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Top-Down Visual Saliency
via Joint CRF and Dictionary Learning

Jimei Yang and Ming-Hsuan Yang

Abstract—Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down
saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a
layered structure from top to bottom: CRF, sparse coding and image patches. By using sparse codes as intermediate layer, we
learn a dictionary in a supervised manner with the structured output of CRF layer, and meanwhile learn the CRF parameters with
sparse coding as features. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient
descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably
against the state-of-the-art top-down saliency methods for target object localization and the dictionary update significantly
improves the performance of our model. In addition, we demonstrate the merits of the proposed top-down saliency model by
applying it to human fixation prediction.

Index Terms—Visual saliency, top-down visual saliency, fixation prediction, dictionary learning and conditional random fields.

F

1 INTRODUCTION

V ISUAL saliency has attracted much attention in
the vision community and numerous computa-

tional models have been proposed. Early work focuses
on its bottom-up process and establishes a number
of saliency principles such as center-surround con-
trast [1], self-information [2], topological connectiv-
ity [3] and spectral residual [4]. Central to these prin-
ciples are the measures of abnormality or distinctive-
ness of one image region within a context. As a result,
bottom-up saliency maps are shown to be effective in
simple scenes for predicting human fixations [2], [3],
[1], [5] and for highlighting the informative regions of
images [4], [6].

In this paper, we investigate top-down visual
saliency, complementary to bottom-up ones for visual
attention models [7], [8]. Top-down visual saliency,
similar to bottom-up models, is also based on lo-
cal image evidences within their contexts. However,
different from bottom-up models, top-down visual
saliency is driven not only by image contexts but also
by specific visual priors. We define top-down visual
saliency as the distinctiveness of target objects from
their surroundings within an image, and the goals of
saliency maps are to highlight the target objects and
suppress the backgrounds.

The advantages of top-down models become more
clear when they are applied to complex scenes, where
bottom-up saliency models usually respond to nu-
merous unrelated low-level visual stimuli (i.e., false
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positives) and miss the objects of interest (i.e., false
negatives) due to the nature of data-driven formula-
tions.

We propose a novel top-down visual saliency model
based on image patches. The goal of our model is to
learn from labeled training examples from a number
of classes to predict the locations of target objects in an
image. We use a binary variable to indicate the pres-
ence or absence of a target object at an image patch.
The saliency value of an image patch is computed
by the probability of a target object being present
at that location. We formulate the saliency model
with a layered conditional random field (CRF) model
in which target variables are conditioned on sparse
codes of image patches. The use of a conditional
random field enables us to exploit the connectivity of
adjacent image patches such that the saliency map is
computed by incorporating local context information.
On the other hand, the use of sparse coding facili-
tates us to model feature selectivity for target predic-
tion, which typically results in a more compact and
discriminative representation. The presence of target
objects in an image can be thus inferred by message
passing, and represented by posterior probabilities.
We compute the saliency map by normalizing those
posterior probabilities of patches within their context,
thereby turning it to be a context-dependent image
attribute.

We note that the proposed model is more than
a straightforward combination of CRF and sparse
coding for visual saliency. Instead, the proposed lay-
ered model accommodates joint CRF and dictionary
learning. By using sparse codes as intermediate layer,
we learn a both a discriminative dictionary under
the supervision of CRF, and a CRF model driven by
sparse coding. We propose a max-margin approach to
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train the model by exploiting fast inference algorithms
such as the graph cut method [9].

We apply the learned top-down saliency maps to
pritorize object proposals and for predicting human
fixations. The state-of-the-art object detection and
segmentation algorithms [10], [11] rely on evaluating
highly complex features on numerous candidate
image regions (e.g., object proposals [12], [13]).
Given the heavy computational load, it is desirable
to prioritize highly plausible object proposals
over the others such that early decisions can be
made for accelerating detection or segmentation
tasks. The category-specific top-down saliency
maps can naturally be used to rank all the object
proposals. (i.e., early stages in the object detection
and segmentation processes). In addition, when
integrating category-specific top-down saliency
maps with image classifiers in a probabilistic
sense, we obtain category-independent top-down
saliency maps as generic objectness measures [14] to
highlight image regions of interest. We combine them
with complimentary bottom-up saliency maps for
predicting human fixations.

We present results on the Graz-02 [15] and the
PASCAL VOC [16] datasets. On the Graz-02 dataset,
our model demonstrates promising performance
against two state-of-the-art top-down saliency algo-
rithms [17], [8] for object localization. On the PASCAL
VOC dataset, we train top-down saliency models for
localizing the target objects of 20 different classes, and
present cross-category saliency analysis that reveals
the affinity relationship among different object cate-
gories in terms of both local appearance similarity and
co-occurrence. We use our category-specific top-down
saliency maps to rank object proposals generated by
selective search [13], and obtain above 90% average
recall rates at 1000 proposals on 20 object classes.
We calculate category-independent top-down saliency
maps by integrating 20 class-specific maps with state-
of-the-art object classifiers [18]. We present fixation
prediction experiments on the PASCAL S dataset (the
validation set of PASCAL VOC 2010) by combining
our top-down saliency maps with bottom-up saliency
maps [3], [5]. The results show that our method
performs favorably against the state-of-the-art fixation
prediction algorithms.

2 RELATED WORK
We discuss the related algorithms on top-down
saliency maps and the state-of-the-art methods for
object proposals and human fixation prediction. In
addition, we briefly describe the relevant CRF and
dictionary learning methods.

