EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 9

Overview

- Least squares minimization
- Regression
- Regularization

Reading

- Chapter 11 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 5 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 4 of Matrix Analysis and Applied Linear Algebra by Carl Meyer
- Chapter 11 and Chapter 15 of Matrix Algebra From a Statistician's Perspective by David Harville

Matrix differentiation

- First order differentiation of linear form:

$$
\begin{gathered}
\mathbf{a}^{\top} \mathbf{x}=\mathbf{x}^{\top} \mathbf{a}=\sum_{i} a_{i} x_{i} \\
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}}=\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial x_{1}} \\
\vdots \\
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial x_{n}}
\end{array}\right]=\mathbf{a} \\
\frac{\partial x_{i}}{\partial x_{j}}=\left\{\begin{array}{cc}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right. \\
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial x_{j}}=\frac{\partial\left(\sum_{i} a_{i} x_{i}\right)}{\partial x_{j}}=\sum_{i} a_{i} \frac{\partial x_{i}}{\partial x_{j}}=a_{j}
\end{gathered}
$$

- Likewise

$$
\begin{gathered}
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}^{\top}}=\mathbf{a}^{\top} \\
\frac{\partial(A \mathbf{x})}{\partial \mathbf{x}^{\top}}=A \quad \frac{\partial(A \mathbf{x})^{\top}}{\partial \mathbf{x}}=A^{\top}
\end{gathered}
$$

Matrix differentiation (cont'd)

- First order differentiation of quadratic form:

$$
\begin{gathered}
\mathbf{x}^{\top} A \mathbf{x}=\sum_{i, k} a_{i k} x_{i} x_{k} \\
\frac{\partial \mathbf{x}^{\top} A \mathbf{x}}{\partial \mathbf{x}}=\left(A+A^{\top}\right) \mathbf{x} \\
\frac{\partial\left(x_{i} x_{k}\right)}{\partial x_{j}}=\left\{\begin{array}{cl}
2 x_{j} & \text { if } i=k=j \\
x_{i} & \text { if } k=j, i \neq j \\
x_{k} & \text { if } i=j, k \neq j \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{x}^{\top} A \mathbf{x}}{\partial x_{j}}=\frac{\partial \sum_{i, k} a_{i k} x_{i} x_{k}}{\partial x_{j}} \\
& =\frac{\partial\left(a_{j j} x_{j}^{2}+\sum_{i \neq j} a_{i j} x_{i} x_{j}+\sum_{k \neq j} a_{j k} x_{j} x_{k}+\sum_{i \neq j, k \neq j} a_{i k} x_{i} x_{k}\right)}{\partial x_{j}} \\
& =a_{j j} \frac{\partial x_{j}^{2}}{\partial x_{j}}+\sum_{i \neq j} a_{i j} \frac{\partial\left(x_{i} x_{j}\right)}{\partial x_{j}}+\sum_{k \neq j} a_{j k} \frac{\partial\left(x_{j} x_{k}\right)}{\partial x_{j}}+\sum_{i \neq j, k \neq j} a_{i k} \frac{\partial\left(x_{i} x_{k}\right)}{\partial x_{j}} \\
& =2 a_{j j} x_{j}+\sum_{i \neq j} a_{i j} x_{i}+\sum_{k \neq j} a_{j k} x_{k}+0 \\
& =\sum_{i} a_{i j} x_{i}+\sum_{k} a_{j k} x_{k}
\end{aligned}
$$

Matrix differentiation (cont'd)

- First order differentiation of quadratic form:

$$
\frac{\partial \mathbf{x}^{\top} A \mathbf{x}}{\partial \mathbf{x}}=\left(A+A^{\top}\right) \mathbf{x}
$$

