EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 7

Overview

- Principal component analysis
- Karhunen-Loeve Transform
- Multivariate Gaussian
- Applications

Reading

- Chapter 6 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 2 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl Meyer
- Chapter 2 of Principal Component Analysis by Ian Jolliffe

Karhunen-Loeve Transform

- Transform data into a new set of variables, the principal components (PC)
- which are uncorrelated and ordered
- so that the first few retain most of the variation
- Consider the first PC, $\mathbf{u}_{1}^{\top} \mathbf{x}$,

$$
\mathbf{u}_{1}=\arg \max _{\|\mathbf{u}\|=1} \operatorname{var}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\arg \max _{\|\mathbf{u}\|=1} E\left[\mathbf{u}^{\top} \mathcal{C} \mathbf{u}\right]
$$

- Solving constrained optimization with Lagrange multiplier

$$
\mathbf{u}^{\top} \mathcal{C} \mathbf{u}-\lambda\left(\mathbf{u}^{\top} \mathbf{u}-1\right)
$$

- Take derivative with respect to \mathbf{u}

$$
\mathcal{C} \mathbf{u}-\lambda \mathbf{u}=0, \quad(\mathcal{C}-\lambda I) \mathbf{u}=0
$$

Thus, λ is an eigenvalue of \mathcal{C} and \mathbf{u} is the corresponding eigenvector

Karhunen-Loeve Transform (cont'd)

- To maximize $\operatorname{var}\left(\mathbf{u}^{\top} \mathbf{x}\right)$,

$$
\mathbf{u}^{\top} \mathcal{C} \mathbf{u}=\mathbf{u}^{\top} \lambda \mathbf{u}=\lambda \mathbf{u}^{\top} \mathbf{u}=\lambda
$$

so \mathbf{u}_{1} is the eigenvector corresponding to the largest eigenvalue of \mathcal{C}

- In general, the k-th PC of \mathbf{x} is $\mathbf{u}_{k}^{\top} \mathbf{x}$ and $\operatorname{var}\left(\mathbf{u}_{k}^{\top} \mathbf{x}\right)=\lambda_{k}$ where λ_{k} is the k-th largest eigenvalue
- The second PC, $\mathbf{u}_{2} \mathbf{x}$ maximizes $\mathbf{u}_{2} \mathcal{C} \mathbf{u}_{2}$ subject to being uncorrelated with $\mathbf{u}_{1} \mathbf{x}$, i.e., $\operatorname{cov}\left(\mathbf{u}_{1}^{\top} \mathbf{x}, \mathbf{u}_{2}^{\top} \mathbf{x}\right)=0$ $\operatorname{cov}\left(\mathbf{u}_{1}^{\top} \mathbf{x}, \mathbf{u}_{2}^{\top} \mathbf{x}\right)=\mathbf{u}_{1}^{\top} \mathcal{C} \mathbf{u}_{2}=\mathbf{u}_{2}^{\top} \mathcal{C} \mathbf{u}_{1}=\mathbf{u}_{2}^{\top} \lambda_{1} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{2}^{\top} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}^{\top} \mathbf{u}_{2}=0$
- Solving constrained optimization problem with one of these constraints

$$
\mathbf{u}_{2}^{\top} \mathcal{C} \mathbf{u}_{2}-\lambda\left(\mathbf{u}_{2}^{\top} \mathbf{u}_{2}-1\right)-\phi \mathbf{u}_{2}^{\top} \mathbf{u}_{1}
$$

where λ, ϕ are Lagrange multipliers

Karhunen-Loeve Transform (cont'd)

- Take derivative with respect to \mathbf{u}_{2}

$$
\mathcal{C} \mathbf{u}_{2}-\lambda \mathbf{u}_{2}-\phi \mathbf{u}_{1}=0
$$

and multiply on the left by \mathbf{u}_{1}

$$
\mathbf{u}_{1}^{\top} \mathcal{C} \mathbf{u}_{2}-\lambda \mathbf{u}_{1}^{\top} \mathbf{u}_{2}-\phi \mathbf{u}_{1}^{\top} \mathbf{u}_{1}=0
$$

- Consequently $\phi=0$ and $\mathcal{C} \mathbf{u}_{2}=\lambda \mathbf{u}_{2}$
- Assuming that \mathcal{C} does not have repeated eigenvalues, λ has to be the second largest eigenvalue to satisfy all the constraints

Karhunen-Loeve Transform and SVD

- Assuming \mathbf{x} has zero mean, the principal component \mathbf{u}_{1} is

$$
\mathbf{u}_{1}=\arg \max _{\|\mathbf{u}\|=1} \operatorname{var}\left(\mathbf{u}^{\top} \mathbf{x}\right)=\arg \max _{\|\mathbf{u}\|=1} E\left[\left(\mathbf{u}^{\top} \mathbf{x}\right)^{2}\right]
$$