2.1 Top-Down Saliency Maps
Gao et al. [17] propose a top-down saliency algorithm
by selecting discriminant features from a pre-defined

filter bank. The discriminant features are character-
ized by the statistical difference based on the presence
or absence of features in the object class of interest.
With the selected features, the saliency values of
interest points can be computed based on their mutual
information. Instead of using pre-defined filter bank,
Kanan et al. [8] propose to learn filter responses with
independent component analysis (ICA) from natural
images. They thus build the top-down component
of their saliency model by training a support vec-
tor machine (SVM) on ICA features. In our model,
the discriminant features are selected from a learned
dictionary by sparse coding. In [19], the top-down
saliency map is formulated as contextual guidance
for object search. This contextual prior performs well
when there is a strong correlation between the target
locations and holistic scenes, such as cars in urban
scenes. However, as target objects are likely to appear
anywhere in a scene, this contextual prior is less
effective (e.g., images from the Graz-02 and PASCAL
VOC datasets). In contrast, we compute the saliency
map by inference on a CRF model, which is more
effective to leverage the local context information.
Mathe and Sminchisescu [20] propose a dynamic top-
down saliency algorithm to predict human eye move-
ments when looking at actions and contexts.

2.2 Fixation Prediction

Predicting human fixations usually involve both
bottom-up saliency maps and top-down modules. Re-
cent methods can be categorized into two approaches.
Bayesian visual attention models consider joint prob-
ability of objects, features and locations [8], [7]. In [8],
only the saliency value (the fixation likelihood) is con-
cerned as the posterior probability of object presence
given features and locations. By applying the Bayes’
rule and assuming independence of features and lo-
cations, fixation prediction of salient regions is de-
composed into feature-driven bottom-up saliency, ap-
pearance based top-down saliency and location prior.
In [7], a joint probabilistic model is proposed where
both bottom-up and top-down saliency can be derived
and inference is carried out by message passing.
Compared to the Bayesian approach, our method also
combines bottom-up and top-down saliency maps,
but our top-down saliency maps allow hierarchical
prediction from part-level features (sparse coding),
particular category (class-specific saliency maps) to
generic objects (class-independent saliency maps). On
the other hand, learning based approaches [21], [22]
directly train discriminative classifiers using various
features as input and fixation locations as output. In
these learning approaches, features play an important
role. Judd et al. [21] present a SVM based method
by using different bottom-up image cues and pre-
trained object detectors (face and human) as features.
In [22], Xu et al. use high-level features for fixation
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prediction where object-level features from ground
truth object masks and semantic-level features from
attribute annotations are exploited.

2.3 Conditional Random Fields
CRF models have been successfully applied to various
structured output prediction problems such as object
segmentation [23] and semantic segmentation [24] due
to their flexibility of combining object appearance
with context. Previous algorithms [24], [23] usually
incorporate CRFs with pre-trained part-based object
detectors or bag-of-words classifiers. In this work,
we use CRF to generate precise and smooth saliency
maps by taking into account both local appearance
and image context. Different from using pre-trained
appearance models in [24], [23], our method jointly
optimize the CRF weights and features in local ap-
pearance. From this perspective, the proposed algo-
rithm can be extended to semantic segmentation by
constructing graphs on superpixels or regions. Note
that our model is different from the hidden CRFs [25],
where Quattoni et al. define a CRF of latent variables
to represent the part features of local patches and a
single output variable to describe the image category.
Inference is carried out by measuring the compatibil-
ity between the image label and the latent variables.
In contrast, our model uses sparse coding as latent
variables to represent local observations and uses CRF
as structured output variables to define the top-down
saliency map. Recently, Jain et al. [26] model the
joint probability of labels and latent variables with a
single CRF energy function for object categorization
and segmentation. Tao et al. [27] further extends this
method for semantic segmentation. Differently, our
model is based on a layered structure and thus admits
efficient back-propagation learning and feed-forward
inference without complex joint inference of labeling
and visual word assignments.

2.4 Dictionary Learning
Recent advances in machine learning facilitate train-
ing task-specific dictionaries in a supervised man-
ner [28], [29], [30]. Mairal et al. [28] combine sparse
coding and logistic regression into a single loss func-
tion. Although this method shows promising results
on several vision tasks, it is not clear how it can be
effectively applied to complex object recognition prob-
lems as the objective function does not take image
structures into account. Yang et al. [29] propose a
supervised sparse coding method with a hierarchical
model for image classification. This method performs
well for face recognition as a translation invariant
sparse representation is learned with max pooling. In
contrast, our model learns discriminative dictionaries
with structured output in random fields, and thus it
can better capture local context of images for con-
sistent saliency prediction. A recent work [31] also

investigates label consistency for supervised dictio-
nary learning. Different from our work, it enforces
assignment consistency of visual words during sparse
coding. Recently, deep convolutional networks [18]
have demonstrated to be much more powerful than
sparse coding for feature learning, and thus learning
deep convolutional networks with structured output
become increasingly important. In a broad view, our
work can be considered as an early attempt for feature
learning with structured output.

3 TOP-DOWN VISUAL SALIENCY MODEL

Top-Down visual saliency usually involves object lo-
calization [22] and rapid scene understanding [19]
from images. Our top-down visual saliency algorithm
consists of three stages:

1) feature extraction: sparse coding from image
patches;

2) target prediction: predict target presence with a
conditional random field;

3) activation normalization: normalize the predic-
tion probabilities in proper context.

