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Reading

Chapter 6 of Numerical Linear Algebra by Llyod Trefethen and David
Bau

Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan

Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer

Chapter 2 of Principal Component Analysis by Ian Jolliffe
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Karhunen-Loeve Transform

Transform data into a new set of variables, the principal components
(PC)

I which are uncorrelated and ordered
I so that the first few retain most of the variation

Consider the first PC, u>1 x,

u1 = arg max
‖u‖=1

var(u>x) = arg max
‖u‖=1

E [u>Cu]

Solving constrained optimization with Lagrange multiplier

u>Cu− λ(u>u− 1)

Take derivative with respect to u

Cu− λu = 0, (C − λI )u = 0

Thus, λ is an eigenvalue of C and u is the corresponding eigenvector
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Karhunen-Loeve Transform (cont’d)

To maximize var(u>x),

u>Cu = u>λu = λu>u = λ

so u1 is the eigenvector corresponding to the largest eigenvalue of C
In general, the k-th PC of x is u>k x and var(u>k x) = λk where λk is
the k-th largest eigenvalue

The second PC, u2x maximizes u2Cu2 subject to being uncorrelated
with u1x, i.e., cov(u>1 x,u

>
2 x) = 0

cov(u>1 x,u
>
2 x) = u>1 Cu2 = u>2 Cu1 = u>2 λ1u1 = λ1u

>
2 u1 = λ1u

>
1 u2 = 0

Solving constrained optimization problem with one of these
constraints

u>2 Cu2 − λ(u>2 u2 − 1)− φu>2 u1
where λ, φ are Lagrange multipliers
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Karhunen-Loeve Transform (cont’d)

Take derivative with respect to u2

Cu2 − λu2 − φu1 = 0

and multiply on the left by u1

u>1 Cu2 − λu>1 u2 − φu>1 u1 = 0

Consequently φ = 0 and Cu2 = λu2

Assuming that C does not have repeated eigenvalues, λ has to be the
second largest eigenvalue to satisfy all the constraints
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Karhunen-Loeve Transform and SVD

Assuming x has zero mean, the principal component u1 is

u1 = arg max
‖u‖=1

var(u>x) = arg max
‖u‖=1

E [(u>x)2]

With the first k − 1 component, the k-th component can be found by
subtracting the first k − 1 principal components from x

x̂k−1 = x−
k−1∑
i=1

uiu
>
i x

and find a principal component in

uk = arg max
‖u‖=1

E [(u>x̂k−1)2]

The Karhunen-Loeve transform is therefore equivalent to finding the
singular value decomposition of X
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Karhunen-Loeve Transform and SVD (cont’d)

A simpler way to compute the principal components

Let X = UΣV>, the projected data onto the subspace spanned by
the first d singular vectors

Y = U>d X = ΣdV
>
d

The matrix U of singular vectors of X is equivalently the matrix U of
eigenvectors of the covariance matrix C

C = XX> = UΣΣ>U>

The eigenvectors with the largest eigenvalues correspond to the
dimensions that have the strongest correlation in the data set
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Rayleigh quotient and eigenvectors

The Rayleigh quotient for a real matrix M and vector x is

ρ(x) =
x>Mx

x>x

and for eigenvector u w.r.t. covariance matrix C

ρ(u) =
u>Cu
u>u

= λ
u>u

u>u
= λ

The eigenvectors ui are the critical points of the Rayleigh quotient
and their eigenvalues λi are the stationary values of ρ(u)

To find the critical point of the Rayleigh quotient w.r.t. A

ρ(x) = x>Ax
x>x

= x>Ax
s. t. ‖x‖2 = 1

The constrained optimization problem

L(x, λ) = x>Ax− λ(x>x− 1)

where λ is a Lagrange multiplier
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Rayleigh quotient and eigenvectors (cont’d)

Take derivative with respect to x

2Ax− 2λx = 0
Ax = λx

Thus

ρ(x) =
x>Ax

x>x
= λ

x>x

x>x
= λ

The eigenvectors x1, . . . , xn of A are critical points of the Rayleigh
quotient and their corresponding eigenvalues λ1, . . . , λn are the
stationary values of ρ(x)

