EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang

Lecture 5

Overview

- Matrix properties via singular value decomposition (SVD)
- Geometric interpretation of SVD
- Applications

Reading

- Chapter 5 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 3 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 3 of Mathematical Modeling of Continuous Systems by Carlo Tomasi
- Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl Meyer

Full and reduced SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Reduced SVD: $A = \hat{U}\hat{\Sigma}\hat{V}^{\top}$, $\hat{U} \in \mathbb{R}^{m \times n}$, $\Sigma \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{n \times n}$
- Full SVD: $A = U\Sigma V^{\top}$, $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{n \times n}$

Uniqueness

- ullet First note that σ_1 and $oldsymbol{v}_1$ can be uniquely determined by $\|A\|_2$
- Suppose in addition to \mathbf{v}_1 , there is another linearly independent vector \mathbf{w} with $\|\mathbf{w}\|_2 = 1$ and $\|A\mathbf{w}\|_2 = \sigma_1$
- Define a unit vector \mathbf{v}_2 , orthogonal to \mathbf{v}_1 as a linear combination of \mathbf{v}_1 and \mathbf{w}

$$\mathbf{v}_2 = rac{\mathbf{w} - (\mathbf{v}_1^ op \mathbf{w}) \mathbf{v}_1}{\|\mathbf{w} - (\mathbf{v}_1^ op \mathbf{w}) \mathbf{v}_1\|_2}$$

- Since $\|A\|_2 = \sigma_1, \|A\mathbf{v}_2\|_2 \le \sigma_1$, but this must be an equality, for otherwise $\mathbf{w} = c\mathbf{v}_1 + s\mathbf{v}_2$ for some constants c and s with $|c|^2 + |s|^2 = 1$, we would have $\|A\mathbf{w}\| < \sigma_1$
- ullet v ullet is a second right singular vector of A corresponding to σ_1
- Once σ_1 , \mathbf{v}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the action of A on the space orthogonal to \mathbf{v}_1
- Since \mathbf{v}_1 is unique up to a sign, the orthogonal space is unique defined and so are the remaining singular values

Matrix properties via SVD

Theorem

The rank of A is r, the number of nonzero singular values.

Proof.

The rank of a diagonal matrix is equal to the number of its nonzero entries, and in SVD, $A = U\Sigma V^{\top}$ where U and V are of full rank. Thus, $\operatorname{rank}(A) = \operatorname{rank}(\Sigma) = r$

Theorem

$$||A||_2 = \sigma_1$$
, and $||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$

Proof.

As U and V are orthogonal, $A = U\Sigma V^{\top}$, $||A||_2 = ||\Sigma||_2$. By definition, $||\Sigma||_2 = \max_{||\mathbf{x}||=1} ||\Sigma\mathbf{x}||_2 = \max\{|\sigma_i|\} = \sigma_1$. Likewise, $||A||_F = ||\Sigma||_F$, and

by definition
$$\|\Sigma\|_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$$

Eigenvalue decomposition

- From linear algebra, $A\mathbf{x} = \lambda \mathbf{x}$, λ is an eigenvalue, and \mathbf{x} is an eigenvector
- For *m* eigenvectors,

$$A[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m] = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m] \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{bmatrix}$$

and

$$AX = X\Lambda$$

where Λ is an $m \times m$ diagonal matrix whose entries are the eigenvalues of A, and $X \in \mathbb{R}^{m \times m}$ contains linearly independent eigenvector of A

• The eigenvalue decomposition of A

$$A = X \Lambda X^{-1}$$

SVD and eigenvalue decomposition

- SVD uses two different bases (the sets of left and right singular vectors), whereas the eigenvalue decomposition uses just one (eigenvectors)
- SVD uses orthonormal bases, whereas the eigenvalue decomposition uses a basis that generically is not orthogonal
- Not all matrices have an eigenvalue decomposition, but all matrices have a SVD

Matrix properties via SVD (cont'd)

Theorem

The nonzero singular values of A are the square roots of the nonzero eigenvalues of AA^{\top} or $A^{\top}A$ (they have the same nonzero eigenvalues).

Proof.

