EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 6

Overview

- Orthogonal projection, distance between subspaces
- Principal component analysis

Reading

- Chapter 6 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 2 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl Meyer

Orthogonal projection

- Let $S \subset \mathbb{R}^{n}$ be a subspace, $P \in \mathbb{R}^{n \times n}$ is the orthogonal projection (i.e., projector) onto S if $\operatorname{ran}(P)=S, P^{2}=P$, and $P^{\top}=P$
- Mathematically, we have $\mathbf{y}=P \mathbf{x}$ for some \mathbf{x}, then

$$
P \mathbf{y}=P^{2} \mathbf{x}=P \mathbf{x}=\mathbf{y}
$$

- Example, in \mathbb{R}^{3}

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], P\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right], \text { and } P^{2}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]
$$

- For orthogonal projection,

$$
P(P \mathbf{x}-\mathbf{x})=P^{2} \mathbf{x}-P \mathbf{x}=P(I-P) \mathbf{x}=0
$$

which means $P \mathbf{x}-\mathbf{x} \in \operatorname{null}(P)$

- If $\mathbf{x} \in \mathbb{R}^{n}$, then $P \mathbf{x} \in S$ and $(I-P) \mathbf{x} \in S^{\perp}$

Orthogonal projection

- If P is a projector, $I-P$ is also a projector, and

$$
\|I-P\|_{2}^{2}=I-2 P+P^{2}=I-P
$$

The matrix $I-P$ is called complementary projector to P

- $I-P$ projects to the null space of P, i.e.,

$$
\operatorname{ran}(I-P)=\operatorname{null}(P)
$$

and, since $P=I-(I-P)$, we have

$$
\operatorname{null}(I-P)=\operatorname{ran}(P)
$$

and $\operatorname{ran}(P) \cap \operatorname{null}(P)=\{0\}$

- If P_{1} and P_{2} are orthogonal projections, then for any $\mathbf{z} \in R^{n}$, we have

$$
\left\|\left(P_{1}-P_{2}\right) \mathbf{z}\right\|_{2}^{2}=\left(P_{1} \mathbf{z}\right)^{\top}\left(I-P_{2}\right) \mathbf{z}+\left(P_{2} z\right)^{\top}\left(I-P_{1}\right) \mathbf{z}
$$

- If $\operatorname{ran}\left(P_{1}\right)=\operatorname{ran}\left(P_{2}\right)=S$, then the right hand side of the above equation is zero, i.e., the orthogonal projection for a subspace is unique

Orthogonal projection and SVD

- If the columns of $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ are an orthonormal basis for a subspace S, then it is easy to show that $P=V V^{\top}$ is the unique orthogonal projection onto S
- If $\mathbf{v} \in \mathbb{R}^{n}$, then $P=\frac{\mathbf{v}^{\top}}{\mathbf{v}^{\top} \mathbf{v}}$ is the orthogonal projection onto $S=\operatorname{span}(\{\mathbf{v}\})$
- Let $A=U \Sigma V^{\top} \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=r$, we have the U and V partitionings

$$
U=\left[\begin{array}{cc}
U_{r} & \widetilde{U} \\
r & m-r
\end{array} \quad V=\left[\begin{array}{cc}
V_{r} & \widetilde{V}
\end{array}\right]\right.
$$

then

$$
\begin{aligned}
& U_{r} U_{r}^{\top}=\text { projection onto } \operatorname{ran}(A) \\
& \widetilde{U}_{r} \widetilde{U}_{r}^{\top}=\text { projection onto } \operatorname{ran}(A)^{\perp}=\operatorname{null}\left(A^{\top}\right) \\
& V_{r} V_{r}^{\top}=\text { projection onto } \operatorname{null}(A)^{\perp}=\operatorname{ran}\left(A^{\top}\right) \\
& \widetilde{V}_{r} \widetilde{V}_{r}^{\top}=\text { projection onto null(A) }
\end{aligned}
$$

Distances between subspaces

- Let S_{1} and S_{2} be subspaces of \mathbb{R}^{n} and $\operatorname{dim}\left(S_{1}\right)=\operatorname{dim}\left(S_{2}\right)$, we define the distance between two spaces by

$$
\operatorname{dist}\left(S_{1}, S_{2}\right)=\left\|P_{1}-P_{2}\right\|_{2}
$$

where P_{i} is the orthogonal projection onto S_{i}

- The distance between a pair of subspaces can be characterized in terms of the blocks of a certain orthogonal matrix