- Let W be a symmetric matrix, it can be easily shown that

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{s}}(\mathbf{x}-A \mathbf{s})^{\top} W(\mathbf{x}-A \mathbf{s}) & =-2 A^{\top} W(\mathbf{x}-A \mathbf{s}) \\
\frac{\partial}{\partial \mathbf{s}}(\mathbf{x}-\mathbf{s})^{\top} W(\mathbf{x}-\mathbf{s}) & =-2 W(\mathbf{x}-\mathbf{s}) \\
\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}-A \mathbf{s})^{\top} W(\mathbf{x}-A \mathbf{s}) & =2 W(\mathbf{x}-A \mathbf{s})
\end{aligned}
$$

Matrix differentiation (cont'd)

- Second order derivative of quadratic form:

$$
\begin{aligned}
\frac{\partial^{2}\left(\mathbf{x}^{\top} A \mathbf{x}\right)}{\partial x_{s} \partial x_{j}}= & \sum_{i} a_{i j} \frac{\partial x_{j}}{\partial x_{s}}+\sum_{k} a_{j k} \frac{\partial x_{k}}{\partial x_{s}}=a_{s j}+a_{j s} \\
& \frac{\partial^{2}\left(\mathbf{x}^{\top} A \mathbf{x}\right)}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}=A+A^{\top}
\end{aligned}
$$

- Recall

$$
f(\mathbf{x}) \approx f(\mathbf{a})+J(\mathbf{a})(\mathbf{x}-\mathbf{a})+\frac{1}{2}(\mathbf{x}-\mathbf{a})^{\top} H(\mathbf{a})(\mathbf{x}-\mathbf{a})
$$

- See The Matrix Cookbook by Kaare Petersen and Michael Pedersen (http://matrixcookbook.com) for details

Overdetermined linear equations

- Consider $\mathbf{y}=A \mathbf{x}$ where $A \in \mathbb{R}^{m \times n}$ is skinny, i.e., $m>n$
- One can approximately solve $y \approx A \mathbf{x}$, and define residual or error $\mathbf{r}=A \mathbf{x}-\mathbf{y}$
- Find $\mathbf{x}=\mathbf{x}_{/ s}$ that minimizes $\|\mathbf{r}\|$
- $\mathrm{x}_{/ s}$ is the least squares solution
- Geometric interpretation: $A \mathbf{x}_{/ s}$ is the point in $\operatorname{ran}(A)$ that is closest to \mathbf{y}, i.e., $A \mathbf{x}_{/ s}$ is the projection of \mathbf{y} onto $\operatorname{ran}(A)$

Least squares minimization

- Minimize norm of residual squared

$$
\begin{aligned}
\mathbf{r} & =A \mathbf{x}-\mathbf{y} \\
\|\mathbf{r}\|^{2} & =\mathbf{x}^{\top} A^{\top} A \mathbf{x}-2 \mathbf{y}^{\top} A \mathbf{x}+\mathbf{y}^{\top} \mathbf{y}
\end{aligned}
$$

- Set gradient with respect to x to zero

$$
\nabla_{\mathbf{x}}\|\mathbf{r}\|^{2}=2 A^{\top} A \mathbf{x}-2 A^{\top} \mathbf{y}=0 \Rightarrow A^{\top} A \mathbf{x}=A^{\top} \mathbf{y}
$$

(also known as normal equations)

- Assume $A^{\top} A$ is invertible, we have

$$
\begin{aligned}
\mathbf{x}_{/ s} & =\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{y} \\
A \mathbf{x}_{/ s} & =A\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{y}
\end{aligned}
$$

Least squares minimization

$$
\mathbf{y}=A \mathbf{x} \Rightarrow \mathbf{x}_{/ s}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{y}
$$

