EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 8

Overview

- Multivariate Gaussian
- Mahalanobis distance
- Probabilistic PCA
- Factor analysis

Reading

- Chapter 7 and 9 of Principal Component Analysis by Ian Jolliffe

Multivariate Gaussian distribution

- The d-dimensional Gaussian distribution of $X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is

$$
\begin{aligned}
p(\mathbf{x} \mid \boldsymbol{\mu}, \mathcal{C}) & =\frac{1}{(2 \pi)^{d / 2}|\mathcal{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathcal{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \\
& =\frac{1}{(2 \pi)^{d / 2}|\mathcal{C}|^{1 / 2}} \exp \left(-\frac{1}{2} \Delta^{2}\right)
\end{aligned}
$$

where $\boldsymbol{\mu}$ is the mean and \mathcal{C} is the covariance matrix

- Assume independent observations, find $\boldsymbol{\mu}$ and \mathcal{C} that maximize log likelihood from a set of n points, $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

$$
\begin{aligned}
p(X \mid \boldsymbol{\mu}, \mathcal{C}) & =\prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}, \mathcal{C}\right) \\
\mathcal{L} & =\log \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}, \mathcal{C}\right) \\
& =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log |\mathcal{C}|-\frac{1}{2} \sum_{i}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\top} \mathcal{C}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)
\end{aligned}
$$

- Maximum likelihood estimate:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \mu}=0 \Rightarrow \hat{\mu}=\frac{1}{n} \sum_{i} \mathbf{x}_{i} \quad \text { (sample mean) } \\
& \frac{\partial \mathcal{L}}{\partial \mathcal{C}}=0 \Rightarrow \hat{\mathcal{C}}=\frac{1}{n} \sum_{i}\left(\mathbf{x}_{i}-\hat{\mu}\right)\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{\top} \quad \text { (sample covariance) }
\end{aligned}
$$

Properties of Gaussian distribution

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \mathcal{C})=\frac{1}{(2 \pi)^{d / 2}|\mathcal{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathcal{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- The ellipsoid that best represents the distribution of data points can be estimated by the covariance matrix \mathcal{C}
- Marginal densities (obtained by integrating out some of the variables) are themselves Gaussian
- Conditional densities (by setting some variables to fixed values) are also Gaussian
- Can find a linear transformation which diagonalizes \mathcal{C} so that the density function can be factorized

$$
\mathcal{C}=\sigma^{2} I, \quad p(\mathbf{x} \mid \boldsymbol{\mu}, \mathcal{C})=\prod_{i=1}^{n} p\left(x_{i} \mid \mu_{i}, \sigma_{i}\right)
$$

- For given values of $\boldsymbol{\mu}$ and \mathcal{C}, the Gaussian density function maximizes the entropy
- Useful for linear classifiers (e.g., Fisher linear discriminant)

Geometric interpretation

- The equi-density contours of a non-singular Gaussian (i.e., $P(\mathbf{x} \mid \boldsymbol{\mu}, \mathcal{C})=k$) where k is a constant) are ellipsoids (i.e., linear transformation of hyperspheres)
- The directions of the principal axes of the ellipsoids are the eigenvectors \mathbf{u} of covariance matrix \mathcal{C}, and the lengths are the corresponding singular values σ ($\sigma_{i}=\sqrt{\lambda_{i}}$ where λ_{i} is an eigenvalue)

$$
\mathcal{C} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

- For 2D case,

Geometric interpretation

- Let $\mathcal{C}=U \Sigma U^{\top}=\left(U \Sigma^{1 / 2}\right)\left(U \Sigma^{1 / 2}\right)^{\top}$ (i.e., eigendecomposition) where the columns of U are orthonormal basis and Σ is a diagonal matrix

$$
X \sim N(\mu, \mathcal{C}) \Longleftrightarrow X \sim \boldsymbol{\mu}+U \Sigma^{1 / 2} N(0, I) \Longleftrightarrow X \sim \boldsymbol{\mu}+U N(0, \Sigma)
$$

- The distribution of $N(\boldsymbol{\mu}, \mathcal{C})$ is equivalent to $N(0, I)$ scaled by $\Sigma^{1 / 2}$, rotated by U and translated by μ
- For 2D case,

