EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

UcC

Lecture 7

19



Overview

Principal component analysis
Karhunen-Loeve Transform

Multivariate Gaussian

Applications

)

19



Reading

Chapter 6 of Numerical Linear Algebra by Llyod Trefethen and David
Bau

Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan

Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer

Chapter 2 of Principal Component Analysis by lan Jolliffe
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Karhunen-Loeve Transform
@ Transform data into a new set of variables, the principal components
(PC)
» which are uncorrelated and ordered
» so that the first few retain most of the variation

o Consider the first PC, u; x,

u; = arg Hm”ax var(u'x) = arg ||mHax E[u'Cu]
ul|=1 u||=1

@ Solving constrained optimization with Lagrange multiplier
u'Cu—Au'u-1)
@ Take derivative with respect to u
Cu—Xdu=0, (C—ANu=0

Thus, X is an eigenvalue of C and u is the corresponding eigenvector
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Karhunen-Loeve Transform (cont'd)
o To maximize var(u'x),
uCu=u"du=Xu"u=)\

so uj is the eigenvector corresponding to the largest eigenvalue of C

o In general, the k-th PC of x is u] x and var(u] x) = Ak where A is

the k-th largest eigenvalue

@ The second PC, usx maximizes upCus subject to being uncorrelated
with ux, i.e., cov(ulTx, usz) =0

cov(u] x,ujy x) = u; Cuz = uy Cug = uy A\ju; = Ajuy ug = Ajug up =0

@ Solving constrained optimization problem with one of these

constraints
uy Cuz — A(uy up — 1) — ¢uy uy

where )\, ¢ are Lagrange multipliers



Karhunen-Loeve Transform (cont'd)

o Take derivative with respect to up
Cup; — Aup — pu; =0
and multiply on the left by u;
ulTCu2 — /\u1Tu2 — gi)ulTul =0

@ Consequently ¢ =0 and Cuz = Auy

@ Assuming that C does not have repeated eigenvalues, A has to be the
second largest eigenvalue to satisfy all the constraints
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Karhunen-Loeve Transform and SVD

@ Assuming x has zero mean, the principal component u; is

u; = arg max var(u' x) = arg max E[(u'x)?]
[Jull=1 [Jull=1

@ With the first kK — 1 component, the k-th component can be found by
subtracting the first k — 1 principal components from x

k—1
Xk_1 =X — g u,-u,-Tx
i=1

and find a principal component in

U = arg max E(u'&-1)]
u||=1

@ The Karhunen-Loeve transform is therefore equivalent to finding the
singular value decomposition of X



Karhunen-Loeve Transform and SVD (cont'd)

@ A simpler way to compute the principal components

@ Let X = UXZ VT, the projected data onto the subspace spanned by
the first d singular vectors

Y=U;X=2%,V,

@ The matrix U of singular vectors of X is equivalently the matrix U of
eigenvectors of the covariance matrix C

C=XxXx"=vuzx"u"

@ The eigenvectors with the largest eigenvalues correspond to the
dimensions that have the strongest correlation in the data set
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Rayleigh quotient and eigenvectors

@ The Rayleigh quotient for a real matrix M and vector x is

(%) x " Mx
X) = ——
P xTx
and for eigenvector u w.r.t. covariance matrix C
T T
u Cu u'u
u) = =A—=A
pu) u'u u'u

@ The eigenvectors u; are the critical points of the Rayleigh quotient
and their eigenvalues \; are the stationary values of p(u)
@ To find the critical point of the Rayleigh quotient w.r.t. A

px) = A xTAx
s.t. x|l = 1

@ The constrained optimization problem
L(x,\) =x" Ax — A(x'x — 1)

where X is a Lagrange multiplier
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Rayleigh quotient and eigenvectors (cont'd)

Take derivative with respect to x

2Ax —=2Xx = 0

Ax = Xx
@ Thus T T
x ' Ax X' X
x) = = =A
P(x) xx xx
@ The eigenvectors xi,...,x, of A are critical points of the Rayleigh
quotient and their corresponding eigenvalues A1, ..., A, are the

stationary values of p(x)