The core of this algorithm is the first two steps as
the normalization step is application dependent. We
unify feature extraction and target prediction into
a novel layered model that enjoys joint training of
sparse coding and conditional random field. We first
introduce the proposed layered model and its joint
training, and then describe its extension to fixation
prediction.

3.1 Patch Based Image Representation

Given an image as shown in Figure 1, we are inter-
ested in knowing where the objects of interest are
present. We sample a dense grid of patches X =
{x1,x2, ...,xm} from the image as the observations.
For a local image patch x ∈ Rp, we assign a binary
label y to indicate the presence (y = 1) or absence
(y = −1) of a target object. The corresponding labels
Y = {y1,y2, ...ym} carry the information of target
presence. The causal relationship between X and
Y is modeled by the probability p(Y|X). However,
directly inferring the presence of the target from xj

usually contains only partial information about the
target object, resulting in semantic and geometric
ambiguities in patch-based representation. It is thus
challenging to directly infer the presence of the target
from xi without considering the others due to the
semantic and geometric ambiguities of patch-based
representations.

3.2 A Layered Prediction Model

Suppose that there exists a dictionary D ∈ Rp×K that
stores the most representative parts (visual words)
{d1,d2, ...,dK} learned from the training data. We
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Fig. 1: Proposed model. We construct a layered model on
image patches for top-down visual saliency. In the bottom
layer, we represent image patches X with the sparse codes
S, using the dictionary D. In the top layer, the binary
variables Y, which predict the target presence, form a
Markov random field conditioned on sparse codes S, where
the pairwise potentials impose the smoothness of label
prediction. To learn the model, we develop a max-margin
approach to deal with the partition function in the top layer
such that the CRF parameters w and the dictionary D are
learned jointly.

introduce a vector of latent variables si ∈ RK to com-
pactly represent x with the dictionary D by xi = Dsi
by solving the following problem,

s(x,D) = arg min
s

1

2
‖x−Ds‖2 + λ‖s‖1, (1)

where λ is a regularization term. We denote the
latent variables for all the patches by S(X,D) =
[s(x1,D), s(x2,D), ..., s(xm,D)]. Note that we use the
notations s(x,D) and S(x,D) to emphasize that the
sparse latent variables are a function of the dictionary.
In the following sections, we simplify the notations
by si , s(x,D) and S , S(x,D) for presentation
clarity when necessary. The sparse coding problem
in (1) can be solved efficiently for single patch by
the feature-sign algorithm in [32]. Since the dictionary
bases represent the object parts, the sparse code s
contains mid-level representation, i.e., part of a target
object in a patch.

If a local patch shows evidence of an object part, it is
likely that nearby patches also exhibit similar support.
We construct a four-connected graph G =< V, E > on
the sampled patches, where V denote the nodes and
E the edges. Assuming that the labels Y enjoy the
Markov property on the graph G conditioned on the
sparse latent variables S(X,D), we formulate a novel
CRF model by

p(Y|S(X,D),w) =
1

Z
e−E(S(X,D),Y,w), (2)

where Z is the partition function, E(S(X,D),Y,w) is
the energy function and w is the CRF weight. This
formulation enables us to jointly learn CRF weight w
and the dictionary D. A graphical diagram is shown
in Fig. 1. Given the CRF weight w, the model in (2)
can be viewed as CRF modulated dictionary learning,
whereas given the dictionary D, it can be viewed as

CRF learning with sparse coding. In this model, we
predict the presence of targets at a particular node i ∈
V from its marginal probability by message passing
through the graph

p(yi|si,w) =
∑
yN(i)

p(yi,yN (i)|si,w), (3)

where N (i) denotes the neighbors of node i on the
graph G.

In this work, we decompose the energy func-
tion E(S(X,D),Y,w) into node and pairwise en-
ergy terms. For each node i ∈ V , the energy is
measured by the total contribution of sparse codes
ψ(si,yi,w1) = −yiw

>
1 si, where w1 ∈ Rk is the weight

vector. For each edge (i, j) ∈ E , we only consider data-
independent smoothness ψ(yi,yj ,w2) = w2I(yi,yj),
where the scaler w2 measures the weight of labeling
smoothness and I(yi,yj) is an indicator equaling to
one when yi and yj are different. Therefore, the
random field energy can be formulated by

E(S,Y,w,D) =
∑
i∈V

ψ(si,yi,w1)+
∑

(i,j)∈E

ψ(yi,yj ,w2).

(4)
Note that our energy function is linear with the pa-
rameter w = [w1;w2] which is similar to most CRF
models [33], [24], [23], but is nonlinear with the dic-
tionary D that is implicitly defined by s(x,D) in (1).
This nonlinear parametrization makes it challenging
to train the proposed model. We discuss our learning
approach in the next section.

Once the optimal CRF parameters ŵ and the dictio-
nary D̂ are learned, a saliency map can be computed
efficiently. Our top-down saliency formulation in (2)
does not involve complex evaluations of latent vari-
ables [25], [28], [26], which makes it feasible to infer
the saliency map in a feed-forward manner without
alternating between evaluation of latent variables and
label inference.