- $x_{/ s}$ is linear function of \mathbf{y}
- $\mathbf{x}_{/ s}=A^{-1} \mathbf{y}$ if A is square
- $\mathbf{x}_{/ s}$ solves $\mathbf{y}=A \mathbf{x}_{/ s}$ if $\mathbf{y} \in \operatorname{ran}(A)$
- $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ is called pseudo inverse or Moore-Penrose inverse
- A^{\dagger} is a left inverse of (full rank, skinny) A :

$$
A^{\dagger} A=\left(A^{\top} A\right)^{-1} A^{\top} A=I
$$

- $A\left(A^{\top} A\right)^{-1} A^{\top}$ is the projection matrix

Orthogonality principle

- Optimal residual

$$
\mathbf{r}=A \mathbf{x}_{/ s}-\mathbf{y}=\left(A\left(A^{\top} A\right)^{-1} A^{\top}-I\right) \mathbf{y}
$$

which is orthogonal to $\operatorname{ran}(A)$:

$$
\langle\mathbf{r}, A \mathbf{z}\rangle=\mathbf{y}^{\top}\left(A\left(A^{\top} A\right)^{-1} A^{\top}-I\right)^{\top} A \mathbf{z}=0
$$

for all $\mathbf{z} \in \mathbb{R}^{n}$

- Since $\mathbf{r}=A \mathbf{x}_{/ s}-\mathbf{y} \perp A\left(\mathbf{x}-\mathbf{x}_{/ s}\right)$ for any $\mathbf{x} \in \operatorname{ran}(A)$, we have

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}=\left\|\left(A \mathbf{x}_{/ s}-\mathbf{y}\right)+A\left(\mathbf{x}-\mathbf{x}_{/ s}\right)\right\|^{2}=\left\|A \mathbf{x}_{/ s}-\mathbf{y}\right\|^{2}+\left\|A\left(\mathbf{x}-\mathbf{x}_{/ s}\right)\right\|^{2}
$$

which means for $\mathbf{x} \neq \mathbf{x}_{/ s},\|A \mathbf{x}-\mathbf{y}\|>\left\|A \mathbf{x}_{/ s}-\mathbf{y}\right\|$

- Can be further simplified via $Q R$ decomposition

Least squares minimization and orthogonal projection

- Recall if $\mathbf{u} \in \mathbb{R}^{m}$, then $P=\frac{\mathbf{u}^{\top}{ }^{\top}}{\mathbf{u}^{\top} \mathbf{u}}$ is an orthogonal projection
- Given a point $\mathbf{x}=\mathbf{x}_{\|}+\mathbf{x}_{\perp}$, its projection is

$$
P_{\mathbf{u}} \mathbf{x}=\mathbf{u u}^{\top} \mathbf{x}_{\|}+\mathbf{u u}^{\top} \mathbf{x}_{\perp}=\mathbf{x}_{\|}
$$

- Generalize to orthogonal projections on a subspace spanned by a set of orthonormal basis $A=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]$

$$
P_{A}=A A^{\top}
$$

- In general, we need a normalization term for orthogonal projection if $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ is not orthonormal basis,

$$
P_{A}=A\left(A^{\top} A\right)^{-1} A^{\top}
$$

- Given $A=U \Sigma V^{\top}$, it follows that $P_{A}=U U^{\top}$ by least squares minimization

Least squares estimation

- Numerous applications in inversion, estimation and reconstruction problems have the form

$$
\mathbf{y}=A \mathbf{x}+\mathbf{v}
$$

- \mathbf{x} is what we want to estimate or reconstruct
- \mathbf{y} is our sensor measurements
- \mathbf{v} is unknown noise or measurement error
- i-th row of A characterizes i-th sensor
- Least squares estimation: choose $\hat{\mathrm{x}}$ that minimizes $\|A \hat{\mathrm{x}}-\mathbf{y}\|$, i.e., deviation between
- what we actually observe \mathbf{y}, and
- what we would observe if $\mathbf{x}=\hat{\mathbf{x}}$, and there were no noise $(\mathbf{v}=0)$ least squares estimate is

$$
\hat{\mathbf{x}}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{y}
$$

Best linear unbiased estimator (BLUE)

