EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 6
Overview

- Orthogonal projection, distance between subspaces
- Principal component analysis
Reading

- Chapter 6 of *Numerical Linear Algebra* by Llyod Trefethen and David Bau
- Chapter 2 of *Matrix Computations* by Gene Golub and Charles Van Loan
- Chapter 5 of *Matrix Analysis and Applied Linear Algebra* by Carl Meyer
Orthogonal projection

- Let $S \subset \mathbb{R}^n$ be a subspace, $P \in \mathbb{R}^{n \times n}$ is the orthogonal projection (i.e., projector) onto S if $\text{ran}(P) = S$, $P^2 = P$, and $P^\top = P$.

- Mathematically, we have $y = Px$ for some x, then

$$Py = P^2x = Px = y$$

- Example, in \mathbb{R}^3

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad P \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}, \quad \text{and} \quad P^2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

- For orthogonal projection,

$$P(Px - x) = P^2x - Px = P(I - P)x = 0$$

which means $Px - x \in \text{null}(P)$

- If $x \in \mathbb{R}^n$, then $Px \in S$ and $(I - P)x \in S^\perp$.
Orthogonal projection

- If \(P \) is a projector, \(I - P \) is also a projector, and
 \[
 \| I - P \|_2^2 = I - 2P + P^2 = I - P
 \]
 The matrix \(I - P \) is called complementary projector to \(P \)
- \(I - P \) projects to the null space of \(P \), i.e.,
 \[
 \text{ran}(I - P) = \text{null}(P)
 \]
 and, since \(P = I - (I - P) \), we have
 \[
 \text{null}(I - P) = \text{ran}(P)
 \]
 and \(\text{ran}(P) \cap \text{null}(P) = \{0\} \)
- If \(P_1 \) and \(P_2 \) are orthogonal projections, then for any \(z \in \mathbb{R}^n \), we have
 \[
 \| (P_1 - P_2)z \|_2^2 = (P_1 z)^\top (I - P_2) z + (P_2 z)^\top (I - P_1) z
 \]
- If \(\text{ran}(P_1) = \text{ran}(P_2) = S \), then the right hand side of the above equation is zero, i.e., the orthogonal projection for a subspace is unique
Orthogonal projection and SVD

- If the columns of $V = [v_1, \ldots, v_k]$ are an orthonormal basis for a subspace S, then it is easy to show that $P = V V^\top$ is the unique orthogonal projection onto S.

- If $v \in \mathbb{R}^n$, then $P = \frac{vv^\top}{v^\top v}$ is the orthogonal projection onto $S = \text{span} \{ \{v\} \}$.

- Let $A = U \Sigma V^\top \in \mathbb{R}^{m \times n}$ and $\text{rank}(A) = r$, we have the U and V partitionings

 $$U = \begin{bmatrix} U_r & \tilde{U} \end{bmatrix}, \quad V = \begin{bmatrix} V_r & \tilde{V} \end{bmatrix},$$

 with

 $U_r U_r^\top = \text{projection onto } \text{ran}(A)$

 $\tilde{U}_r \tilde{U}_r^\top = \text{projection onto } \text{ran}(A)^\perp = \text{null}(A^\top)$

 $V_r V_r^\top = \text{projection onto } \text{null}(A)^\perp = \text{ran}(A^\top)$

 $\tilde{V}_r \tilde{V}_r^\top = \text{projection onto } \text{null}(A)$
Distances between subspaces

- Let S_1 and S_2 be subspaces of \mathbb{R}^n and $\dim(S_1) = \dim(S_2)$, we define the distance between two spaces by

$$\text{dist}(S_1, S_2) = \|P_1 - P_2\|_2$$

where P_i is the orthogonal projection onto S_i.

- The distance between a pair of subspaces can be characterized in terms of the blocks of a certain orthogonal matrix.