3.3 Activation Normalization

We define the saliency value of a patch i as the
normalized probability of target presence in an image,

oi =
p(yi = 1|si,w)

maxj∈V p(yj = 1|sj ,w)
(5)

and accordingly the saliency map is given by
O(S,w) = {o1,o2, ...,om}. This probabilistic defini-
tion of top-down saliency map leverages not only
appearance information [17], [8], but also local con-
textual information through the marginalization in (3).
This normalization step enables the most salient patch
of an image to be always equal to one such that our
model always highlights the most target-like patches
aggressively.

For a test image X = {x1,x2, ...,xm}, we compute
its saliency map O as follows:
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1) solve sparse coding S(X, D̂) by (1);
2) compute the posterior probability p(Y = 1|S, ŵ)

by (3);
3) compute the saliency map O by normalizing the

probability (5);
4) upsample O to the size of test image; optionally

blur it with a Gaussian kernel.

4 JOINT CRF AND DICTIONARY LEARNING

Let X = {X(1),X(2), ...X(N)} be a set of training
instances and Y = {Y(1),Y(2), ...Y(N)} be the corre-
sponding labels. We aim to learn the CRF parameters
ŵ and the dictionary D̂ to maximize the joint likeli-
hood of training samples,

max
w∈R(k+1),D∈D

N∏
n=1

p(Y(n)|S(X(n),D),w), (6)

where S(n) is a shorthand of S(X(n),D) and D is the
convex set of dictionaries that satisfies the following
constraint:

D = {D ∈ Rp×k, ‖dj‖2 ≤ 1,∀j = 1, 2, ..., k}. (7)

4.1 Max-Margin Approach
The difficulties in CRF learning mainly come from
evaluating the partition function Z of (2). Motivated
by the max-margin CRF learning approaches [33],
[23], we pursue the optimal w and D such that for
all Y 6= Y(n), n = 1, ..., N

p(Y(n)|S(X(n),D),w) ≥ p(Y|S(X(n),D),w). (8)

This constrained optimization allows us to cancel the
partition function Z from both sides of the constraints
and express them in terms of energies

E(Y(n),S(n),w) ≤ E(Y,S(n),w). (9)

Furthermore, we expect the ground truth energy
E(Y(n),S(X(n),D),w) is less than any other energies
E(Y,S(X(n),D),w) by a large margin ∆(Y,Y(n)).
We thus have a new constraint set

E(Y(n),S(n),w) ≤ E(Y,S(n),w)−∆(Y,Y(n)). (10)

In this paper, we define the margin function
∆(Y,Y(n)) =

∑m
i=1 I(yi,y

(n)
i ). There is an exponen-

tially large number of constraints with respect to
labeling Y(n) for each training sample. Similar to the
cutting plane algorithm [34], we seek for the most
violated constraints by solving

Ŷ(n) = arg min
Y

E(Y,S(n),w)−∆(Y,Y(n)). (11)

Therefore, we are able to learn the weight w and the
dictionary D by minimizing the following objective
function,

min
w,D∈D

γ

2
‖w‖2 +

N∑
n=1

`n(w,D), (12)

where `n(w,D) , E(Ŷ(n),S(n),w)− E(Y(n),S(n),w)
and γ controls the regularization of w.

We note that our approach shares a similar ob-
jective function with the latent structural SVM [35].
The difference is that the latent structural SVM is
linearly parameterized while ours is nonlinear with
the dictionary D.

4.2 Learning Algorithm
We propose a stochastic gradient descent algorithm
for optimizing the objective function in (12). The
basic idea is simple and easy to implement. At the
t-th iteration, we randomly select a training instance
(X(n),Y(n)), and then

1) evaluate the sparse latent variables with the dic-
tionary D(t−1) by (1),

2) obtain the most violated labeling with the weight
w(t−1) by (11),

3) update the weight w(t) and the dictionary D(t)

by the gradients of the loss function `n.
We next describe the methods of computing the gra-
dients with respect to the weight and the dictionary.

When the latent variables S are known, the energy
function E(Y,S,w) is linear with w (See (4)),

E(Y,S,w) =< w, f(S,Y) >, (13)

where f(S,Y) = [−
∑

i∈V siyi;
∑

(i,j)∈E I(yi,yj)]. We
can thus compute the gradient with respect to w,

∂`n

∂w
= f(S(n), Ŷ(n))− f(S(n),Y(n)) + γw. (14)

The dictionary is not explicitly defined in the energy
function but implicitly by the sparse coding (See (1)).
We use the chain rule of differentiation to compute
the gradient of `n with respect to the dictionary,

∂`n

∂D
=

∑
i∈V

(
∂`n

∂si
)>
∂si
∂D

. (15)

The difficulty of computing this gradient lies in that
there is no explicit differentiation of sparse code s
with respect to the dictionary D. We overcome this
problem by using implicit differentiation on the fixed
point equation [29], [30]. We first establish the fixed
point equation of (1),

D>(Ds− x) = −λsign(s), (16)

where sign(s) denotes the sign of s in a element-wise
manner and sign(0) = 0. We compute the derivative
of D on both sides of (16), and have

∂sΛ

∂D
= (D>ΛDΛ)−1(

∂D>Λx

∂D
− ∂D>ΛDΛ

∂D
), (17)

where Λ denotes the index set of non-zero codes of
s and Λ̄ is the index set of zero codes. To simplify
the computation in (15), we introduce an vector of
auxiliary variables z for each s,

zΛ̄ = 0, zΛ = (D>ΛDΛ)−1 · ∂`
n

∂sΛ
, (18)
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where ∂`n/∂sΛ = (yi−ŷi)·wΛ. In addition, we denote
Z = [z1, z2, ..., zm]. Therefore, the gradient of `n with
respect to D is computed by

∂`n

∂D
= −DZS> + (X−DS)Z>. (19)

The proposed joint learning algorithm is summarized
in Algorithm 1.