- Linear estimator with noise: $\mathbf{y}=A \mathbf{x}+\mathbf{v}$ with A is a full rank and skinny
- A linear estimator of form $\hat{\mathbf{x}}=B \mathbf{y}$, is unbiased if $\hat{\mathbf{x}}=\mathbf{x}$ whenever $\mathbf{v}=0$ (no estimator error when $\mathbf{v}=0$)
- Equivalent to $B A=I$, i.e., B is the left inverse of A
- Estimator error of unbiased linear estimator is

$$
\mathbf{x}-\hat{\mathbf{x}}=\mathbf{x}-B(A \mathbf{x}+\mathbf{v})=-B \mathbf{v}
$$

- It follows that $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ is the smallest left inverse of A such that for any B with $B A=I$, we have

$$
\sum_{i, j} B_{i j}^{2} \geq \sum_{i, j} A_{i j}^{\dagger}
$$

i.e., least squares provides the best linear unbiased estimator (BLUE)

Pseudo inverse via regularization

- For $\mu>0$, let \mathbf{x}_{μ} be unique minimizer of

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}+\mu\|\mathbf{x}\|^{2}=\left\|\left[\begin{array}{c}
A \\
\sqrt{\mu} I
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{0}
\end{array}\right]\right\|^{2}=\|\widetilde{A} \mathbf{x}-\widetilde{\mathbf{y}}\|^{2}
$$

thus

$$
\begin{aligned}
\mathbf{x}_{\mu} & =\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} \widetilde{A}^{\top} \widetilde{\mathbf{y}} \\
& =\left(A^{\top} A+\mu I\right)^{-1} A^{\top} \mathbf{y}
\end{aligned}
$$

is called regularized least squares solution for $A \mathbf{x} \approx \mathbf{y}$

- Also called Tikhonov (Tychonov) regularization (ridge regression in statistics)
- As $A^{\top} A+\mu I>0$ and so is invertible, then we have

$$
\lim _{\mu \rightarrow \mathbf{0}} \mathbf{x}_{\mu}=A^{\dagger} \mathbf{y}
$$

and

$$
\lim _{\mu \rightarrow 0}\left(A^{\top} A+\mu I\right)^{-1} A^{\top}=A^{\dagger}
$$

Minimizing weighted-sum objective

- Two (or more) objectives:
- want $J_{1}=\|A \mathbf{x}-\mathbf{y}\|^{2}$ small
- and also $J_{2}=\|F \mathbf{x}-\mathbf{g}\|^{2}$ small
- Consider minimize a weighted-sum objective

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}+\mu\|F \mathbf{x}-\mathbf{g}\|^{2}=\left\|\left[\begin{array}{c}
A \\
\sqrt{\mu} F
\end{array}\right] \mathbf{x}-\left[\begin{array}{c}
\mathbf{y} \\
\sqrt{\mu} \mathbf{g}
\end{array}\right]\right\|^{2}=\|\widetilde{A} \mathbf{x}-\widetilde{\mathbf{y}}\|^{2}
$$

- Thus, the least squares solution is

$$
\mathbf{x}=\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} \widetilde{A}^{\top} \widetilde{\mathbf{y}}=\left(A^{\top} A+\mu F^{\top} F\right)^{-1}\left(A^{\top} \mathbf{y}+\mu F^{\top} \mathbf{g}\right)
$$

- Widely used function approximation, regression, optimization, image processing, computer vision, control, machine learning, graph theory, etc.

