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Overview

e Matrix properties via singular value decomposition (SVD)
@ Geometric interpretation of SVD

@ Applications
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Reading

o Chapter 5 of Numerical Linear Algebra by Llyod Trefethen and David
Bau

@ Chapter 3 of Matrix Computations by Gene Golub and Charles Van
Loan

o Chapter 3 of Mathematical Modeling of Continuous Systems by Carlo
Tomasi

o Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer



Full and reduced SVD

o Let A IR™*N
e Reduced SVD: A= U VT, U e R™", ¥ ¢ R™" and V € R™"
@ Ful SVD: A= UXVT, UeR™™ ¥ e R"™" and V € R"*"

Reduced SVD (m > n) Full SVD (m > n)
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Uniqueness

e First note that o7 and v; can be uniquely determined by ||A||2

@ Suppose in addition to vi, there is another linearly independent vector
w with |lw|j2 =1 and ||Aw||2 = 01

@ Define a unit vector vy, orthogonal to v; as a linear combination of vy

and w
w — (v{ w)vy

Vo =
lw — (v{ w)vil2

e Since ||Al|2 = o1, ||Ava|l2 < o1, but this must be an equality, for
otherwise w = cvy + sv, for some constants ¢ and s with
lc|? + |s|> = 1, we would have ||Aw|| < o1

@ v; is a second right singular vector of A corresponding to o1

@ Once o1, vi, and vy are determined, the remainder of SVD is
determined by the action of A on the space orthogonal to v

@ Since vi is unique up to a sign, the orthogonal space is unique defined
and so are the remaining singular values



Matrix properties via SVD

Theorem

The rank of A is r, the number of nonzero singular values.

Proof.

The rank of a diagonal matrix is equal to the number of its nonzero
entries, and in SVD, A= UXV T where U and V are of full rank. Thus,

rank(A) = rank(X) = r DJ
Theorem

|All2 = o1, and Al = /0 + -+ o2

Proof.

As U and V are orthogonal, A= ULV, ||A|l2 = ||Z||2. By definition,
||Z||2 = maxHXH:l ||ZX||2 = max{|0,-|} =01. Likewise, ||A||F = ||Z||F, and

by definition ||X|F = \/m -

v
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Eigenvalue decomposition

@ From linear algebra, Ax = Ax, A is an eigenvalue, and x is an
eigenvector

o For m eigenvectors,

A1
A2
Alx1,X2, ...y Xm] = [X1,X2, .« ., Xpm]

and
AX = XA

where A is an m x m diagonal matrix whose entries are the eigenvalues
of A, and X € IR™*"™ contains linearly independent eigenvector of A

@ The eigenvalue decomposition of A

A= XAX"1



SVD and eigenvalue decomposition

@ SVD uses two different bases (the sets of left and right singular

vectors), whereas the eigenvalue decomposition uses just one
(eigenvectors)

@ SVD uses orthonormal bases, whereas the eigenvalue decomposition
uses a basis that generically is not orthogonal

@ Not all matrices have an eigenvalue decomposition, but all matrices
have a SVD



Matrix properties via SVD (cont’d)
Theorem

The nonzero singular values of A are the square roots of the nonzero
eigenvalues of AAT or AT A (they have the same nonzero eigenvalues).

Proof.

From definition,

AAT = (UzvT)(UzVT)T = UV TVEUT = U diag(o?,...,03) UT

Theorem
For A€ R™ ™, |det(A)| = [, o

Proof.

|det(A)| = |det(UZV ")| = |det(V)||det(X)||det(V )| = |det(X)| = HG;




Low-rank approximation

Theorem
(Eckart-Young 1936) Let A= ULV = U diag(o1,...,0,,0,...,0)VT.
Foranyv with0<v <r, A, =>7, J,-u,-v,-T,

A=A

2 = min ||A — B”z = Op+1
rank(B)<v

Proof.

Suppose there is some B with rank(B) < v such that
|IA— Bll2 < ||A— Au||]2 = 0u+1. Then there exists an (n — v)-dimensional
subspace W € IR" such that w € W = Bw = 0. Then

[Aw(l2 = [[(A = B)wlj2 < |A = Bll2[|wll2 < o011]lwl|2

Thus W is a (n — v)-dimensional subspace where ||Aw|| < o,,41||w||. But
there is a (v + 1)-dimensional subspace where ||Aw|| > o, 41]|w||, namely
the space spanned by the first v + 1 right singular vector of A. Since the
sum of the dimensions of these two spaces exceeds n, there must be a
nonzero vector lying in both, and this is a contradiction. [
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Low-rank approximation

Theorem

A is the sum of r rank one matrices: A=Y ;_; or,-u,-vjT

Theorem
(Eckart-Young 1936) Let A= USVT = U diag(c1, . .., 07,0, .
Foranyv with0<v<r, A, => 7, a,-u,-v;r,

A=Al

2 = min ||A—BH2 = Op+1
rank(B)<v

L0V

Proof.
Let ¥, = U(A— A,)VT, then

Y, = U (diag(oy,...,00,0041,...,0p) —diag(o1,...,0,,0,...