Theorem

Suppose

$$W = \begin{bmatrix} W_1 & W_2 \end{bmatrix} \quad Z = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$$

are n-by-n orthogonal matrices. If $S_1 = \text{ran}(W_1)$, and $S_2 = \text{ran}(Z_1)$, then

$$\text{dist}(S_1, S_2) = \|W_1^\top Z_2\|_2 = \|Z_1^\top W_2\|_2$$

See Golub and Van Loan for proof.
Distance between subspaces in \mathbb{R}^n

- If S_1 and S_2 are subspaces in \mathbb{R}^n with the same dimension, then
 $$0 \leq \text{dist}(S_1, S_2) \leq 1$$

- The distance is zero if $S_1 = S_2$ and one if $S_1 \cap S_2^\perp \neq \{0\}$
Symmetric matrices

- Consider real, symmetric matrices, $A^\top = A$,
 - Hessian matrix (second order partial derivatives of a function):
 \[
 y = f(x + \Delta x) \approx f(x) + J(x) \Delta x + \frac{1}{2} \Delta x^\top H(x) \Delta x
 \]
 where J is the Jacobian matrix
 - covariance matrix for Gaussian distribution
- The inverse is also symmetric: $(A^{-1})^\top = A^{-1}$
- Eigenvector equation for a symmetric matrix
 \[
 Au_k = \lambda_k u_k
 \]
 which can be written as
 \[
 AU = DU, \text{ or } (A - D)U = 0
 \]
 where D is a diagonal matrix whose elements are eigenvalues
 \[
 D = \begin{bmatrix}
 \lambda_1 \\
 \vdots \\
 \lambda_m
 \end{bmatrix}
 \]
 and U is matrix whose columns are eigenvectors u_k
Eigenvectors for symmetric matrices

- The eigenvectors can be computed from determinant $|A - D| = 0$
- Eigenvectors can be chosen to form an orthonormal basis as follows
- For a pair of eigenvectors \mathbf{u}_j and \mathbf{u}_k, it follows

\[
\begin{align*}
\mathbf{u}_j^\top A \mathbf{u}_k &= \lambda_k \mathbf{u}_j^\top \mathbf{u}_k \\
\mathbf{u}_k^\top A \mathbf{u}_j &= \lambda_j \mathbf{u}_k^\top \mathbf{u}_j
\end{align*}
\]

and since A is symmetric, we have

\[
(\lambda_k - \lambda_j) \mathbf{u}_k^\top \mathbf{u}_j = 0
\]

- For $\lambda_k \neq \lambda_j$, the eigenvectors must be orthogonal
- Note for any \mathbf{u}_k with eigenvalue λ_k, $\beta \mathbf{u}_k$ is also an eigenvector for non-zero β with the same eigenvalue
- Can be used to normalize the eigenvectors to unit norm so that

\[
\mathbf{u}_k^\top \mathbf{u}_j = \delta_{kj}
\]
Symmetric matrices and diagonalization

- Since $A u_k = \lambda_k u_k$, multiply A^{-1} and we obtain

$$A^{-1} u_k = \lambda_k^{-1} u_k$$

so A^{-1} has the same eigenvectors as A but with reciprocal eigenvalues

- For symmetric matrix A, $AU = DU$ and $U^\top U = I$, $U = [u_1, \ldots, u_m]$, A can be diagonalized

$$U^\top AU = D$$

- For symmetric matrix A, the SVD of $A = U \Sigma U^\top$

- Recall U, V are left and right singular vectors

$$\begin{align*}
(AA^\top) U &= \Sigma U \\
(A^\top A) V &= \Sigma V
\end{align*}$$

Since A is symmetric, $U = V$, and $A = U \Sigma U^\top$
Principal component analysis (PCA)