Theorem
Suppose

$$
W=\left[\begin{array}{cc}
W_{1} & W_{2} \\
k & n-k
\end{array} \quad Z=\left[\begin{array}{cc}
Z_{1} & Z_{2} \\
k & n-k
\end{array}\right.\right.
$$

are n-by-n orthogonal matrices. If $S_{1}=\operatorname{ran}\left(W_{1}\right)$, and $S_{2}=\operatorname{ran}\left(Z_{1}\right)$, then

$$
\operatorname{dist}\left(S_{1}, S_{2}\right)=\left\|W_{1}^{\top} Z_{2}\right\|_{2}=\left\|Z_{1}^{\top} W_{2}\right\|_{2}
$$

See Golub and Van Loan for proof

Distance between subspaces in \mathbb{R}^{n}

- If S_{1} and S_{2} are subspaces in \mathbb{R}^{n} with the same dimension, then

$$
0 \leq \operatorname{dist}\left(S_{1}, S_{2}\right) \leq 1
$$

- The distance is zero if $S_{1}=S_{2}$ and one if $S_{1} \cap S_{2}^{\perp} \neq\{0\}$

Symmetric matrices

- Consider real, symmetric matrices, $A^{\top}=A$,
- Hessian matrix (second order partial derivatives of a function):

$$
\mathbf{y}=f(\mathbf{x}+\Delta \mathbf{x}) \approx f(\mathbf{x})+J(\mathbf{x}) \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{\top} H(\mathbf{x}) \Delta \mathbf{x}
$$

where J is the Jacobian matrix

- covariance matrix for Gaussian distribution
- The inverse is also symmetric: $\left(A^{-1}\right)^{\top}=A^{-1}$
- Eigenvector equation for a symmetric matrix

$$
A \mathbf{u}_{k}=\lambda_{k} \mathbf{u}_{k}
$$

which can be written as

$$
A U=D U, \text { or }(A-D) U=0
$$

where D is a diagonal matrix whose elements are eigenvalues

$$
D=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{m}
\end{array}\right]
$$

and U is matrix whose columns are eigenvectors \mathbf{u}_{k}

Eigenvectors for symmetric matrices

- The eigenvectors can be computed from determinant $|A-D|=0$
- Eigenvectors can be chosen to form an orthonormal basis as follows
- For a pair of eigenvectors \mathbf{u}_{j} and \mathbf{u}_{k}, it follows

$$
\begin{aligned}
\mathbf{u}_{j}^{\top} A \mathbf{u}_{k} & =\lambda_{k} \mathbf{u}_{j}^{\top} \mathbf{u}_{k} \\
\mathbf{u}_{k}^{\top} A \mathbf{u}_{j} & =\lambda_{j} \mathbf{u}_{k}^{\top} \mathbf{u}_{j}
\end{aligned}
$$

and since A is symmetric, we have

$$
\left(\lambda_{k}-\lambda_{j}\right) \mathbf{u}_{k}^{\top} \mathbf{u}_{j}=0
$$

- For $\lambda_{k} \neq \lambda_{j}$, the eigenvectors must be orthogonal
- Note for any \mathbf{u}_{k} with eigenvalue $\lambda_{k}, \beta \mathbf{u}_{k}$ is also an eigenvector for non-zero β with the same eigenvalue
- Can be used to normalize the eigenvectors to unit norm so that

$$
\mathbf{u}_{k}^{\top} \mathbf{u}_{j}=\delta_{k j}
$$

Symmetric matrices and diagonalization

- Since $A \mathbf{u}_{k}=\lambda_{k} \mathbf{u}_{k}$, multiply A^{-1} and we obtain

$$
A^{-1} \mathbf{u}_{k}=\lambda_{k}^{-1} \mathbf{u}_{k}
$$

so A^{-1} has the same eigenvectors as A but with reciprocal eigenvalues

- For symmetric matrix $A, A U=D U$ and $U^{\top} U=I, U=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right]$, A can be diagonalized

$$
U^{\top} A U=D
$$

- For symmetric matrix A, the SVD of $A=U \Sigma U^{\top}$
- Recall U, V are left and right singular vectors

$$
\begin{aligned}
& \left(A A^{\top}\right) U=\Sigma U \\
& \left(A^{\top} A\right) V=\Sigma V
\end{aligned}
$$

Since A is symmetric, $U=V$, and $A=U \Sigma U^{\top}$

Principal component analysis (PCA)

- Arguably the most popular dimensionality reduction algorithm
- Curse of dimensionality
- Widely used in computer vision, machine learning and pattern recognition
- Can be derived from several perspectives:
- Minimize reconstruction error: Karhunen-Loeve transform
- Decorrelation: Hottelling transform
- Maximize the variance of the projected samples (i.e., preserve as much energy as possible)
- Unsupervised learning
- Linear transform
- Second order statistics
- Recall from SVD we have $A=U \Sigma V^{\top}$, and thus project samples on the subspace spanned by U can be computed by

$$
U^{\top} A=\Sigma V^{\top}
$$

Principal component analysis

- Given a set of n data points $\mathbf{x} \in \mathbb{R}^{m}$, we would like to project each $\mathbf{x}^{(k)}$ onto a onto a d-dimensional subspace $\mathbf{z}^{(k)}=\left[z_{1}, \ldots, z_{d}\right] \in \mathbb{R}^{d}$, $d<m$, so that

