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Overview

Least squares minimization

Regression

Regularization
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Reading

Chapter 11 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 5 of Matrix Computations by Gene Golub and Charles Van
Loan

Chapter 4 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer

Chapter 11 and Chapter 15 of Matrix Algebra From a Statistician’s
Perspective by David Harville
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Matrix differentiation
First order differentiation of linear form:

a>x = x>a =
∑
i

aixi

∂x>a

∂x
=
∂a>x

∂x
=


∂x>a
∂x1
...

∂x>a
∂xn

 = a

∂xi
∂xj

=

{
1 if i = j
0 if i 6= j

∂x>a

∂xj
=
∂(
∑

i aixi )

∂xj
=
∑
i

ai
∂xi
∂xj

= aj

Likewise
∂x>a

∂x>
= a>

∂(Ax)

∂x>
= A

∂(Ax)>

∂x
= A>
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Matrix differentiation (cont’d)
First order differentiation of quadratic form:

x>Ax =
∑
i ,k

aikxixk

∂x>Ax

∂x
= (A + A>)x

∂(xixk)

∂xj
=


2xj if i = k = j
xi if k = j , i 6= j
xk if i = j , k 6= j
0 otherwise

∂x>Ax
∂xj

=
∂
∑

i,k aikxixk
∂xj

=
∂(ajjx

2
j +

∑
i 6=j aijxixj+

∑
k 6=j ajkxjxk+

∑
i 6=j,k 6=j aikxixk )

∂xj

= ajj
∂x2j
∂xj

+
∑

i 6=j aij
∂(xixj )
∂xj

+
∑

k 6=j ajk
∂(xjxk )
∂xj

+
∑

i 6=j ,k 6=j aik
∂(xixk )
∂xj

= 2ajjxj +
∑

i 6=j aijxi +
∑

k 6=j ajkxk + 0

=
∑

i aijxi +
∑

k ajkxk
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Matrix differentiation (cont’d)

First order differentiation of quadratic form:

∂x>Ax

∂x
= (A + A>)x

Let W be a symmetric matrix, it can be easily shown that

∂
∂s(x− As)>W (x− As) = −2A>W (x− As)

∂
∂s(x− s)>W (x− s) = −2W (x− s)

∂
∂x(x− As)>W (x− As) = 2W (x− As)

6 / 23



Matrix differentiation (cont’d)

Second order derivative of quadratic form:

∂2(x>Ax)

∂xs∂xj
=
∑
i

aij
∂xj
∂xs

+
∑
k

ajk
∂xk
∂xs

= asj + ajs

∂2(x>Ax)

∂x∂x>
= A + A>

Recall

f (x) ≈ f (a) + J(a)(x− a) +
1

2
(x− a)>H(a)(x− a)

See The Matrix Cookbook by Kaare Petersen and Michael Pedersen
(http://matrixcookbook.com) for details

7 / 23



Overdetermined linear equations

Consider y = Ax where A ∈ IRm×n is skinny, i.e., m > n

One can approximately solve y ≈ Ax, and define residual or error
r = Ax− y

Find x = xls that minimizes ‖r‖
xls is the least squares solution

Geometric interpretation: Axls is the point in ran(A) that is closest to
y, i.e., Axls is the projection of y onto ran(A)
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Least squares minimization

Minimize norm of residual squared

r = Ax− y
‖r‖2 = x>A>Ax− 2y>Ax + y>y

Set gradient with respect to x to zero

∇x‖r‖2 = 2A>Ax− 2A>y = 0⇒ A>Ax = A>y

(also known as normal equations)
Assume A>A is invertible, we have

xls = (A>A)−1A>y
Axls = A(A>A)−1A>y
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Least squares minimization

y = Ax ⇒ xls = (A>A)−1A>y

xls is linear function of y

xls = A−1y if A is square

xls solves y = Axls if y ∈ ran(A)

A† = (A>A)−1A> is called pseudo inverse or Moore-Penrose inverse

A† is a left inverse of (full rank, skinny) A:

A†A = (A>A)−1A>A = I

A(A>A)−1A> is the projection matrix
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Orthogonality principle

Optimal residual

r = Axls − y = (A(A>A)−1A> − I )y

which is orthogonal to ran(A):

〈r,Az〉 = y>(A(A>A)−1A> − I )>Az = 0

for all z ∈ IRn

Since r = Axls − y⊥A(x− xls) for any x ∈ ran(A), we have

‖Ax− y‖2 = ‖(Axls − y) +A(x− xls)‖2 = ‖Axls − y‖2 + ‖A(x− xls)‖2

which means for x 6= xls , ‖Ax− y‖ > ‖Axls − y‖
Can be further simplified via QR decomposition
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Least squares minimization and orthogonal projection

Recall if u ∈ IRm, then P = uu>

u>u
is an orthogonal projection

Given a point x = x‖ + x⊥, its projection is

Pux = uu>x‖ + uu>x⊥ = x‖

Generalize to orthogonal projections on a subspace spanned by a set
of orthonormal basis A = [u1, . . . ,ur ]

PA = AA>

In general, we need a normalization term for orthogonal projection if
u1, . . . ,ur is not orthonormal basis,

PA = A(A>A)−1A>

Given A = UΣV>, it follows that PA = UU> by least squares
minimization
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Least squares estimation