Mahalanobis distance

- The quantity

$$
d_{M}^{2}=\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathcal{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})=\left(C^{-1 / 2}(\mathbf{x}-\boldsymbol{\mu})\right)^{\top}\left(C^{-1 / 2}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

is called the Mahalanobis distance from \mathbf{x} to $\boldsymbol{\mu}$

- Also known as generalized squared inter-point distance
- The distance of a point \mathbf{x} to the center of mass divided by the width of the ellipsoid in the direction of \mathbf{x}
- Linear transformation of the coordinate system
- Keep its quadratic form and remain non-negative
- If $\mathcal{C}=I$, Mahalanobis distance reduces to Euclidean distance
- If \mathcal{C} is diagonal, the resulting distance is normalized Euclidean distance $d(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{i=1}^{m} \frac{\left(\mathbf{x}_{i}-\mathbf{y}_{i}\right)^{2}}{\sigma_{i}^{2}}}$ where σ_{i} is the standard deviation of \mathbf{x}_{i}
- Can be approximated with eigenvectors of \mathcal{C}
- Related to similarity learning or metric learning

Generative PCA model

- A subspace is spanned by the orthonormal basis (eigenvectors computed from covariance matrix)
- Can interpret each observation with a generative model
- Estimate (approximately) the probability of generating each observation with Gaussian distribution, $p(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)$
- Several ways to approximate $p(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)$, e.g., distance to subspace, distance within subspace, and combination
- Each observation has a projected latent variable
- Used in object modeling, detection, tracking, recognition, etc.

Factor analysis

- A generative dimensionality reduction algorithm
- Let $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{z} \in \mathbb{R}^{d}, \mathbf{x}$ is modeled by \mathbf{z}, dubbed as factors $(d<m)$

$$
\mathbf{x}=\Lambda \mathbf{z}+\varepsilon
$$

- Λ is factor loading matrix
- \mathbf{z} is assumed be $N(0, I)$ distributed (zero mean, unit variance normals)
- The factors \mathbf{z} model correlation between the elements of \mathbf{x}
- ε is a random variable to account for noise and assumed to be distributed with $N(0, \Psi)$ where Ψ is a diagonal matrix (whereas PCA uses an isotropic error model with $\psi_{i}=\sigma^{2}$)
- ε accounts for independent noise in each element of \mathbf{x}
- The diagonality of Ψ is a key assumption: constraining the error covariance Ψ for estimation
- The observed variable, \mathbf{x}_{i}, are conditionally independent given the factors z
- \mathbf{x} is $N\left(0, \Lambda \Lambda^{\top}+\Psi\right)$ distributed (whereas PCA models with $N\left(0, \Lambda \Lambda^{\top}+\sigma^{2} l\right)$

Properties of factor analysis

- Factor analysis: $\mathbf{x}=\Lambda z+\varepsilon$
- Latent variables \mathbf{z} : explain correlations between \mathbf{x}
- ε_{i} represents variability unique to a particular \mathbf{x}_{i}
- Differ from PCA which treats covariance and variance identically
- Want to infer Λ and Ψ from \mathbf{x}
- Suppose Λ and Ψ are known, by linear projection

$$
E[\mathbf{z} \mid \mathbf{x}]=\beta \mathbf{x}
$$

where $\beta=\Lambda^{\top}\left(\Psi+\Lambda \Lambda^{\top}\right)^{-1}$, since the joint Gaussian of data \mathbf{x} and factors \mathbf{z} :

$$
p\left(\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{z}
\end{array}\right]\right)=N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\Lambda \Lambda^{\top}+\Psi & \Lambda \\
\Lambda^{\top} & l
\end{array}\right]\right)
$$

Properties of factor analysis (cont'd)

- Note that since Ψ is diagonal, using matrix inversion lemma

$$
\left(\Psi+\Lambda \Lambda^{\top}\right)^{-1}=\Psi^{-1}-\Psi^{-1} \Lambda\left(I+\Lambda^{\top} \Psi^{-1} \Lambda\right)^{-1} \Lambda^{\top} \Psi^{-1}
$$

- The second moment of factors:

$$
\begin{aligned}
E\left[\mathbf{z z}^{\top} \mid \mathbf{x}\right] & =\operatorname{Var}(\mathbf{z} \mid \mathbf{x})+E[\mathbf{z} \mid \mathbf{x}] E[\mathbf{z} \mid \mathbf{x}]^{\top} \\
& =I-\beta \Lambda+\beta \mathbf{x x}^{\top} \beta^{\top}
\end{aligned}
$$

where $\beta=\Lambda^{\top}\left(\Psi+\Lambda \Lambda^{\top}\right)^{-1}$

- Expectation of first and second moments provide measure of uncertainty in the factors, which PCA does not have
- Ψ and Λ can be computed by the EM algorithm