Algorithm 1 Joint CRF and dictionary learning.

Input: X (training images) and Y (ground truth
labels); D0 (initial dictionary); w0 (initial CRF
weight); λ (in (1)); T (number of cycles); γ (in (12))
ρ0 (initial learning rate).
Output: D̂ and ŵ.
Set D̂ = D0, ŵ = w0.
for t = 1, . . . , T do

Permute training samples (X ,Y)
for n = 1, . . . , N do

Solve sparse coding si by (1), ∀i ∈ V ;
Solve the most violated labeling Ŷ(n) by (11);
Update the CRF weight by (14):

ŵ = ŵ − ρt ∂`
n

∂ŵ ;
Compute the auxiliary variables zi by (18);
Update the dictionary by (19):

D̂=D̂+ρt
∂`n

∂D̂
;

Project the dictionary D̂ onto D by (7);
end for
Update the learning rate ρ: ρt = ρ0/t

end for

5 FIXATION PREDICTION

In free viewing scenarios, humans are usually at-
tracted by familiar objects in daily life, such as people,
animals, vehicles and household objects. Visual search
of common objects serves as a top-down module
of visual attention models which is complementary
to the visual stimuli based bottom-up modules [8],
[21]. In this section, we extend the proposed model
to locate common objects and show its application
to predict human fixations together with bottom-up
saliency maps. Among all possible object categories,
the PASCAL VOC dataset provides a collection of 20
common classes [16]:
• People: Person
• Animals: Cat, Dog, Cow, Horse, Sheep and Bird;
• Vehicles: Car, Bus, Bicycle, Motorbike, Aeroplane,

Boat and Train;
• Household: Chair, Sofa, Dining table, TV/monitor,

Bottle and Potted plant.
We denote the common classes by a set of discrete
labels C = 1, 2, . . . , 20. For a particular common object
class C = c, the proposed top-down saliency map
predicts its presence on the patches of input image

by p(Y|X,C = c). To locate generic common objects
without target class assumption, we integrate class
variable C over 20 common object classes to obtain
category-independent top-down saliency by

p(Y|X) =
20∑
c=1

p(Y|X,C = c)p(C = c|X). (20)

The first term on the right side of (20) is the top-
down saliency map for common object class C = c
introduced in previous sections while the second term
p(C = c|X) is the probabilistic output of object catego-
rization models that provides global modulation for
a particular object class. In other words, the proposed
top-down saliency map and object categorization cap-
tures the “where” and “what”’ components for object
recognition, respectively. Technically, any object classi-
fication models will suffice. Given an input image X,
we calculate its top-down saliency map for common
objects O from p(Y = 1|X) using the normalization
method in Section 3.3 and its bottom-up saliency map
U using state-of-the-art algorithms [3], [5]. We use a
binary variable fi to represent human fixation at pixel
i and predict eye fixation by

p(fi) = αui + (1− α)oi, (21)

where ui ∈ U and oi ∈ O are the bottom-up and
top-down saliency values at pixel i and α is the
tradeoff constant value that usually is set to 0.5.
Figure 2 presents an example of fixation prediction by
combining bottom-up and top-down saliency maps.

6 EXPERIMENTS
We evaluate the proposed top-down saliency algo-
rithm in the context of object localization and fixation
prediction. In the Graz-02 experiments, we compare
the proposed model with two state-of-the-art top-
down saliency map algorithms and show its perfor-
mance on object localization. In the PASCAL VOC

(a) Human fixation map (b) Bottom-up saliency map

(c) Top-down saliency map (d) Combined map

Fig. 2: Comparison of bottom-up and top-down saliency
maps for human fixation prediction. Warmer color (from
red to blue) indicates higher saliency value.
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experiments, we present multiscale top-down saliency
maps for 20 object classes and analyze their cross-
category performance. We then apply our top-down
saliency maps to fixation prediction tasks using the
PASCAL S dataset [36].

6.1 Graz-02
The Graz-02 dataset contains three categories (bicy-
cles, cars and persons) and one background class.
Each category has 300 images of size 640×480 pixels
and the corresponding pixel-based foreground/back-
ground annotations. We choose this dataset because
all of three categories contain real-world images
with large intra-class variations, occlusions and back-
ground clutters. The task is to evaluate the perfor-
mance of top-down saliency maps to localize target
objects against the background.

Implementations. We sample image patches of 64×64
pixels by shifting 16 pixels and collect 999 patches on
a 27×37 grid for each image. The SIFT descriptors [37]
are extracted from each image patch to represent the
object appearance. We label a patch as positive if at
least one quarter of its total pixels are foreground,
and obtain a binary patch-based saliency mask from
the original pixel-based annotation of each image. For
each category, we use 150 odd-numbered foreground
images and 150 odd-numbered background images as
the training set, and the remaining 150 foreground
and 150 background images as the test set.

To train the proposed saliency model by Algo-
rithm 1, we need to initialize the dictionary and the
CRF model. We collect all these SIFT descriptors from
the training set and use the K-means algorithm to ini-
tialize the dictionary D(0). After evaluating the latent
variables by sparse coding, we initialize the CRF node
energy weight w

(0)
1 by training a linear SVM on the

sparse codes and the corresponding saliency labels.
All the models are trained with 20 cycles.

