct
two image manifolds with low-level and mid-level features,
and develop a cascade approach using background and
foreground queries for ranking to generate saliency maps.
We evaluate the proposed algorithm on large benchmark
datasets against twenty state-of-the-art methods in salient
object detection and eye fixation prediction. In addition,
we propose a large dataset for performance evaluation on
saliency detection. Our future work will focus on integra-
tion of multiple features with applications to other vision
problems.
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