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Overview

Orthogonal projection, distance between subspaces

Principal component analysis
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Reading

Chapter 6 of Numerical Linear Algebra by Llyod Trefethen and David
Bau

Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan

Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer
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Orthogonal projection

Let S ⊂ IRn be a subspace, P ∈ IRn×n is the orthogonal projection
(i.e., projector) onto S if ran(P) = S , P2 = P, and P> = P

Mathematically, we have y = Px for some x, then

Py = P2x = Px = y

Example, in IR3

P =

 1 0 0
0 1 0
0 0 0

 ,P
 x

y
z

 =

 x
y
0

 , and P2

 x
y
z

 =

 x
y
0


For orthogonal projection,

P(Px− x) = P2x− Px = P(I − P)x = 0

which means Px− x ∈ null(P)

If x ∈ IRn, then Px ∈ S and (I − P)x ∈ S⊥

4 / 22



Orthogonal projection

If P is a projector, I − P is also a projector, and

‖I − P‖22 = I − 2P + P2 = I − P

The matrix I − P is called complementary projector to P

I − P projects to the null space of P, i.e.,

ran(I − P) = null(P)

and, since P = I − (I − P), we have

null(I − P) = ran(P)

and ran(P) ∩ null(P) = {0}
If P1 and P2 are orthogonal projections, then for any z ∈ Rn, we have

‖(P1 − P2)z‖22 = (P1z)>(I − P2)z + (P2z)>(I − P1)z

If ran(P1) = ran(P2) = S , then the right hand side of the above
equation is zero, i.e., the orthogonal projection for a subspace is
unique
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Orthogonal projection and SVD

If the columns of V = [v1, . . . , vk ] are an orthonormal basis for a
subspace S , then it is easy to show that P = VV> is the unique
orthogonal projection onto S

If v ∈ IRn, then P = vv>

v>v
is the orthogonal projection onto

S = span({v})
Let A = UΣV> ∈ IRm×n and rank(A) = r , we have the U and V
partitionings

U = [ Ur Ũ ] V = [ Vr Ṽ ]
r m − r r n − r

,

then
UrU

>
r = projection onto ran(A)

Ũr Ũ
>
r = projection onto ran(A)⊥ = null(A>)

VrV
>
r = projection onto null(A)⊥ = ran(A>)

Ṽr Ṽ
>
r = projection onto null(A)
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Distances between subspaces

Let S1 and S2 be subspaces of IRn and dim(S1) = dim(S2), we define
the distance between two spaces by

dist(S1,S2) = ‖P1 − P2‖2

where Pi is the orthogonal projection onto Si

The distance between a pair of subspaces can be characterized in
terms of the blocks of a certain orthogonal matrix

Theorem

Suppose
W = [ W1 W2 ] Z = [ Z1 Z2 ]

k n − k k n − k

are n-by-n orthogonal matrices. If S1 = ran(W1), and S2 = ran(Z1), then

dist(S1,S2) = ‖W>
1 Z2‖2 = ‖Z>1 W2‖2

See Golub and Van Loan for proof
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Distance between subspaces in IRn

If S1 and S2 are subspaces in IRn with the same dimension, then

0 ≤ dist(S1, S2) ≤ 1

The distance is zero if S1 = S2 and one if S1 ∩ S⊥2 6= {0}
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Symmetric matrices
Consider real, symmetric matrices, A> = A,

I Hessian matrix (second order partial derivatives of a function):

y = f (x + ∆x) ≈ f (x) + J(x)∆x +
1

2
∆x>H(x)∆x

where J is the Jacobian matrix
I covariance matrix for Gaussian distribution

The inverse is also symmetric: (A−1)> = A−1

Eigenvector equation for a symmetric matrix

Auk = λkuk
which can be written as

AU = DU, or (A− D)U = 0

where D is a diagonal matrix whose elements are eigenvalues

D =

 λ1
. . .

λm


and U is matrix whose columns are eigenvectors uk
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Eigenvectors for symmetric matrices

The eigenvectors can be computed from determinant | A− D |= 0

Eigenvectors can be chosen to form an orthonormal basis as follows

For a pair of eigenvectors uj and uk , it follows

u>j Auk = λku
>
j uk

u>k Auj = λju
>
k uj

and since A is symmetric, we have

(λk − λj)u>k uj = 0

For λk 6= λj , the eigenvectors must be orthogonal

Note for any uk with eigenvalue λk , βuk is also an eigenvector for
non-zero β with the same eigenvalue

Can be used to normalize the eigenvectors to unit norm so that

u>k uj = δkj
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Symmetric matrices and diagonalization

Since Auk = λkuk , multiply A−1 and we obtain

A−1uk = λ−1k uk

so A−1 has the same eigenvectors as A but with reciprocal eigenvalues

For symmetric matrix A, AU = DU and U>U = I , U = [u1, . . . ,um],
A can be diagonalized

U>AU = D

For symmetric matrix A, the SVD of A = UΣU>

Recall U, V are left and right singular vectors

(AA>)U = ΣU
(A>A)V = ΣV

Since A is symmetric, U = V , and A = UΣU>
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Principal component analysis (PCA)

Arguably the most popular dimensionality reduction algorithm

Curse of dimensionality

Widely used in computer vision, machine learning and pattern
recognition

Can be derived from several perspectives:
I Minimize reconstruction error: Karhunen-Loeve transform
I Decorrelation: Hottelling transform
I Maximize the variance of the projected samples (i.e., preserve as much

energy as possible)

Unsupervised learning

Linear transform

Second order statistics

Recall from SVD we have A = UΣV>, and thus project samples on
the subspace spanned by U can be computed by