Parameter Settings. There are two important param-
eters in our model. One is the number of visual
words (atoms) K in the dictionary, which controls the
capacity of modeling appearance variations. Although
it is usually more effective to model object appearance
with a larger dictionary, it is more difficult and time-
consuming to achieve this as more training examples
are required. In our experiments, we train saliency
map models with 256 or 512 visual words. The other
parameter is the sparsity regularization term λ de-
fined in (1). The greater the λ is, the more sparse
the latent codes are and the fewer visual words are
selected to represent an image patch. We use two
values, 0.15 and 0.30, for λ in the experiments. In
Algorithm 1, we set the initial learning rate ρ0=1e−3
and the weight regularization term γ=1e− 5.

Comparisons with state-of-the-art methods [38], [17].
We compare our model with two state-of-the-art top-
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Fig. 3: Patch-based precision-recall curves on Graz-02
dataset.

TABLE 1: Precision rates (%) at EER on the Graz-02 dataset.

Bicycle Car Person
DSD [17] 62.5 37.6 48.2
SUN [8] 61.9 45.7 52.2

Baseline, k=512, λ=0.15 71.9 39.3 56.8
Joint, k=256, λ=0.15 73.3 57.5 64.2
Joint, k=512, λ=0.15 80.1 68.6 72.4
Joint, k=512, λ=0.30 73.5 66.6 69.6

down saliency algorithms [17], [8] by using our own
implementations. To demonstrate the effectiveness of
joint CRF and dictionary learning, we also construct
a baseline model by switching off the dictionary up-
date module. For the discriminant saliency detection
algorithm (DSD) [17], we first construct a dictionary
based on the Discrete Cosine Transform (DCT) with
256 filters of size 64×64, and then select 100 salient
features with largest mutual information. For the
saliency using natural statistics algorithm (SUN) [8],
we first reduce the dimension of the image patches
by Principle Component Analysis (PCA) and then
learn 724 filters by Independent Component Analysis
(ICA) from the training data. By using the ICA filter
responses as features, a linear SVM is trained to
compute the saliency values of patches.

All the models (ours, baseline, DSD, and SUN) are
evaluated by patch-based precision-recall rates on the
test set of each category. Figure 3 shows the precision-
recall curves for three object categories, respectively.
Overall, the proposed saliency map algorithm per-
forms favorably against the state-of-the-art methods.
Furthermore, the results demonstrate the importance
of dictionary update in the proposed algorithm.

In Table 1, we present the results using different
parameters (k, λ) of all the models in terms of preci-
sion rates at equal error rates (EER where precision is
equal to recall). The best results are obtained by our
model with the parameters k=512, λ=0.15. The results
also show substantial improvements of our models
over the baseline and other algorithms. The DSD al-
gorithm selects salient features based on image statis-
tics that usually have limited ability of suppressing
background. In general, the DSD method generates
high recall but low precision rates. The SUN algorithm
performs better than the DSD method which can be
attributed to the use of strong classifiers. Without
considering local contexts, the SUN algorithm tends
to produce noisy saliency maps. Our models are able
to produce clear saliency maps when target objects
appear in different viewpoints and scales with sub-
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Fig. 4: Top-down saliency maps generated by the proposed, DSD and SUN models.

stantial occlusions. A saliency map of an image has
the size of its patch grid, i.e., 27×37. We upsample
the original saliency map to the size of image by bi-
linear interpolation. Figure 4 shows the saliency maps
generated by the DSD, SUN and proposed algorithms.
Note that the proposed saliency algorithm is able to
locate heavily occluded objects (e.g., bicycle and cars)
whereas state-of-the-art object detection methods are
not expected to perform well in such cases.

Effect of dictionary update. Our saliency model
jointly learns CRF weights and dictionary from the
training examples by gradient updates (Algorithm 1).
We are interested in how the dictionary update helps
improve the model performance. Thus, we evaluate
the CRF weights and the dictionary at each training
cycle on the test set. Figure 6 presents the precision
rates at EER of each cycle. As shown in the figure, the
performance improves substantially in the first several
cycles and converge after 10 cycles. The stochastic
nature of our learning algorithm results in some
performance perturbation at some cycles. The results
show that dictionary update significantly improves
the model performance.
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Fig. 6: Performance gain with training cycles. The dictionary
size k=256 and the sparsity regularization term λ=0.15.

6.2 PASCAL VOC

The PASCAL VOC 2007 dataset consists of 5011 im-
ages for training and validation, and 4952 images for
tests from 20 object categories and one background
class. All the images are annotated with bounding
boxes while segmentation annotations are available
for 632 images. This dataset is more challenging for
top-down visual saliency because objects from differ-
ent categorizes may appear in the same image with
cluttered background. We first evaluate our saliency

model for localization and then apply the saliency
maps for fixation prediction.

6.2.1 Object localization
The saliency models are trained in a class-wise man-
ner. For each category, we use the images including
target objects for training. We list the numbers of
training images for each class in the first row of
Table 2. This training strategy conforms with the aim
of top-down visual saliency to discriminate target
objects from their surroundings. When applied to
negative images, our model is expected to highlight
most target-like (salient) regions. This differentiates
our saliency model from object detection models that
are trained to suppress all the possible false positives.
In the training phase, we extract image patches at
three scales 48×48, 64×64 and 80×80 from a denser
grid of every 4 pixels. We train saliency models at
three scales separately and then combine the saliency
maps in the test phase. The training process requires
computing sparse coding of each patch for numerous
iterations.