- With the first $k-1$ component, the k-th component can be found by subtracting the first $k-1$ principal components from \mathbf{x}

$$
\hat{\mathbf{x}}_{k-1}=\mathbf{x}-\sum_{i=1}^{k-1} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{x}
$$

and find a principal component in

$$
\mathbf{u}_{k}=\arg \max _{\|\mathbf{u}\|=1} E\left[\left(\mathbf{u}^{\top} \hat{\mathbf{x}}_{k-1}\right)^{2}\right]
$$

- The Karhunen-Loeve transform is therefore equivalent to finding the singular value decomposition of X

Karhunen-Loeve Transform and SVD (cont'd)

- A simpler way to compute the principal components
- Let $X=U \Sigma V^{\top}$, the projected data onto the subspace spanned by the first d singular vectors

$$
Y=U_{d}^{\top} X=\Sigma_{d} V_{d}^{\top}
$$

- The matrix U of singular vectors of X is equivalently the matrix U of eigenvectors of the covariance matrix \mathcal{C}

$$
\mathcal{C}=X X^{\top}=U \Sigma \Sigma^{\top} U^{\top}
$$

- The eigenvectors with the largest eigenvalues correspond to the dimensions that have the strongest correlation in the data set

Rayleigh quotient and eigenvectors

- The Rayleigh quotient for a real matrix M and vector \mathbf{x} is

$$
\rho(\mathbf{x})=\frac{\mathbf{x}^{\top} M \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

and for eigenvector \mathbf{u} w.r.t. covariance matrix \mathcal{C}

$$
\rho(\mathbf{u})=\frac{\mathbf{u}^{\top} \mathcal{C} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}}=\lambda \frac{\mathbf{u}^{\top} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{u}}=\lambda
$$

- The eigenvectors \mathbf{u}_{i} are the critical points of the Rayleigh quotient and their eigenvalues λ_{i} are the stationary values of $\rho(\mathbf{u})$
- To find the critical point of the Rayleigh quotient w.r.t. A

$$
\begin{aligned}
\rho(\mathbf{x}) & =\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\mathbf{x}^{\top} A \mathbf{x} \\
\text { s. t. }\|\mathbf{x}\|_{2} & =1^{2}
\end{aligned}
$$

- The constrained optimization problem

$$
L(\mathbf{x}, \lambda)=\mathbf{x}^{\top} A \mathbf{x}-\lambda\left(\mathbf{x}^{\top} \mathbf{x}-1\right)
$$

where λ is a Lagrange multiplier

Rayleigh quotient and eigenvectors (cont'd)

- Take derivative with respect to \mathbf{x}

$$
\begin{aligned}
2 A \mathbf{x}-2 \lambda \mathbf{x} & =0 \\
A \mathbf{x} & =\lambda \mathbf{x}
\end{aligned}
$$

- Thus

$$
\rho(\mathbf{x})=\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\lambda \frac{\mathbf{x}^{\top} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\lambda
$$

- The eigenvectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ of A are critical points of the Rayleigh quotient and their corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are the stationary values of $\rho(\mathbf{x})$
- Basis for PCA and canonical correlation analysis

Derivation using covariance matrix

- Let X be a m-dimensional vector with zero mean. We want to find a $m \times m$ orthonormal projection matrix P so that $Y=P X$ has a diagonal covariant matrix \mathcal{C}_{Y} (i.e., Y is a vector with all its distinct components pairwise uncorrelated) and $P^{\top}=P$

$$
\mathcal{C}_{Y}=E\left[Y Y^{\top}\right]=E\left[P X(P X)^{\top}\right]=P E\left[X X^{\top}\right] P^{\top}=P \mathcal{C}_{X} P^{\top}=P^{\top} \mathcal{C}_{X} P
$$

- Therefore,

$$
P \mathcal{C}_{Y}=P P^{\top} \mathcal{C}_{X} P=\mathcal{C}_{X} P
$$

- Note $P=\left[\mathbf{p}_{1}, \ldots, \mathbf{p}_{d}\right]$ and $\mathcal{C}_{Y}=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{d}\right\}$

$$
\left[\lambda_{1} \mathbf{p}_{1}, \lambda_{2} \mathbf{p}_{2}, \ldots, \lambda_{d} \mathbf{p}_{d}\right]=\left[\mathcal{C}_{X} \mathbf{p}_{1}, \mathcal{C}_{X} \mathbf{p}_{2}, \ldots, \mathcal{C}_{X} \mathbf{p}_{d}\right]
$$

i.e., $\lambda_{i} \mathbf{p}_{i}=\mathcal{C}_{X} \mathbf{p}_{i}$, and \mathbf{p}_{i} is an eigenvector of the covariance matrix, \mathcal{C}_{X} of X