Numerous applications in inversion, estimation and reconstruction
problems have the form

y = Ax + v

I x is what we want to estimate or reconstruct
I y is our sensor measurements
I v is unknown noise or measurement error
I i-th row of A characterizes i-th sensor

Least squares estimation: choose x̂ that minimizes ‖Ax̂− y‖, i.e.,
deviation between

I what we actually observe y, and
I what we would observe if x = x̂, and there were no noise (v = 0)

least squares estimate is

x̂ = (A>A)−1A>y
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Best linear unbiased estimator (BLUE)

Linear estimator with noise: y = Ax + v with A is a full rank and
skinny

A linear estimator of form x̂ = By, is unbiased if x̂ = x whenever
v = 0 (no estimator error when v = 0)

Equivalent to BA = I , i.e., B is the left inverse of A

Estimator error of unbiased linear estimator is

x− x̂ = x− B(Ax + v) = −Bv

It follows that A† = (A>A)−1A> is the smallest left inverse of A such
that for any B with BA = I , we have∑

i ,j

B2
ij ≥

∑
i ,j

A†ij
2

i.e., least squares provides the best linear unbiased estimator (BLUE)
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Pseudo inverse via regularization

For µ > 0, let xµ be unique minimizer of

‖Ax− y‖2 + µ‖x‖2 =

∥∥∥∥ [ A√
µI

]
x−

[
y
0

] ∥∥∥∥2 =
∥∥∥ Ãx− ỹ

∥∥∥2
thus

xµ = (Ã>Ã)−1Ã>ỹ
= (A>A + µI )−1A>y

is called regularized least squares solution for Ax ≈ y

Also called Tikhonov (Tychonov) regularization (ridge regression in
statistics)

As A>A + µI > 0 and so is invertible, then we have

lim
µ→0

xµ = A†y

and
lim
µ→0

(A>A + µI )−1A> = A†
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Minimizing weighted-sum objective

Two (or more) objectives:
I want J1 = ‖Ax− y‖2 small
I and also J2 = ‖Fx− g‖2 small

Consider minimize a weighted-sum objective

‖Ax−y‖2+µ‖Fx−g‖2 =

∥∥∥∥ [ A√
µF

]
x−

[
y√
µg

] ∥∥∥∥2 =
∥∥∥ Ãx− ỹ

∥∥∥2
Thus, the least squares solution is

x = (Ã>Ã)−1Ã>ỹ = (A>A + µF>F )−1(A>y + µF>g)

Widely used function approximation, regression, optimization, image
processing, computer vision, control, machine learning, graph theory,
etc.
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Least squares data fitting

Linear regression: Model one scalar y in terms of linear combination
of t1, . . . , tn

y = α0 + α1t1 + · · ·+ αntn =
n+1∑
j=1

αi tj

where αj are unknown parameters or coefficients

For a set of m data points, {(ti , yi )}, t ∈ IRn, want to minimize

m∑
i=1

(yi −
n+1∑
j=1

tijαj)
2
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Least squares data fitting

For a set of training data, {(ti , yi )}, we form y and A

In matrix form, denote A by m × (n + 1) matrix with each row an
input vector, and x ∈ IRn+1,

y = Ax y =


y1
y2
· · ·
ym

 A =


1 t11 t12 . . . t1n
1 t21 t22 . . . t2n
1 · · ·
1 tm1 tm2 . . . tmn

 x =


α0

α1
...
αn


and thus we obtain the coefficients αi from x, where

x = A†y = (A>A)−1A>y

and

y = α0 + α1t1 + · · ·+ αntn =
n+1∑
j=1

αi tj
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Least squares data fitting (cont’d)

Estimate the relationship of weight loss (y) and storage time (t1) and
storage temperature (t2) with y = α0 + α1t1 + α2t2

Time 1 1 1 2 2 2 3 3 3

Temp -10 -5 0 -10 -5 0 -10 -5 0

Loss .15 .18 .20 .17 .19 .22 .20 .23 .25

Least squares solution is found by

A =


1 1 −10
1 1 −5
· · ·
1 3 0

 x =

α0

α1

α2

 y =


.15
.18
· · ·
.25


Using MATALB: x = A\y = [.174 .025 .005]>

y = .174 + .025t1 + .005t2
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Least squares polynomial fitting

Fit polynomial of degree n−1, n ≤ m

y = p(t) = α0 + α1t + α2t
2 + · · ·+ αn−1t

n−1

with data (yi , ti )

Basis functions are fj(t) = t j−1, j = 1, . . . , n (using geometric
progression)

I Straight line: p(t) = α0 + α1t1
I Quadratic: p(t) = αo + α1t1 + α2t

2
2

Cubic, quartic, and higher polynomials
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Least squares polynomial fitting

Matrix A has form Aij = t j−1i

y =


y1
y2
· · ·
ym

 A =


1 t1 t21 · · · tn−11

1 t2 t22 · · · tn−12

· · ·
1 tm t2m · · · tn−1m

 x =


α0

α1

· · ·
αn−1


(called a Vandermonde matrix)

See also kernel regression and splines
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Least squares polynomial fitting (cont’d)

Estimate the relationship between range of height of a missile
Position 0 250 500 750 1000

Height 0 8 15 19 20

A =


1 .25 .252

1 .52 .52

1 .75 .752

1 1 12

 y =


0

0.008
0.015
0.019
0.02


f (t) = −0.0002286 + 0.03983t − 0.01943t2
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Applications

Thin plate spline: model/morph non-rigid motion
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