Basis for PCA and canonical correlation analysis
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Derivation using covariance matrix

@ Let X be a m-dimensional vector with zero mean. We want to find a
m x m orthonormal projection matrix P so that Y = PX has a
diagonal covariant matrix Cy (i.e., Y is a vector with all its distinct
components pairwise uncorrelated) and PT =P

Cy = E[YY ] = E[PX(PX)"] = PE[XXT|PT = PCxP" = PTCxP

@ Therefore,
PCy = PPTCxP = CxP

e Note P = [p1,...,pq4] and Cy = diag{A1,...,\dq}

[A1p1, A2p2, - .., AaPd] = [CxP1,CxP2; - . .,CxPd]

i.e., A\jp;i = Cxpj, and p; is an eigenvector of the covariance matrix,
CX of X
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SVD and PCA

@ Recall

m
X = Zz,-u,-, zi = u,-Tx, , and u,-TuJ- = 0jj
i=1
@ Center the data points
X =[xV =x)...(x(" -x)

Covariance matrix
C=Xxx"
@ Singular value decomposition allows us to write X as
01
X=UsV'=[u ... u,]

On
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SVD and PCA (cont'd)

C = IxxT
= iuzvTi(uzvT")’T
= uzvTvzuT
= iyz2yT

@ Therefore, )

g~
Cu,- = —’u;
n

@ So, the columns U are eigenvectors and the eigenvalues are just
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Properties and limitations of PCA

Theoretically optimal subspace representation in terms of £>-norm
Involves only rotation and scaling
Unsupervised learning

Unique solution
Assumption:

» data can be modeled linearly

» data can be modeled with mean and covariance, i.e., Gaussian

distribution

> the large variances have important dynamics

» {>-norm
Nonlinear PCA, mixture of PCA, probabilistic PCA, mixture of
probabilistic PCA, factor analysis, mixture of factor analyzers, sparse
PCA, independent component analysis, Fisher linear discriminant, etc.
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Eigenface [Turk and Pentland 1991]

@ Collect a set of face images
@ Normalize for contrast, scale and orientation

@ Apply PCA to compute the first d eigenvectors (dubbed as Eigenface)
that best accounts for data variance (i.e., facial structure)

@ Compute the distance between the projected points for face
recognition or detection
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Appearance manifolds [Murase and Nayar 95]
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@ The image variation of an object under different pose or is assumed
to lie on a manifold

@ For each object, collect images under different pose

@ Construct a universal eigenspace from all the images

@ For the set of images of of the same object, find the smoothly varying
manifold in eigenspace, i.e., parametric eigenspace

@ The manifolds of two objects may intersect, the intersection
corresponds to poses of the two objects for which their images are
very similar in appearance
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Appearance manifolds [Murase and Nayar 95]
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Gaussian distribution

@ Univariate Gaussian

@ Bivariate Gaussian
1

p(x,y) = 2rovoy/I_?
exp ( — 2(1ip2) ((X—gléx)z + (y;/§Y)2 _ 2P(X*(/;Xx3(yyfuy)))
where p is the correlation between x and y
_cov(x,y) _ E[(x = p)(y — py)]
X0y X0y

Bivariate Normal

7
AN
A
L
I;;’l' '..
ALK
:"5""0":‘0‘ s
s

18 /19



Multivariate Gaussian

o Multivariate Gaussian: x € IRY
p(x) = W exp (— 3(x—p) CHx — p))
_ 1 1 A2
= oo o (—34%)
where
p = E[x]
¢ = Elx—p)(x—p)T]
A = C'?(x—u)
and A is called the Mahalanobis distance from x to
@ The surfaces of constant probability density are hyperellipsoids on
which A? is constant

@ The principal axes of the hyperellipsoids are given by the eigenvectors
u; of C which satisfy
Cu; = )\;u,-

and the corresponding eigenvalues \; give the variances along the
respective principal directions
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