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Overview

Multivariate Gaussian

Mahalanobis distance

Probabilistic PCA

Factor analysis
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Reading

Chapter 7 and 9 of Principal Component Analysis by Ian Jolliffe
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Multivariate Gaussian distribution

The d-dimensional Gaussian distribution of X = {x1, . . . , xn} is

p(x|µ, C) = 1
(2π)d/2|C|1/2 exp(−1

2(x− µ)>C−1(x− µ))

= 1
(2π)d/2|C|1/2 exp(−1

2∆2)

where µ is the mean and C is the covariance matrix

Assume independent observations, find µ and C that maximize log
likelihood from a set of n points, x1, . . . , xn

p(X |µ, C) =
∏n

i=1 p(xi |µ, C)
L = log

∏n
i=1 p(xi |µ, C)

= −nd
2 log(2π)− n

2 log |C| − 1
2

∑
i (xi − µ)>C−1(xi − µ)

Maximum likelihood estimate:

∂L
∂µ = 0 ⇒ µ̂ = 1

n

∑
i xi (sample mean)

∂L
∂C = 0 ⇒ Ĉ = 1

n

∑
i (xi − µ̂)(xi − µ̂)> (sample covariance)

4 / 17



Properties of Gaussian distribution

p(x|µ, C) =
1

(2π)d/2|C|1/2
exp(−1

2
(x− µ)>C−1(x− µ))

The ellipsoid that best represents the distribution of data points can
be estimated by the covariance matrix C
Marginal densities (obtained by integrating out some of the variables)
are themselves Gaussian

Conditional densities (by setting some variables to fixed values) are
also Gaussian

Can find a linear transformation which diagonalizes C so that the
density function can be factorized

C = σ2I , p(x|µ, C) =
n∏

i=1

p(xi |µi , σi )

For given values of µ and C, the Gaussian density function maximizes
the entropy

Useful for linear classifiers (e.g., Fisher linear discriminant)
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Geometric interpretation
The equi-density contours of a non-singular Gaussian (i.e.,
P(x|µ, C) = k) where k is a constant) are ellipsoids (i.e., linear
transformation of hyperspheres)
The directions of the principal axes of the ellipsoids are the
eigenvectors u of covariance matrix C, and the lengths are the
corresponding singular values σ (σi =

√
λi where λi is an eigenvalue)

Cui = λiui

For 2D case,
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Geometric interpretation

Let C = UΣU> = (UΣ1/2)(UΣ1/2)> (i.e., eigendecomposition) where
the columns of U are orthonormal basis and Σ is a diagonal matrix

X ∼ N(µ, C)⇐⇒ X ∼ µ+ UΣ1/2N(0, I )⇐⇒ X ∼ µ+ UN(0,Σ)

The distribution of N(µ, C) is equivalent to N(0, I ) scaled by Σ1/2,
rotated by U and translated by µ

For 2D case,
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Mahalanobis distance

The quantity

d2
M = ∆2 = (x− µ)>C−1(x− µ) = (C−1/2(x− µ))>(C−1/2(x− µ))

is called the Mahalanobis distance from x to µ

Also known as generalized squared inter-point distance

The distance of a point x to the center of mass divided by the width
of the ellipsoid in the direction of x

Linear transformation of the coordinate system

Keep its quadratic form and remain non-negative

If C = I , Mahalanobis distance reduces to Euclidean distance

If C is diagonal, the resulting distance is normalized Euclidean distance

d(x, y) =

√∑m
i=1

(xi−yi )2
σ2
i

where σi is the standard deviation of xi

Can be approximated with eigenvectors of C
Related to similarity learning or metric learning
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Generative PCA model

A subspace is spanned by the orthonormal basis (eigenvectors
computed from covariance matrix)

Can interpret each observation with a generative model

Estimate (approximately) the probability of generating each
observation with Gaussian distribution, p(x|µ,Σ)

Several ways to approximate p(x|µ,Σ), e.g., distance to subspace,
distance within subspace, and combination

Each observation has a projected latent variable

Used in object modeling, detection, tracking, recognition, etc.
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Factor analysis