Least squares data fitting

- Linear regression: Model one scalar y in terms of linear combination of t_{1}, \ldots, t_{n}

$$
y=\alpha_{0}+\alpha_{1} t_{1}+\cdots+\alpha_{n} t_{n}=\sum_{j=1}^{n+1} \alpha_{i} t_{j}
$$

where α_{j} are unknown parameters or coefficients

- For a set of m data points, $\left\{\left(\mathbf{t}_{i}, y_{i}\right)\right\}, \mathbf{t} \in \mathbb{R}^{n}$, want to minimize

$$
\sum_{i=1}^{m}\left(y_{i}-\sum_{j=1}^{n+1} t_{i j} \alpha_{j}\right)^{2}
$$

Least squares data fitting

- For a set of training data, $\left\{\left(\mathbf{t}_{i}, y_{i}\right)\right\}$, we form \mathbf{y} and A
- In matrix form, denote A by $m \times(n+1)$ matrix with each row an input vector, and $\mathbf{x} \in \mathbb{R}^{n+1}$,

$$
\mathbf{y}=A \mathbf{x} \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{m}
\end{array}\right] \quad A=\left[\begin{array}{ccccc}
1 & t_{11} & t_{12} & \ldots & t_{1 n} \\
1 & t_{21} & t_{22} & \ldots & t_{2 n} \\
1 & \ldots & & & \\
1 & t_{m 1} & t_{m 2} & \ldots & t_{m n}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

and thus we obtain the coefficients α_{i} from \mathbf{x}, where

$$
\mathbf{x}=A^{\dagger} \mathbf{y}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{y}
$$

and

$$
y=\alpha_{0}+\alpha_{1} t_{1}+\cdots+\alpha_{n} t_{n}=\sum_{j=1}^{n+1} \alpha_{i} t_{j}
$$

Least squares data fitting (cont'd)

- Estimate the relationship of weight loss (y) and storage time $\left(t_{1}\right)$ and storage temperature (t_{2}) with $y=\alpha_{0}+\alpha_{1} t_{1}+\alpha_{2} t_{2}$

Time	1	1	1	2	2	2	3	3	3
Temp	-10	-5	0	-10	-5	0	-10	-5	0
Loss	.15	.18	.20	.17	.19	.22	.20	.23	.25

- Least squares solution is found by

$$
A=\left[\begin{array}{ccc}
1 & 1 & -10 \\
1 & 1 & -5 \\
\cdots & & \\
1 & 3 & 0
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
.15 \\
.18 \\
\ldots \\
.25
\end{array}\right]
$$

- Using MATALB: $\mathbf{x}=A \backslash \mathbf{y}=\left[\begin{array}{lll}174 & .025 & .005\end{array}\right]^{\top}$

$$
y=.174+.025 t_{1}+.005 t_{2}
$$

Least squares polynomial fitting

- Fit polynomial of degree $n-1, n \leq m$

$$
y=p(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\cdots+\alpha_{n-1} t^{n-1}
$$

with data $\left(y_{i}, t_{i}\right)$

- Basis functions are $f_{j}(t)=t^{j-1}, j=1, \ldots, n$ (using geometric progression)
- Straight line: $p(t)=\alpha_{0}+\alpha_{1} t_{1}$
- Quadratic: $p(t)=\alpha_{o}+\alpha_{1} t_{1}+\alpha_{2} t_{2}^{2}$

- Cubic, quartic, and higher polynomials

Least squares polynomial fitting

- Matrix A has form $A_{i j}=t_{i}^{j-1}$

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{m}
\end{array}\right] \quad A=\left[\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{n-1} \\
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{n-1} \\
\cdots & & & & \\
1 & t_{m} & t_{m}^{2} & \cdots & t_{m}^{n-1}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\cdots \\
\alpha_{n-1}
\end{array}\right]
$$

(called a Vandermonde matrix)

- See also kernel regression and splines

Least squares polynomial fitting (cont'd)

- Estimate the relationship between range of height of a missile

$$
\begin{gathered}
\text { Position } \\
\hline \hline \text { Height }
\end{gathered} 0 \begin{array}{ccccc}
& 250 & 500 & 750 & 1000 \\
A & 15 & 19 & 20 \\
\\
f(t)=-0.0002286+0.03983 t-0.01943 t^{2}
\end{array}
$$

Applications

- Thin plate spline: model/morph non-rigid motion