U>A = ΣV>
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Principal component analysis
Given a set of n data points x ∈ IRm, we would like to project each
x(k) onto a onto a d-dimensional subspace z(k) = [z1, . . . , zd ] ∈ IRd ,
d < m, so that

x =
d∑

i=1

ziui

where the vectors ui satisfy the orthonormality relation

u>i uj = δij

in which δij is the Kronecker delta. Thus,

zi = u>i x

Now we have only a subset d < m of the basis vector ui . The
remaining coefficients will be replaced by constants bi so that each
vector x is approximated by x can be approximated by

x̃ =
d∑

i=1

ziui +
m∑

i=d+1

biui
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Principal component analysis (cont’d)

Dimensionality reduction: x has m degree of freedom and z has d
degree of freedom, d < m

For each x(k), the error introduced by the dimensionality reduction is

x(k) − x̃(k) =
m∑

i=d+1

(z
(k)
i − bi )ui

and we want to find the basis vector ui , the coefficients bi , and the
values zi with minimum error in `2-norm

For the whole data set, with orthonormality relation

Ed =
1

2

n∑
k=1

‖x(k) − x̃(k)‖2 =
1

2

n∑
k=1

m∑
i=d+1

(z
(k)
i − bi )

2
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Principal component analysis (cont’d)

Take derivative of Ed with respect to bi and set it to zero,

bi =
1

n

n∑
k=1

z
(k)
i =

1

n

n∑
k=1

u>i x
(k) = u>i x̄ where, x =

1

n

n∑
k=1

x(k)

Plug it into the sum of square errors, Ed ,

Ed = 1
2

∑m
i=d+1

∑n
k=1(u>i (x(k) − x))2

= n
2

∑m
i=d+1 u

>
i Cui

where C is a covariance matrix

C =
1

n

n∑
k=1

(x(k) − x)(x(k) − x)>

Minimizing Ed with respect to ui , we get

Cui = λiui

i.e., the basis vectors ui are the eigenvectors of the covariance matrix
C
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Derivation

Minimizing Ed with respect to ui ,

Ed = 1
2

∑m
i=d+1

∑n
k=1(u>i (x(k) − x))2

= n
2

∑m
i=d+1 u

>
i Cui

Need some constraints to solve this optimization problem

Impose orthonormal constraints among ui

Use Lagrange multipliers φij

Êd =
1

2

m∑
i=d+1

uiCu>i −
1

2

m∑
i=d+1

m∑
j=d+1

φij(u
>
i uj − δij)

Recall
min f (x)

s.t. g(x) = 0
⇒ L(x, φ) = f (x) + φg(x)

Example: min f (x1, x2) = x1x2 subject to g(x1, x2) = x1 + x2 − 1 = 0
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Derivation (cont’d)

In matrix form,

Êd =
1

2
tr{U>CU} − 1

2
tr{M(U>U − I )}

where M is a matrix with elements φij , and U is a matrix whose
columns are ui
Minimizing Êd with respect to U,

(C + C>)U − U(M + M>) = 0

Note C is symmetric, M is symmetric since UU> is symmetric. Thus

CU = UM

U>CU = M

Clearly one solution is to choose M to be diagonal so that the
columns of U are eigenvectors of C and the diagonal elements of M
are eigenvalues
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Derivation (cont’d)

The eigenvector equation for M

MΨ = ΨΛ

where Λ is a diagonal matrix of eigenvalues and Ψ is the matrix of
eigenvectors

M is symmetric and Ψ can be chosen to have orthonormal columns,
i.e., Ψ>Ψ = I Λ = Ψ>MΨ

Put together,
Λ = Ψ>U>CUΨ

= (UΨ)>C(UΨ)

= Ũ>CŨ
where Ũ = UΨ, and U = ŨΨ>

Another solution for U>CU = M can be obtained from the particular
solution Ũ by application of an orthogonal transformation given by Ψ
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Derivation (cont’d)

We note that Ed is invariant under this orthogonal transformation

Ed = 1
2 tr{U>CU}

= 1
2 tr{ΨŨ>CŨΨ>}

= 1
2 tr{Ũ>CŨ}

Recall the matrix 2-norm is invariant under orthogonal transformation

Since all of the possible solutions give the same minimum error Ed ,
we can choose whichever is most convenient

We thus choose the solutions given by Ũ (with unit norm) since this
has columns which are the eigenvectors of C
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Computing principal components from data

Minimizing Ed with respect to ui , we get

Cui = λiui

i.e., the basis vectors ui are the eigenvectors of the covariance matrix
C
Consequently, the error of Ed is

Ed =
1

2

m∑
i=d+1

λi

In other words, the minimum error is reached by discarding the
eigenvectors corresponding to the m − d smallest eigenvalues

Retain the eigenvectors corresponding to the largest eigenvalues
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Computing principal components from data

Project x(k) onto these eigenvectors give the components of the
transformed vector z(k) in the d-dimensional space

Each two-dimensional data point is transformed to a single variable z1
representing the projection of the data point onto the eigenvector u1

Infer the structure (or reduce redundancy) inherent in high
dimensional data

Parsimonious representation

Linear dimensionality algorithm based on sum-of-square-error criterion

Other criteria: covariance measure and population entropy
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Intrinsic dimensionality

A data set in m dimensions has intrinsic dimensionality equal to m′ if
the data lies entirely within a m′-dimensional space

What is the intrinsic dimensionality of data?

The intrinsic dimensionality may increase due to noise

PCA, as a linear approximation, has its limitation

How to determine the number of eigenvectors?

Empirically determined based on reconstruction error (i.e., energy)
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