- Arguably the most popular dimensionality reduction algorithm
- Curse of dimensionality
- Widely used in computer vision, machine learning and pattern recognition
- Can be derived from several perspectives:
 - Minimize reconstruction error: Karhunen-Loeve transform
 - Decorrelation: Hotelling transform
 - Maximize the variance of the projected samples (i.e., preserve as much energy as possible)
- Unsupervised learning
- Linear transform
- Second order statistics
- Recall from SVD we have $A = U \Sigma V^\top$, and thus project samples on the subspace spanned by U can be computed by

$$U^\top A = \Sigma V^\top$$
Principal component analysis

- Given a set of \(n \) data points \(\mathbf{x} \in \mathbb{R}^m \), we would like to project each \(\mathbf{x}^{(k)} \) onto a \(d \)-dimensional subspace \(\mathbf{z}^{(k)} = [z_1, \ldots, z_d] \in \mathbb{R}^d \), \(d < m \), so that

\[
\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i
\]

where the vectors \(\mathbf{u}_i \) satisfy the orthonormality relation

\[
\mathbf{u}_i^\top \mathbf{u}_j = \delta_{ij}
\]

in which \(\delta_{ij} \) is the Kronecker delta. Thus,

\[
z_i = \mathbf{u}_i^\top \mathbf{x}
\]

- Now we have only a subset \(d < m \) of the basis vector \(\mathbf{u}_i \). The remaining coefficients will be replaced by constants \(b_i \) so that each vector \(\mathbf{x} \) is approximated by \(\mathbf{x} \) can be approximated by

\[
\hat{\mathbf{x}} = \sum_{i=1}^{d} z_i \mathbf{u}_i + \sum_{i=d+1}^{m} b_i \mathbf{u}_i
\]
Principal component analysis (cont’d)

- Dimensionality reduction: \mathbf{x} has m degree of freedom and \mathbf{z} has d degree of freedom, $d < m$
- For each $\mathbf{x}^{(k)}$, the error introduced by the dimensionality reduction is

$$
\mathbf{x}^{(k)} - \tilde{\mathbf{x}}^{(k)} = \sum_{i=d+1}^{m} (z_i^{(k)} - b_i) \mathbf{u}_i
$$

and we want to find the basis vector \mathbf{u}_i, the coefficients b_i, and the values z_i with minimum error in ℓ_2-norm
- For the whole data set, with orthonormality relation

$$
E_d = \frac{1}{2} \sum_{k=1}^{n} \| \mathbf{x}^{(k)} - \tilde{\mathbf{x}}^{(k)} \|^2 = \frac{1}{2} \sum_{k=1}^{n} \sum_{i=d+1}^{m} (z_i^{(k)} - b_i)^2
$$
Principal component analysis (cont’d)

- Take derivative of E_d with respect to b_i and set it to zero,
 \[
 b_i = \frac{1}{n} \sum_{k=1}^{n} z_i^{(k)} = \frac{1}{n} \sum_{k=1}^{n} u_i^\top x^{(k)} = u_i^\top \bar{x} \quad \text{where, } \bar{x} = \frac{1}{n} \sum_{k=1}^{n} x^{(k)}
 \]

- Plug it into the sum of square errors, E_d,
 \[
 E_d = \frac{1}{2} \sum_{i=d+1}^{m} \sum_{k=1}^{n} (u_i^\top (x^{(k)} - \bar{x}))^2
 = \frac{n}{2} \sum_{i=d+1}^{m} u_i^\top C u_i
 \]

 where C is a covariance matrix

 \[
 C = \frac{1}{n} \sum_{k=1}^{n} (x^{(k)} - \bar{x})(x^{(k)} - \bar{x})^\top
 \]

- Minimizing E_d with respect to u_i, we get
 \[
 C u_i = \lambda_i u_i
 \]

 i.e., the basis vectors u_i are the eigenvectors of the covariance matrix C
Derivation

- Minimizing E_d with respect to u_i,

$$E_d = \frac{1}{2} \sum_{i=d+1}^{m} \sum_{k=1}^{n} (u_i^T (x^{(k)} - \bar{x}))^2 = \frac{n}{2} \sum_{i=d+1}^{m} u_i^T C u_i$$

- Need some constraints to solve this optimization problem
- Impose orthonormal constraints among u_i
- Use Lagrange multipliers ϕ_{ij}

$$\hat{E}_d = \frac{1}{2} \sum_{i=d+1}^{m} u_i C u_i^T - \frac{1}{2} \sum_{i=d+1}^{m} \sum_{j=d+1}^{m} \phi_{ij} (u_i^T u_j - \delta_{ij})$$