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}
$$

where the vectors \mathbf{u}_{i} satisfy the orthonormality relation

$$
\mathbf{u}_{i}^{\top} \mathbf{u}_{j}=\delta_{i j}
$$

in which $\delta_{i j}$ is the Kronecker delta. Thus,

$$
z_{i}=\mathbf{u}_{i}^{\top} \mathbf{x}
$$

- Now we have only a subset $d<m$ of the basis vector \mathbf{u}_{i}. The remaining coefficients will be replaced by constants b_{i} so that each vector \mathbf{x} is approximated by \mathbf{x} can be approximated by

$$
\widetilde{\mathbf{x}}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}+\sum_{i=d+1}^{m} b_{i} \mathbf{u}_{i}
$$

Principal component analysis (cont'd)

- Dimensionality reduction: \mathbf{x} has m degree of freedom and \mathbf{z} has d degree of freedom, $d<m$
- For each $\mathbf{x}^{(k)}$, the error introduced by the dimensionality reduction is

$$
\mathbf{x}^{(k)}-\widetilde{\mathbf{x}}^{(k)}=\sum_{i=d+1}^{m}\left(z_{i}^{(k)}-b_{i}\right) \mathbf{u}_{i}
$$

and we want to find the basis vector \mathbf{u}_{i}, the coefficients b_{i}, and the values z_{i} with minimum error in ℓ_{2}-norm

- For the whole data set, with orthonormality relation

$$
E_{d}=\frac{1}{2} \sum_{k=1}^{n}\left\|\mathbf{x}^{(k)}-\widetilde{\mathbf{x}}^{(k)}\right\|^{2}=\frac{1}{2} \sum_{k=1}^{n} \sum_{i=d+1}^{m}\left(z_{i}^{(k)}-b_{i}\right)^{2}
$$

Principal component analysis (cont'd)

- Take derivative of E_{d} with respect to b_{i} and set it to zero,

$$
b_{i}=\frac{1}{n} \sum_{k=1}^{n} z_{i}^{(k)}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{u}_{i}^{\top} \mathbf{x}^{(k)}=\mathbf{u}_{i}^{\top} \overline{\mathbf{x}} \text { where, } \overline{\mathbf{x}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}^{(k)}
$$

- Plug it into the sum of square errors, E_{d},

$$
\begin{aligned}
E_{d} & =\frac{1}{2} \sum_{i=d+1}^{m} \sum_{k=1}^{n}\left(\mathbf{u}_{i}^{\top}\left(\mathbf{x}^{(k)}-\overline{\mathbf{x}}\right)\right)^{2} \\
& =\frac{n}{2} \sum_{i=d+1}^{m} \mathbf{u}_{i}^{\top} \mathcal{C} \mathbf{u}_{i}
\end{aligned}
$$

where \mathcal{C} is a covariance matrix

$$
\mathcal{C}=\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{x}^{(k)}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{(k)}-\overline{\mathbf{x}}\right)^{\top}
$$

- Minimizing E_{d} with respect to \mathbf{u}_{i}, we get

$$
\mathcal{C} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

i.e., the basis vectors \mathbf{u}_{i} are the eigenvectors of the covariance matrix \mathcal{C}

Derivation

- Minimizing E_{d} with respect to \mathbf{u}_{i},

$$
\begin{aligned}
E_{d} & =\frac{1}{2} \sum_{i=d+1}^{m} \sum_{k=1}^{n}\left(\mathbf{u}_{i}^{\top}\left(\mathbf{x}^{(k)}-\overline{\mathbf{x}}\right)\right)^{2} \\
& =\frac{n}{2} \sum_{i=d+1}^{m} \mathbf{u}_{i}^{\top} \mathcal{C} \mathbf{u}_{i}
\end{aligned}
$$

- Need some constraints to solve this optimization problem
- Impose orthonormal constraints among \mathbf{u}_{i}
- Use Lagrange multipliers $\phi_{i j}$

$$
\hat{E}_{d}=\frac{1}{2} \sum_{i=d+1}^{m} \mathbf{u}_{i} \mathcal{C} \mathbf{u}_{i}^{\top}-\frac{1}{2} \sum_{i=d+1}^{m} \sum_{j=d+1}^{m} \phi_{i j}\left(\mathbf{u}_{i}^{\top} \mathbf{u}_{j}-\delta_{i j}\right)
$$

