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Overview

@ Orthogonal projection, distance between subspaces

@ Principal component analysis
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Reading

o Chapter 6 of Numerical Linear Algebra by Llyod Trefethen and David
Bau

o Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan

o Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer



Orthogonal projection

@ Let S C IR" be a subspace, P € IR™" is the orthogonal projection

(i.e., projector) onto S if ran(P) =S, P> =P, and PT = P

@ Mathematically, we have y = Px for some x, then

Py = P>x = Px=y

e Example, in R3
1 00 X X X
P=|010|,Ply|=|y]|, and P*| y
0 0O z 0 z

@ For orthogonal projection,
P(Px —x)=P?x — Px=P(l = P)x =0

which means Px — x € null(P)
o If x € R”, then Px € S and (/ — P)x € S+



Orthogonal projection
o If P is a projector, | — P is also a projector, and
|l =Pl|3=1-2P+P>=1—P

The matrix | — P is called complementary projector to P
@ | — P projects to the null space of P, i.e.,

ran(/ — P) = null(P)
and, since P =1 — (I — P), we have
null(/ — P) = ran(P)
and ran(P) N null(P) = {0}
o If P; and P, are orthogonal projections, then for any z € R”, we have
I(P1 = P2)z|3 = (Pr2) ' (I = P2)z+ (P22) " (I — P1)z

o If ran(P1) =ran(P2) = S, then the right hand side of the above
equation is zero, i.e., the orthogonal projection for a subspace is
unique



Orthogonal projection and SVD

@ If the columns of V = [vi,...,vk] are an orthonormal basis for a
subspace S, then it is easy to show that P = VV'T is the unique
orthogonal projection onto S

o IfveIR", then P = % is the orthogonal projection onto
S = span({v})

o Let A= UZVT € R™" and rank(A) = r, we have the U and V
partitionings

U =1U U] V = [V, V]

I

r m-—r r n—r
then
U,Ul = projection onto ran(A)
U,U" = projection onto ran(A)* = null(AT)
V,V.,! = bprojection onto null(A)* = ran(AT)

ViV )
)

V,V," = projection onto null(A
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Distances between subspaces

@ Let S; and Sy be subspaces of IR"” and dim(51) = dim(Sz), we define
the distance between two spaces by

dist(S1, S2) = ||P1 — P22

where P; is the orthogonal projection onto S;

@ The distance between a pair of subspaces can be characterized in
terms of the blocks of a certain orthogonal matrix

Theorem

Suppose
W = [ Wi W | Z = [ 21 2]
k n—k k n—k
are n-by-n orthogonal matrices. If S; = ran(Wh), and Sy = ran(Zy), then
dist(S1,52) = Wy Zll2 = [|1Z Wal)2

See Golub and Van Loan for proof



Distance between subspaces in IR"

e If 51 and S, are subspaces in IR” with the same dimension, then
0< dist(51,52) <1

o The distance is zero if S; = S, and one if 5; N S5~ # {0}
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Symmetric matrices

o Consider real, symmetric matrices, AT = A,

» Hessian matrix (second order partial derivatives of a function):

y = f(x + Ax) = f(x) + J(x)Ax + %AXTH(X)AX
where J is the Jacobian matrix
» covariance matrix for Gaussian distribution
@ The inverse is also symmetric: (A~1)T = A~1
@ Eigenvector equation for a symmetric matrix
Auk = )\kuk
which can be written as
AU=DU,or (A—D)U=0
where D is a diagonal matrix whose elements are eigenvalues
A1
D =
Am

and U is matrix whose columns are eigenvectors uy



Eigenvectors for symmetric matrices

@ The eigenvectors can be computed from determinant | A— D |=0
@ Eigenvectors can be chosen to form an orthonormal basis as follows

@ For a pair of eigenvectors u; and uy, it follows

uJTAuk = \ul ug
TAu: — . .
u Au; = Au u;

and since A is symmetric, we have
(A — Aj)ugu; =0

e For \¢ # )}, the eigenvectors must be orthogonal

@ Note for any uj with eigenvalue A, Buy is also an eigenvector for
non-zero 3 with the same eigenvalue

@ Can be used to normalize the eigenvectors to unit norm so that
T
Ui uj = Oy
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Symmetric matrices and diagonalization

@ Since Auyx = Auy, multiply A~! and we obtain
A_luk = )\Zluk

so A~1 has the same eigenvectors as A but with reciprocal eigenvalues

o For symmetric matrix A, AU = DU and UTU =1, U = [uy,...,uy),
A can be diagonalized
UTAU =D

o For symmetric matrix A, the SVD of A= UXUT

@ Recall U, V are left and right singular vectors

(AATYU = TU
(ATA)V = 1V

Since A is symmetric, U=V, and A = Uxu’
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Principal component analysis (PCA)

e 6 o o

Arguably the most popular dimensionality reduction algorithm
Curse of dimensionality

Widely used in computer vision, machine learning and pattern
recognition
Can be derived from several perspectives:

» Minimize reconstruction error: Karhunen-Loeve transform

» Decorrelation: Hottelling transform

» Maximize the variance of the projected samples (i.e., preserve as much
energy as possible)

Unsupervised learning
Linear transform
Second order statistics

Recall from SVD we have A= UX VT, and thus project samples on
the subspace spanned by U can be computed by