SVD and PCA

- Recall

$$
\mathbf{x}=\sum_{i=1}^{m} z_{i} \mathbf{u}_{i}, \quad z_{i}=\mathbf{u}_{i}^{\top} \mathbf{x}, \text {, and } \mathbf{u}_{i}^{\top} \mathbf{u}_{j}=\delta_{i j}
$$

- Center the data points

$$
X=\left[\left(\mathbf{x}^{(1)}-\overline{\mathbf{x}}\right) \ldots\left(\mathbf{x}^{(n)}-\overline{\mathbf{x}}\right)\right]
$$

Covariance matrix

$$
\mathcal{C}=X X^{\top}
$$

- Singular value decomposition allows us to write X as

$$
X=U \Sigma V^{\top}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{\top} \\
\vdots \\
\mathbf{v}_{n}^{\top}
\end{array}\right]
$$

SVD and PCA (cont'd)

$$
\begin{aligned}
C & =\frac{1}{n} X X^{\top} \\
& =\frac{1}{n} U \Sigma V^{\top}\left(U \Sigma V^{\top}\right)^{\top} \\
& =\frac{1}{n} U \Sigma V^{\top} V \Sigma U^{\top} \\
& =\frac{1}{n} U \Sigma^{2} U^{\top}
\end{aligned}
$$

- Therefore,

$$
C \mathbf{u}_{i}=\frac{\sigma_{i}^{2}}{n} \mathbf{u}_{i}
$$

- So, the columns U are eigenvectors and the eigenvalues are just $\lambda_{i}=\frac{\sigma_{i}^{2}}{n}$

Properties and limitations of PCA

- Theoretically optimal subspace representation in terms of ℓ_{2}-norm
- Involves only rotation and scaling
- Unsupervised learning
- Unique solution
- Assumption:
- data can be modeled linearly
- data can be modeled with mean and covariance, i.e., Gaussian distribution
- the large variances have important dynamics
- ℓ_{2}-norm
- Nonlinear PCA, mixture of PCA, probabilistic PCA, mixture of probabilistic PCA, factor analysis, mixture of factor analyzers, sparse PCA, independent component analysis, Fisher linear discriminant, etc.

Eigenface [Turk and Pentland 1991]

- Collect a set of face images
- Normalize for contrast, scale and orientation
- Apply PCA to compute the first d eigenvectors (dubbed as Eigenface) that best accounts for data variance (i.e., facial structure)
- Compute the distance between the projected points for face recognition or detection

Appearance manifolds [Murase and Nayar 95]

- The image variation of an object under different pose or is assumed to lie on a manifold
- For each object, collect images under different pose
- Construct a universal eigenspace from all the images
- For the set of images of of the same object, find the smoothly varying manifold in eigenspace, i.e., parametric eigenspace
- The manifolds of two objects may intersect, the intersection corresponds to poses of the two objects for which their images are very similar in appearance

Appearance manifolds [Murase and Nayar 95]

Gaussian distribution

- Univariate Gaussian

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Bivariate Gaussian

$$
\begin{aligned}
p(x, y)= & \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \\
& \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{x}^{2}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{y}^{2}}-\frac{2 \rho\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}\right)\right)
\end{aligned}
$$

where ρ is the correlation between x and y

$$
\rho=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]}{\sigma_{x} \sigma_{y}}
$$

Bixariate Normal

Multivariate Gaussian

- Multivariate Gaussian: $\mathbf{x} \in \mathbb{R}^{d}$

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{(2 \pi)^{d / 2}|\mathcal{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathcal{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \\
& =\frac{1}{(2 \pi)^{d / 2}|\mathcal{C}|^{1 / 2}} \exp \left(-\frac{1}{2} \Delta^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\mu} & =E[\mathbf{x}] \\
\mathcal{C} & =E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right] \\
\Delta & =C^{-1 / 2}(\mathbf{x}-\mathbf{u})
\end{aligned}
$$

and Δ is called the Mahalanobis distance from \mathbf{x} to μ

- The surfaces of constant probability density are hyperellipsoids on which Δ^{2} is constant
- The principal axes of the hyperellipsoids are given by the eigenvectors \mathbf{u}_{i} of \mathcal{C} which satisfy

$$
\mathcal{C} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

and the corresponding eigenvalues λ_{i} give the variances along the respective principal directions