EM algorithm for factor analysis

- Expectation-Maximization: technique for dealing with missing data
- Start with some initial guess of missing data and evaluate the expected values
- Optimize the missing parameters by taking derivative of likelihood of observed and missing data w.r.t. parameters
- Repeat until the data likelihood does not change
- E-step: Given Λ and Ψ, for each data point \mathbf{x}_{i}, compute

$$
\begin{aligned}
E[\mathbf{z} \mid \mathbf{x}] & =\beta \mathbf{x} \\
E\left[\mathbf{z z} \mathbf{z}^{\top} \mid \mathbf{x}\right] & =\operatorname{Var}(\mathbf{z} \mid \mathbf{x})+E[\mathbf{z} \mid \mathbf{x}] E[\mathbf{z} \mid \mathbf{x}]^{\top} \\
& =I-\beta \Lambda+\beta \mathbf{x x}^{\top} \beta^{\top}
\end{aligned}
$$

- M-step:

$$
\begin{aligned}
\Lambda^{\text {new }} & =\left(\sum_{i=1}^{n} \mathbf{x}_{i} E\left[\mathbf{z} \mid \mathbf{x}_{i}\right]^{\top}\right)\left(\sum_{i=1}^{n} E\left[\mathbf{z z}^{\top} \mid \mathbf{x}_{i}\right]\right)^{-1} \\
\Psi^{\text {new }} & =\frac{1}{n} \operatorname{diag}\left\{\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}-\Lambda^{\text {new }} E\left[\mathbf{z} \mid \mathbf{x}_{i}\right] \mathbf{x}_{i}^{\top}\right\}
\end{aligned}
$$

where diag operator sets all off-diagonal elements to zero

FA and PCA

- Factor analysis provides a proper probabilistic model
- PCA is rotationally invariant; FA is not
- Given a set of data points, would Λ correspond to orthonormal basis of a PCA subspace?
- No, in most cases
- However, Λ corresponds to orthonormal basis if FA has isotropic error model, i.e., $\psi_{i}=\sigma^{2}$

Probabilistic principal component analysis

- Let $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{z} \in \mathbb{R}^{d}$, from factor analysis we have $\mathbf{x}=\Lambda \mathbf{z}+\varepsilon$, with isotropic noise model $N\left(0, \sigma^{2} I\right)$
- The conditional probability of \mathbf{x} given \mathbf{z} is given by

$$
\mathbf{x} \mid \mathbf{z} \sim N\left(\wedge z, \sigma^{2} I\right)
$$

- Since $\mathbf{z} \sim N(0, I)$, marginal distribution for \mathbf{x} is

$$
\mathbf{x} \sim N(0, \widetilde{C})
$$

where $\widetilde{C}=\Lambda \Lambda^{\top}+\sigma^{2}$ I

- Log likelihood of data

$$
\mathcal{L}=-\frac{n}{2}\left\{m \ln (2 \pi)+\ln |\widetilde{C}|+\operatorname{tr}\left(\widetilde{C}^{-1} S\right)\right\}
$$

where

$$
S=\frac{1}{n} X X^{\top}
$$

- Estimating Λ and σ^{2} can be obtained by maximizing \mathcal{L} using the EM algorithm similar to that in factor analysis

Probabilistic principal component analysis (cont'd)

- Maximize log likelihood with the EM algorithm,

$$
\Lambda=U\left(\Sigma-\sigma^{2} I\right)^{1 / 2} R
$$

- $U_{m \times d}$ is the first d eigenvectors computed from covariance matrix S
- $\Sigma_{d \times d}$ is a diagonal matrix corresponding to the first d eigenvalues, λ_{i}
- $R_{d \times d}$ is an arbitrary orthogonal rotation matrix (note \mathbf{z} has a uniform Gaussian distribution)
- The noise variance σ^{2} is the residual variance per dimension

$$
\sigma^{2}=\frac{1}{m-d} \sum_{i=d+1}^{m} \lambda_{i}
$$

- See "Probabilistic Principal Component Analysis," by Tipping and Bishop for details

Big picture

"A unifying review of linear Gaussian models" [Ghahramani and Roweis]