= U diag(0,...,0,041,...,0p) VT

consequently [|[A—A,|2 = [|1Z0]2 = ov+1.




Geometric interpretation of Eckart-Young theorem

e
L i llax| = |A]

min [|Ax
15

@ What is the best approximation of a h%erellipsoid by a line segment?
> Take the line segment to be the longest axis
@ Next, what is the best approximation by a two-dimensional ellipsoid?
» Take the ellipsoid spanned by the longest and the second longest axis
@ Continue and improve the approximation by adding into our
approximation the largest axis of the hyperellipsoid not yet included
@ Reminiscent of techniques used in image compression, machine
learning, and functional analysis (e.g., matching pursuit)

Theorem
Foranyv with0<v<r, A, =>", a,-u,-v,T,

||A—A1/||F: min :\/gg+1+...+02
rank(B)<v
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Sensitivity of square systems

o If .
A=Y o] =UVT
i=1
is the SVD of A, then
" u/b

=Alb=(UzVv) b= L v
X ( ) Z; e

@ Small changes in A or b can induce relatively large changes in x if o,
is small

@ The magnitude of o, has bearing on the sensitivity of the Ax =b
problem

@ The solution x is increasingly sensitive to perturbations
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Condition

@ Consider the parameterized system
(A+cF)x(e) =b+ef x(0) =x

where F € IR"" and f € IR"

e If Ais nonsingular, then x(¢) is differentiable in a neighborhood of
zero

e Moreover, x = A~1(f — Fx) and the Taylor series expansion
x(¢) = x + ex(0) + O(?)

@ Using any vector norm

Ix(#) = x| L (I :
S AT IFI + 0e)
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Condition number
@ For square matrices A, define the condition number by
K(A) = |A[[|A7]

with the convention that x(A) = oo for singular A
e Using the inequality ||b|| < [|A||||x]| it follows that

P < k() oa )+ 01
where 1] 1l
g
= gy and oo =l gy

represent the relative errors in A and b
@ The relative error in x is kK(A) times the relative error in A and b

@ The condition x(A) quantifies the sensitivity of the Ax = b problem
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Condition number (cont'd)
@ Note that x(-) depends on the underlying norm

1(A)
k2(A) = || A2 A7 2 = o (A)
@ rp(A) measures the elongation of the hypereII|p50|d {Ax : ||x]|2 = 1}

(- o |axl = |4

1
wmin | Ax] = =
Ill=2 lla-n

o If k(A) is large, then A is said to be an ill-conditioned matrix
@ kq(-) and kg(-) on IR™" are equivalent if constants ¢; and ¢, can be
found such that ci1k4(A) < kg(A) < Ka(A), eg.,

Lia(A) < k1(A) < nkp(A)
Lioo(A) < r2(A) < nkoo(A)
%r1(A) < koo(A) < n?Ri(A)

e For any p-norm, we have x(A) > 1, and matrices with small

conditional number are said to be well-conditioned
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Minimum norm least square solution

Theorem

The minimum norm least squares solution to a linear system Ax = b, that

is, the shortest vector x that achieves miny ||Ax — b|| is unique, and is
given by

£=VvZtuTp
where ~ _
1/01 0 --- 0

st — l/Ur

@ The matrix AT = VITUT is the pseudoinverse of A
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Minimum norm solution

@ The minimum norm solution to Ax = b is the vector that minimizes

[|Ax — bll,

and so it is equivalent to solve ||V Tx — UTh||
o Lety=V'xand c= UTb, it becomes

01

Or

Xy — ¢

0
0

[UZVTx —b| = [[UEZV x— U"b)

1

Yr
Yr+1

Yn

(o]

Cr
Cr4+1

Cm
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Minimum norm solution (cont’d)

@ The optimal y has the following components

yi = 2 fori=1,...,r
yi = 0 fori=r+1,...,n
@ In vector form
y = Yic
@ Notice there is no other choice for y, which is therefore unique:
minimum residual forces the choice of yi,...,y,, and minimum norm

solution forces the other entries of y
@ The minimum norm least squares solution is

$=Vy=Vfc=VvziuTp
@ The residual is
m m
IAx=b|* = [IZy —c|*= > =) (u/b)?
i=r+1 i=r+1
which is the projection of b onto the complement of the range of A
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Least squares solution of homogeneous linear systems
Theorem
For Ax = 0 or min| =1 [|Ax||. Let A= UL V', the solution is

X = q1Vp_k4+1 + ... + Q)Vp

where k is the largest integer such that
Opn—k+l = ... = 0Op, and a%%—...—i—ai:l

Proof.
Consider the unit-norm least square solution

1A]| = |UZV "x|| = IZV x| = [ Zy]|

where y = V' Tx. Thus the unit norm vector y that minimizes the norm

a%y12+...+0%y§
which is achieved by concentrating all the mass of y w.r.t smallest o
yi=...=Yp-k=0
and thus x = Vy =yivi + ...+ ¥Vn—k+1Vn—k+1 + - .. + ynvp and
A1 = Yn—k+1, - -+ Bk = Yn
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