We use a similar method for the experiments with
the Graz-02 dataset to generate saliency masks from
images with labeled segmentation masks. For those
images without labeled segmentations, we create
masks by measuring whether the sampled patches fall
into target bounding boxes. We set the dictionary size
to K=512 and λ=0.15 to train the models with 10
cycles for all classes. To demonstrate the effectiveness
of joint dictionary and CRF learning, we also train the
models with baseline algorithms without dictionary
update.

Within-category results. For each class, we first evalu-
ate the learned model with the corresponding positive
images. We measure the performance by the precision
rates at EER and present the results from the baseline
and joint learning algorithms in Table 2. The proposed
joint learning algorithm consistently outperforms the
baseline method which demonstrates the merits of
dictionary update.

Figure 7 shows representative saliency maps from
each category. These results demonstrate that the pro-
posed model is able to handle large scale and view-
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(a) Bicycle

(b) Car

(c) Person

Fig. 5: Saliency maps of bicycle, car and person categories from the Graz-02 dataset generated by the proposed algorithm.
In each panel, we present the original image and the saliency map, respectively. Overall, the proposed saliency maps are
able to locate objects with large viewpoint changes, scale variations and heavy occlusions.

TABLE 2: PASCAL VOC 2007 localization results. In each column, we present the category, the numbers of training and
test images, the precision rates at EER by the baseline and joint learning algorithms, respectively.
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# of training images 238 243 330 181 244 186 713 337 445 141 200 421 287 245 2008 245 96 229 261 256 365

# of test images 204 239 282 172 212 174 721 322 417 127 190 418 274 222 2007 224 97 223 259 229 351

Baseline 79.7 76.5 70.6 73.7 47.9 74.4 77.8 74.1 52.3 78.3 76.4 73.9 77.6 77.3 76.1 62.0 79.2 75.4 75.9 59.7 71.9

Joint 80.2 79.3 72.6 74.6 57.7 79.3 81.2 75.2 58.0 79.8 77.4 75.7 81.0 79.4 78.6 66.6 79.9 77.1 78.4 70.6 75.1

point changes (e.g., aeroplanes), significant lighting
variations (e.g., cats), and partial occlusions and artic-
ulations (e.g., people), However, our model is more
likely to locate objects with rich textures due to the
use of the adopted SIFT-based patch representation.
Table 2 and Figure 7 show that our model performs
better in the classes of aeroplanes, bicycles and horses
than in the classes of bottles and chairs, which are
easier to identify from their shapes. In addition, we
observe that some saliency models tend to locate other
objects that co-occur with the targets in the training
images. For example, the saliency model for dogs tend
to highlight people and cats as well (which can be
attributed by the facts that these objects tend to appear
in the same training images). This fact motivates us
to investigate the performance of our model on the
negative images. More specifically, we are interested
in evaluating the saliency models across categories.

Cross-category results. We apply the saliency model
for one category to the test sets of all the other 19 cat-
egories, and compute the precision rates at EER based
on the ground truth saliency masks. The precision
rates are summarized in the confusion matrix C(·, ·)
shown in Figure 8, where the entry C(i, j) represents
the precision rate of saliency model i on the test set
of category j. These results indicate the ability of the

saliency model of one class to highlight the object
regions of another class. It is of interest to observe

Fig. 8: Confusion matrix for cross-category saliency maps.
The red dot denotes the class with high saliency precision
while the blue dot denotes the class with low saliency
precision.

that some saliency models perform quite well in the
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Aeorplane Bicycle

Bird Boat

Bottle Bus

Car Cat

Chair Cow

Dining Table Dog

Horse Motorbike

Person Potted Plant

Sheep Sofa

Train TV Monitor

Fig. 7: Within-category saliency detection results. We present representative saliency maps from 20 categories in a 10×2
table and each cell includes two test cases where the original image is on the left while the saliency map is on the right.
The lowest to highest saliency measures are shown in color from blue to red (the saliency maps are best viewed in color).
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test sets of particular classes, e.g., dog model in cats
images and cow model in sheep images. This can be
explained by the mutual saliency between two object
classes due to patch-level appearance similarity.

In order to better analyze mutual saliency among
categories, we show the confusion matrix of Fig-
ure 8 in a two-dimensional embedded space using
the Laplacian eigenmaps [39]. The cross-category pre-
cision in the entry C(i, j) represents how well the
model of class-i performs in the images of class-j, and
likewise for C(j, i). The average precision, (C(i, j) +
C(j, i))/2, thus represents the affinity between class-i
and class-j, and the matrix A=(C+C>)/2 denotes the
affinity matrix of 20 classes. We extract the first two
eigenvectors of affinity matrix A as two-dimensional
embedded coordinates, which are depicted in Fig-
ure 9.

Fig. 9: Affinity of 20 categories in a two-dimensional space
by their Laplacian eigenmap. The red dot denotes the class
with high saliency precision while the blue dot denotes the
class with low saliency precision.