- Recall

$$\min f(x) \quad \text{s.t.} \quad g(x) = 0 \quad \Rightarrow L(x, \phi) = f(x) + \phi g(x)$$

- Example: $\min f(x_1, x_2) = x_1 x_2$ subject to $g(x_1, x_2) = x_1 + x_2 - 1 = 0$
Derivation (cont’d)

• In matrix form,

\[\hat{E}_d = \frac{1}{2} \text{tr}\{U^\top C U\} - \frac{1}{2} \text{tr}\{M(U^\top U - I)\} \]

where \(M \) is a matrix with elements \(\phi_{ij} \), and \(U \) is a matrix whose columns are \(u_i \).

• Minimizing \(\hat{E}_d \) with respect to \(U \),

\[(C + C^\top)U - U(M + M^\top) = 0 \]

• Note \(C \) is symmetric, \(M \) is symmetric since \(UU^\top \) is symmetric. Thus

\[CU = UM \]

\[U^\top CU = M \]

• Clearly one solution is to choose \(M \) to be diagonal so that the columns of \(U \) are eigenvectors of \(C \) and the diagonal elements of \(M \) are eigenvalues.
Derivation (cont’d)

- The eigenvector equation for M
 \[M\Psi = \Psi \Lambda \]
 where Λ is a diagonal matrix of eigenvalues and Ψ is the matrix of eigenvectors

- M is symmetric and Ψ can be chosen to have orthonormal columns, i.e., $\Psi^\top \Psi = I$
 \[\Lambda = \Psi^\top M \Psi \]

- Put together,
 \[\Lambda = \Psi^\top U^\top C U \Psi \]
 \[= (U \Psi)^\top C (U \Psi) \]
 \[= \tilde{U}^\top C \tilde{U} \]
 where $\tilde{U} = U \Psi$, and
 \[U = \tilde{U} \Psi^\top \]

- Another solution for $U^\top C U = M$ can be obtained from the particular solution \tilde{U} by application of an orthogonal transformation given by Ψ
We note that E_d is invariant under this orthogonal transformation

$$
E_d = \frac{1}{2} \text{tr}\{ U^\top C U \} = \frac{1}{2} \text{tr}\{ \Psi \tilde{U}^\top \tilde{C} \tilde{U} \Psi^\top \} = \frac{1}{2} \text{tr}\{ \tilde{U}^\top \tilde{C} \tilde{U} \}
$$

Recall the matrix 2-norm is invariant under orthogonal transformation

Since all of the possible solutions give the same minimum error E_d, we can choose whichever is most convenient

We thus choose the solutions given by \tilde{U} (with unit norm) since this has columns which are the eigenvectors of C
Computing principal components from data

- Minimizing E_d with respect to u_i, we get

$$Cu_i = \lambda_i u_i$$

i.e., the basis vectors u_i are the eigenvectors of the covariance matrix C

- Consequently, the error of E_d is

$$E_d = \frac{1}{2} \sum_{i=d+1}^{m} \lambda_i$$

In other words, the minimum error is reached by discarding the eigenvectors corresponding to the $m - d$ smallest eigenvalues

- Retain the eigenvectors corresponding to the largest eigenvalues
Computing principal components from data

- Project $\mathbf{x}^{(k)}$ onto these eigenvectors give the components of the transformed vector $\mathbf{z}^{(k)}$ in the d-dimensional space.

- Each two-dimensional data point is transformed to a single variable z_1 representing the projection of the data point onto the eigenvector u_1.

- Infer the structure (or reduce redundancy) inherent in high dimensional data.

- Parsimonious representation.

- Linear dimensionality algorithm based on sum-of-square-error criterion.

- Other criteria: covariance measure and population entropy.
Intrinsic dimensionality

- A data set in m dimensions has intrinsic dimensionality equal to m' if the data lies entirely within a m'-dimensional space.
- What is the intrinsic dimensionality of data?
- The intrinsic dimensionality may increase due to noise.
- PCA, as a linear approximation, has its limitation.
- How to determine the number of eigenvectors?
- Empirically determined based on reconstruction error (i.e., energy).