A generative dimensionality reduction algorithm

Let x ∈ IRm and z ∈ IRd , x is modeled by z, dubbed as factors
(d < m)

x = Λz + ε

I Λ is factor loading matrix
I z is assumed be N(0, I ) distributed (zero mean, unit variance normals)
I The factors z model correlation between the elements of x
I ε is a random variable to account for noise and assumed to be

distributed with N(0,Ψ) where Ψ is a diagonal matrix (whereas PCA
uses an isotropic error model with ψi = σ2)

I ε accounts for independent noise in each element of x
I The diagonality of Ψ is a key assumption: constraining the error

covariance Ψ for estimation
I The observed variable, xi , are conditionally independent given the

factors z
I x is N(0,ΛΛ> + Ψ) distributed (whereas PCA models with

N(0,ΛΛ> + σ2I )
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Properties of factor analysis

Factor analysis: x = Λz + ε
Latent variables z: explain correlations between x
εi represents variability unique to a particular xi
Differ from PCA which treats covariance and variance identically
Want to infer Λ and Ψ from x
Suppose Λ and Ψ are known, by linear projection

E [z|x] = βx

where β = Λ>(Ψ + ΛΛ>)−1, since the joint Gaussian of data x and
factors z:

p(

[
x
z

]
) = N(

[
0
0

]
,

[
ΛΛ> + Ψ Λ

Λ> I

]
)
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Properties of factor analysis (cont’d)

Note that since Ψ is diagonal, using matrix inversion lemma

(Ψ + ΛΛ>)−1 = Ψ−1 −Ψ−1Λ(I + Λ>Ψ−1Λ)−1Λ>Ψ−1

The second moment of factors:

E [zz>|x] = Var(z|x) + E [z|x]E [z|x]>

= I − βΛ + βxx>β>

where β = Λ>(Ψ + ΛΛ>)−1

Expectation of first and second moments provide measure of
uncertainty in the factors, which PCA does not have

Ψ and Λ can be computed by the EM algorithm
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EM algorithm for factor analysis

Expectation-Maximization: technique for dealing with missing data

Start with some initial guess of missing data and evaluate the
expected values

Optimize the missing parameters by taking derivative of likelihood of
observed and missing data w.r.t. parameters

Repeat until the data likelihood does not change

E-step: Given Λ and Ψ, for each data point xi , compute

E [z|x] = βx
E [zz>|x] = Var(z|x) + E [z|x]E [z|x]>

= I − βΛ + βxx>β>

M-step:

Λnew = (
∑n

i=1 xiE [z|xi ]>)(
∑n

i=1 E [zz>|xi ])−1
Ψnew = 1

ndiag{
∑n

i=1 xix
>
i − ΛnewE [z|xi ]x>i }

where diag operator sets all off-diagonal elements to zero
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FA and PCA

Factor analysis provides a proper probabilistic model

PCA is rotationally invariant; FA is not

Given a set of data points, would Λ correspond to orthonormal basis
of a PCA subspace?

No, in most cases

However, Λ corresponds to orthonormal basis if FA has isotropic error
model, i.e., ψi = σ2
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Probabilistic principal component analysis

Let x ∈ IRm and z ∈ IRd , from factor analysis we have x = Λz + ε,
with isotropic noise model N(0, σ2I )

The conditional probability of x given z is given by

x|z ∼ N(Λz , σ2I )

Since z ∼ N(0, I ), marginal distribution for x is

x ∼ N(0, C̃ )

where C̃ = ΛΛ> + σ2I

Log likelihood of data

L = −n

2
{m ln(2π) + ln |C̃ |+ tr(C̃−1S)}

where

S =
1

n
XX>

Estimating Λ and σ2 can be obtained by maximizing L using the EM
algorithm similar to that in factor analysis
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Probabilistic principal component analysis (cont’d)

Maximize log likelihood with the EM algorithm,

Λ = U(Σ− σ2I )1/2R

I Um×d is the first d eigenvectors computed from covariance matrix S
I Σd×d is a diagonal matrix corresponding to the first d eigenvalues, λi
I Rd×d is an arbitrary orthogonal rotation matrix (note z has a uniform

Gaussian distribution)
I The noise variance σ2 is the residual variance per dimension

σ2 =
1

m − d

m∑
i=d+1

λi

I See “Probabilistic Principal Component Analysis,” by Tipping and
Bishop for details
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Big picture

“A unifying review of linear Gaussian models” [Ghahramani and Roweis]
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