The embedded results of the affinity matrix can be
split into three clusters:

1) person, dog, cat, cow, sheep, horse, bird, motor-
bike, bicycle and sofa;

2) aeroplane, car, boat, train and bus;
3) potted plant, chair, dining table, bottle and tv

monitor.
There are two factors underlying this mutual saliency
relationship, i.e., feature sharing and object co-
occurrence. All the animals share similar part con-
figurations (e.g., head, body and legs) such that the
classes of person, dog, cat, cow, sheep, horse and bird
follow into the first cluster. In the second cluster, all
the classes of aeroplane, car, boat, train and bus belong
to large vehicles which consist of wheels, windows
and other rigid structures. Interestingly, the motorbike
and bicycle classes also fall into the first cluster. This
can be explained by that motorbikes, bicycles and sofa
usually co-occur with people in the training images.
In this dataset, many images include people riding
bicycles, people riding motorbikes or people lying in

the sofa. As most saliency masks are obtained from
bounding box annotations, it is inevitable that patches
of concurrent objects (bicycles, motorbikes and sofa)
are considered as positive examples and vice versa.
Many classes in the third cluster have low precisions
in the test sets. It is thus less interesting to investi-
gate mutual saliency among these classes. However,
objects from these classes (e.g., potted plant, chair,
dining table, bottle and tv monitor) appear frequently
in households.

Feature sharing [40] and object co-occurrence [41]
are important image structures for object recognition.
Our experimental results show that such properties
can be obtained via clustering on saliency maps gen-
erated by the proposed algorithm.

Prioritizing object proposals for detection. State-of-
the-art object detectors [11] need to evaluate object
proposals on deep convolutional networks on thou-
sands [13]. Since many of them are simply back-
ground patches or irrelevant objects, they are less
salient than the plausible target regions. We thus
use the learned category-specific top-down saliency
value of each object proposal as the priority score
for evaluating deep convolutional networks. This pro-
vides category-specific rankings of object proposals
for detection as shown in Figure 10. In most classes,
the method based on saliency ranking achieves above
the recall rate of 90% with 1000 proposals (about half
of total proposals typically used in the state-of-the-
art methods) per image. Note that it takes less than
2 seconds to compute top-down saliency maps for
three scales (including SIFT feature extraction, sparse
coding and BP inference) for a 256× 256 image using
unoptimized MATLAB code on a desktop computer
with an Intel i7 processor.

6.2.2 Fixation Prediction
We present experimental results for fixation prediction
based on the method introduced in Section 5 and
the PASCAL S dataset [36]. The PASCAL S dataset
consists of 850 images from the validation set of PAS-
CAL VOC 2010 and fixation data is collected from 8
subjects using Eyelink 1000 eye-tracker. Each image is
presented to subjects for 2 seconds in the free viewing
scenarios. Thorough performance evaluation of state-
of-the-art saliency algorithms for fixation prediction
are presented [36]. We train image classifiers on the
training set of PASCAL VOC 2007. For each image,
we extract features from the seventh layer of a deep
convolutional network pre-trained on the ImageNet
dataset [18], [42], and train classifiers for 20 object
classes using linear SVM classifiers [43].

We compute the category-independent top-down
saliency map O = p(Y = 1|X) (20) for each image in
the PASCAL S dataset using the the saliency models
in previous localization experiments p(Y=1|X,C=c)
and the probabilistic output of SVM classifiers p(C=



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2016.2547384, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 10: Evaluating top-down saliency maps by recall rates of object proposals. In each panel, the blue curve denotes the
recall rates given by the bounding box proposals drawn from selective search [13] while the red curve denotes the recall
rates of those proposals ranked by their top-down saliency values.

c|X).
We combine our category-independent top-down

saliency maps (TDVS) with two state-of-the-art
bottom-up saliency maps, AWS [5] and GBVS [3] as
our predictions using (21), and the results are denoted
by TDVS-AWS and TDVS-GBVS, respectively.

Some qualitative results are presented in Fig. 11.
Overall, our top-down saliency maps generates high
recall of object regions that help predict human fix-
ations when bottom-up saliency gets distracted by
cluttered backgrounds.

We compare with other representative fixation pre-
diction algorithms, ITTI [1], AIM [2] and SIG [44]. All
the saliency maps are blurred with Gaussian kernels
by varying the bandwidth. We compute the AUC
(area under ROC curve) scores for compared saliency
maps with different Gaussian blur kernels by using
the code provided by [36]. The results in Fig. 12
show that combing top-down and bottom-up saliency

maps is able to improve the performance for human
fixation prediction (See the improvements of TDVS-
GBVS over GBVS and TDVS-AWS over AWS).

7 CONCLUDING REMARKS

We present a novel top-down visual saliency model
via joint CRF and dictionary learning. Compared with
computing saliency values individually on each patch
by [17], [8], our saliency map is generated by consid-
ering the label consistency via the proposed layered
CRF model. Our model thus produces clear saliency
maps by leveraging local context information. We ob-
serve that significant improvements can be achieved
by updating the dictionary under supervision of the
proposed CRF model. The learned top-down saliency
maps are used to prioritize object proposals for ob-
ject detection. We extend our model to category-
independent top-down saliency and show that it
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image human fixation GBVS AWS TDVS TDVS-GBVS TDVS-AWS

Fig. 11: Qualitative fixation prediction results. In each row, we present an input image, the ground truth fixation map,
two bottom-up saliency maps (GBVS and AWS), our category-independent top-down saliency map (TDVS) and combined
saliency maps (TDVS-GBVS and TDVS-AWS). The lowest to highest saliency measures are shown in color from blue to
red (the saliency maps are best viewed in color).

provides complementary information to bottom-up
saliency for improving fixation prediction.
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