UraA=3xvT



Principal component analysis

@ Given a set of n data points x € IR™, we would like to project each
x(k) onto a onto a d-dimensional subspace z(K) = [z1,...,24] € RY,

d < m, so that
d
X = Z Ziu;
i=1

where the vectors u; satisfy the orthonormality relation
u/ u; = 4;
in which d;; is the Kronecker delta. Thus,
zi = u,-Tx
@ Now we have only a subset d < m of the basis vector u;. The

remaining coefficients will be replaced by constants b; so that each
vector x is approximated by x can be approximated by

X—ZZ,U,—I— Z b;u;

i=d+1
13/22



Principal component analysis (cont’d)

@ Dimensionality reduction: x has m degree of freedom and z has d
degree of freedom, d < m
o For each x(¥)| the error introduced by the dimensionality reduction is

x) %0 = N (25 — by,
i=d+1

and we want to find the basis vector u;, the coefficients b;, and the
values z; with minimum error in £>-norm

@ For the whole data set, with orthonormality relation

1 n _ 1 n m P
Eg=5 > W50 =237 37 (9 - bi)?
k=1

k=1i=d+1
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Principal component analysis (cont’d)

@ Take derivative of Ey4 with respect to b; and set it to zero,

Zz(k Z u x) = ux where, x = % Z x(K)

= k=1
@ Plug it into the sum of square errors, Eg,
_ 1 m n T k %))2
Es = 5 Zi;d-&-l ZTk:1(U; (X( ) — X))
— n .
= 52 itg+1Y; Cu

where C is a covariance matrix

n

c=1 > (x) — =) (xF) — %) T

n
k=1

@ Minimizing Ey4 with respect to u;, we get

Cu; = )\,'u,-

i.e., the basis vectors u; are the eigenvectors of the covariance matrix

C
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Derivation

@ Minimizing E4 with respect to u;,

Ed = % Z%d-‘,—l Z_I_Z:l(u;r(x(k) _ f))2
- g Zi:d+1 ui Cu,-

Need some constraints to solve this optimization problem

Impose orthonormal constraints among u;

o Use Lagrange multipliers ¢;;
R 1 m - 1 m m
Eqy = 5 Z u;Cu; — 5 Z Z ¢ij(u; uj — 5;)
i=d+1 i=d+1 j=d+1
@ Recall .
min f(x
st. g(x)=0 = L(x,¢) = f(x) + ¢g(x)

e Example: min f(xy, x2) = x1x2 subject to g(x1,x2) =x1+x —1=0

16 /22



Derivation (cont'd)

@ In matrix form,
o 1 1
E,= Etr{UTCU} — 5tr{/\/I(UTU -}

where M is a matrix with elements ¢;;, and U is a matrix whose
columns are u;

e Minimizing E, with respect to U,
C+CHU—-UM+M")=0
@ Note C is symmetric, M is symmetric since UU" is symmetric. Thus
CU=UM
ulcu=m

@ Clearly one solution is to choose M to be diagonal so that the
columns of U are eigenvectors of C and the diagonal elements of M
are eigenvalues
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Derivation (cont'd)

@ The eigenvector equation for M
MWV = WA
where A is a diagonal matrix of eigenvalues and V is the matrix of
eigenvectors

@ M is symmetric and W can be chosen to have orthonormal columns,
: Tw —
|.e.,\U V= A:\UTMW
o Put together, A — vTUTCUw
= (Uv)Tc(uv)
u'tcu
where U = UV, and U= 0w’

@ Another solution for UTCU = M can be obtained from the particular
solution U by application of an orthogonal transformation given by W
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Derivation (cont'd)

@ We note that E, is invariant under this orthogonal transformation

Eq = %tr{UTCU}
= Sw{wUTCcuvT}
= w{UTCU}
@ Recall the matrix 2-norm is invariant under orthogonal transformation

@ Since all of the possible solutions give the same minimum error Ey,
we can choose whichever is most convenient

@ We thus choose the solutions given by U (with unit norm) since this
has columns which are the eigenvectors of C
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Computing principal components from data

@ Minimizing E4 with respect to u;, we get
Cu; = )\;u,-

i.e., the basis vectors u; are the eigenvectors of the covariance matrix
C

o Consequently, the error of E4 is

1 m
Ed:§ Z Ai

i=d+1

In other words, the minimum error is reached by discarding the
eigenvectors corresponding to the m — d smallest eigenvalues

@ Retain the eigenvectors corresponding to the largest eigenvalues



Computing principal components from data

o Project x(¥) onto these eigenvectors give the components of the
transformed vector z(¥) in the d-dimensional space

@ Each two-dimensional data point is transformed to a single variable z;
representing the projection of the data point onto the eigenvector u;

Infer the structure (or reduce redundancy) inherent in high
dimensional data

Parsimonious representation

Linear dimensionality algorithm based on sum-of-square-error criterion

(]

Other criteria: covariance measure and population entropy



Intrinsic dimensionality

X

A data set in m dimensions has intrinsic dimensionality equal to m’ if
the data lies entirely within a m’-dimensional space

What is the intrinsic dimensionality of data?

The intrinsic dimensionality may increase due to noise

°

°

o PCA, as a linear approximation, has its limitation
@ How to determine the number of eigenvectors?

°

Empirically determined based on reconstruction error (i.e., energy)

N
N

N