- Recall

$$
\begin{aligned}
& \quad \min f(\mathbf{x}) \\
& \text { s.t. } g(\mathbf{x})=0
\end{aligned} \Rightarrow L(\mathbf{x}, \phi)=f(\mathbf{x})+\phi g(\mathbf{x})
$$

- Example: $\min f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ subject to $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1=0$

Derivation (cont'd)

- In matrix form,

$$
\hat{E}_{d}=\frac{1}{2} \operatorname{tr}\left\{U^{\top} \mathcal{C} U\right\}-\frac{1}{2} \operatorname{tr}\left\{M\left(U^{\top} U-I\right)\right\}
$$

where M is a matrix with elements $\phi_{i j}$, and U is a matrix whose columns are \mathbf{u}_{i}

- Minimizing \hat{E}_{d} with respect to U,

$$
\left(\mathcal{C}+\mathcal{C}^{\top}\right) U-U\left(M+M^{\top}\right)=0
$$

- Note \mathcal{C} is symmetric, M is symmetric since $U U^{\top}$ is symmetric. Thus

$$
\begin{gathered}
\mathcal{C} U=U M \\
U^{\top} \mathcal{C} U=M
\end{gathered}
$$

- Clearly one solution is to choose M to be diagonal so that the columns of U are eigenvectors of \mathcal{C} and the diagonal elements of M are eigenvalues

Derivation (cont'd)

- The eigenvector equation for M

$$
M \Psi=\Psi \Lambda
$$

where Λ is a diagonal matrix of eigenvalues and Ψ is the matrix of eigenvectors

- M is symmetric and Ψ can be chosen to have orthonormal columns, i.e., $\Psi^{\top} \Psi=I$

$$
\Lambda=\Psi^{\top} M \Psi
$$

- Put together,

$$
\begin{aligned}
\Lambda & =\Psi^{\top} U^{\top} \mathcal{C} U \Psi \\
& =(U \Psi)^{\top} \mathcal{C}(U \Psi) \\
& =\widetilde{U}^{\top} \mathcal{C} \widetilde{U}
\end{aligned}
$$

where $\widetilde{U}=U \Psi$, and

$$
U=\widetilde{U} \Psi^{\top}
$$

- Another solution for $U^{\top} \mathcal{C} U=M$ can be obtained from the particular solution \widetilde{U} by application of an orthogonal transformation given by ψ

Derivation (cont'd)

- We note that E_{d} is invariant under this orthogonal transformation

$$
\begin{aligned}
E_{d} & =\frac{1}{2} \operatorname{tr}\left\{U^{\top} \mathcal{C} U\right\} \\
& =\frac{1}{2} \operatorname{tr}\left\{\Psi \widetilde{U}^{\top} \mathcal{C} \widetilde{U} \Psi^{\top}\right\} \\
& =\frac{1}{2} \operatorname{tr}\left\{\widetilde{U}^{\top} \mathcal{C} \widetilde{U}\right\}
\end{aligned}
$$

- Recall the matrix 2-norm is invariant under orthogonal transformation
- Since all of the possible solutions give the same minimum error E_{d}, we can choose whichever is most convenient
- We thus choose the solutions given by \widetilde{U} (with unit norm) since this has columns which are the eigenvectors of \mathcal{C}

Computing principal components from data

- Minimizing E_{d} with respect to \mathbf{u}_{i}, we get

$$
\mathcal{C} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

i.e., the basis vectors \mathbf{u}_{i} are the eigenvectors of the covariance matrix \mathcal{C}

- Consequently, the error of E_{d} is

$$
E_{d}=\frac{1}{2} \sum_{i=d+1}^{m} \lambda_{i}
$$

In other words, the minimum error is reached by discarding the eigenvectors corresponding to the $m-d$ smallest eigenvalues

- Retain the eigenvectors corresponding to the largest eigenvalues

Computing principal components from data

- Project $\mathbf{x}^{(k)}$ onto these eigenvectors give the components of the transformed vector $z^{(k)}$ in the d-dimensional space

- Each two-dimensional data point is transformed to a single variable z_{1} representing the projection of the data point onto the eigenvector u_{1}
- Infer the structure (or reduce redundancy) inherent in high dimensional data
- Parsimonious representation
- Linear dimensionality algorithm based on sum-of-square-error criterion
- Other criteria: covariance measure and population entropy

Intrinsic dimensionality

- A data set in m dimensions has intrinsic dimensionality equal to m^{\prime} if the data lies entirely within a m^{\prime}-dimensional space
- What is the intrinsic dimensionality of data?
- The intrinsic dimensionality may increase due to noise
- PCA, as a linear approximation, has its limitation
- How to determine the number of eigenvectors?
- Empirically determined based on reconstruction error (i.e., energy)