Basis for PCA and canonical correlation analysis
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Derivation using covariance matrix

Let X be a m-dimensional vector with zero mean. We want to find a
m ×m orthonormal projection matrix P so that Y = PX has a
diagonal covariant matrix CY (i.e., Y is a vector with all its distinct
components pairwise uncorrelated) and P> = P

CY = E [YY>] = E [PX (PX )>] = PE [XX>]P> = PCXP> = P>CXP

Therefore,
PCY = PP>CXP = CXP

Note P = [p1, . . . ,pd ] and CY = diag{λ1, . . . , λd}

[λ1p1, λ2p2, . . . , λdpd ] = [CXp1, CXp2, . . . , CXpd ]

i.e., λipi = CXpi , and pi is an eigenvector of the covariance matrix,
CX of X

11 / 19



SVD and PCA

Recall

x =
m∑
i=1

ziui , zi = u>i x, , and u>i uj = δij

Center the data points

X = [(x(1) − x) . . . (x(n) − x)]

Covariance matrix
C = XX>

Singular value decomposition allows us to write X as

X = UΣV> =
[
u1 . . . un

]  σ1
. . .

σn


 v>1

...
v>n


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SVD and PCA (cont’d)

C = 1
nXX

>

= 1
nUΣV>(UΣV>)>

= 1
nUΣV>VΣU>

= 1
nUΣ2U>

Therefore,

Cui =
σ2i
n
ui

So, the columns U are eigenvectors and the eigenvalues are just

λi =
σ2
i
n
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Properties and limitations of PCA

Theoretically optimal subspace representation in terms of `2-norm

Involves only rotation and scaling

Unsupervised learning

Unique solution

Assumption:
I data can be modeled linearly
I data can be modeled with mean and covariance, i.e., Gaussian

distribution
I the large variances have important dynamics
I `2-norm

Nonlinear PCA, mixture of PCA, probabilistic PCA, mixture of
probabilistic PCA, factor analysis, mixture of factor analyzers, sparse
PCA, independent component analysis, Fisher linear discriminant, etc.
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Eigenface [Turk and Pentland 1991]

Collect a set of face images

Normalize for contrast, scale and orientation

Apply PCA to compute the first d eigenvectors (dubbed as Eigenface)
that best accounts for data variance (i.e., facial structure)

Compute the distance between the projected points for face
recognition or detection
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Appearance manifolds [Murase and Nayar 95]

The image variation of an object under different pose or is assumed
to lie on a manifold

For each object, collect images under different pose

Construct a universal eigenspace from all the images

For the set of images of of the same object, find the smoothly varying
manifold in eigenspace, i.e., parametric eigenspace

The manifolds of two objects may intersect, the intersection
corresponds to poses of the two objects for which their images are
very similar in appearance
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Appearance manifolds [Murase and Nayar 95]
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Gaussian distribution
Univariate Gaussian

p(x) =
1√

2πσ2
exp

(−(x − µ)2

2σ2
)

Bivariate Gaussian

p(x , y) = 1

2πσxσy
√

1−ρ2

exp
(
− 1

2(1−ρ2)
( (x−µx )2

σ2
x

+
(y−µy )2
σ2
y
− 2ρ(x−µx )(y−µy )

σxσy

))
where ρ is the correlation between x and y

ρ =
cov(x , y)

σxσy
=

E [(x − µx)(y − µy )]

σxσy
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Multivariate Gaussian

Multivariate Gaussian: x ∈ IRd

p(x) = 1
(2π)d/2|C|1/2 exp

(
− 1

2(x− µ)>C−1(x− µ)
)

= 1
(2π)d/2|C|1/2 exp

(
− 1

2∆2
)

where
µ = E [x]
C = E [(x− µ)(x− µ)>]

∆ = C−1/2(x− u)

and ∆ is called the Mahalanobis distance from x to µ

The surfaces of constant probability density are hyperellipsoids on
which ∆2 is constant

The principal axes of the hyperellipsoids are given by the eigenvectors
ui of C which satisfy

Cui = λiui

and the corresponding eigenvalues λi give the variances along the
respective principal directions
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