From definition,

$$AA^{\top} = (U\Sigma V^{\top})(U\Sigma V^{\top})^{\top} = U\Sigma V^{\top}V\Sigma U^{\top} = U \operatorname{diag}(\sigma_1^2, \dots, \sigma_p^2) \ U^{\top}$$

Theorem

For
$$A \in \mathbb{R}^{m \times m}$$
, $|\det(A)| = \prod_{i=1}^m \sigma_i$

Proof.

$$|\mathsf{det}(A)| = |\mathsf{det}(U\Sigma V^{\top})| = |\mathsf{det}(U)||\mathsf{det}(\Sigma)||\mathsf{det}(V^{\top})| = |\mathsf{det}(\Sigma)| = \prod_{i=1}^{m} \sigma_{i}$$

Low-rank approximation

Theorem

(Eckart-Young 1936) Let
$$A = U\Sigma V^{\top} = U$$
 diag $(\sigma_1, \dots, \sigma_r, 0, \dots, 0)V^{\top}$.
For any ν with $0 \le \nu \le r$, $A_{\nu} = \sum_{i=1}^{\nu} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$,
$$\|A - A_{\nu}\|_2 = \min_{\substack{rank(B) \le \nu}} \|A - B\|_2 = \sigma_{\nu+1}$$

Proof.

Suppose there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A - B\|_2 < \|A - A_\nu\|_2 = \sigma_{\nu+1}$. Then there exists an $(n - \nu)$ -dimensional subspace $W \in \mathbb{R}^n$ such that $\mathbf{w} \in W \Rightarrow B\mathbf{w} = 0$. Then

$$||A\mathbf{w}||_2 = ||(A - B)\mathbf{w}||_2 \le ||A - B||_2 ||\mathbf{w}||_2 < \sigma_{\nu+1} ||\mathbf{w}||_2$$

Thus W is a $(n-\nu)$ -dimensional subspace where $\|A\mathbf{w}\| < \sigma_{\nu+1}\|\mathbf{w}\|$. But there is a $(\nu+1)$ -dimensional subspace where $\|A\mathbf{w}\| \ge \sigma_{\nu+1}\|\mathbf{w}\|$, namely the space spanned by the first $\nu+1$ right singular vector of A. Since the sum of the dimensions of these two spaces exceeds n, there must be a nonzero vector lying in both, and this is a contradiction.

Low-rank approximation

Theorem

A is the sum of r rank one matrices: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$

Theorem

(Eckart-Young 1936) Let
$$A = U\Sigma V^{\top} = U \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) V^{\top}$$
.
For any ν with $0 \le \nu \le r$, $A_{\nu} = \sum_{i=1}^{\nu} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$,
$$\|A - A_{\nu}\|_2 = \min_{\substack{rank(B) < \nu}} \|A - B\|_2 = \sigma_{\nu+1}$$

Proof.

Let
$$\Sigma_{
u} = U(A - A_{
u})V^{\top}$$
, then

$$\Sigma_{\nu} = U \left(\operatorname{diag}(\sigma_{1}, \dots, \sigma_{\nu}, \sigma_{\nu+1}, \dots, \sigma_{p}) - \operatorname{diag}(\sigma_{1}, \dots, \sigma_{\nu}, 0, \dots, 0) \right) V^{\top}$$

$$= U \operatorname{diag}(0, \dots, 0, \sigma_{\nu+1}, \dots, \sigma_{p}) V^{\top}$$

consequently
$$||A - A_{\nu}||_2 = ||\Sigma_{\nu}||_2 = \sigma_{\nu+1}$$
.

Geometric interpretation of Eckart-Young theorem

- What is the best approximation of a hyperellipsoid by a line segment?
 Take the line segment to be the longest axis
- Next, what is the best approximation by a two-dimensional ellipsoid?
 - ▶ Take the ellipsoid spanned by the longest and the second longest axis
- Continue and improve the approximation by adding into our approximation the largest axis of the hyperellipsoid not yet included
- Reminiscent of techniques used in image compression, machine learning, and functional analysis (e.g., matching pursuit)

Theorem

For any
$$\nu$$
 with $0 \le v \le r$, $A_{\nu} = \sum_{i=1}^{\nu} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$,
$$\|A - A_{\nu}\|_{F} = \min_{\substack{rank(B) \le \nu}} = \sqrt{\sigma_{\nu+1}^{2} + \dots + \sigma_{r}^{2}}$$

Sensitivity of square systems

If

$$A = \sum_{i=1}^{n} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top} = U \Sigma V^{\top}$$

is the SVD of A, then

$$\mathbf{x} = A^{-1}\mathbf{b} = (U\Sigma V^{\top})^{-1}\mathbf{b} = \sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{\top}\mathbf{b}}{\sigma_{i}}\mathbf{v}_{i}$$

- Small changes in A or \mathbf{b} can induce relatively large changes in \mathbf{x} if σ_n is small
- The magnitude of σ_n has bearing on the sensitivity of the $A\mathbf{x} = \mathbf{b}$ problem
- The solution x is increasingly sensitive to perturbations

Condition

Consider the parameterized system

$$(A + \varepsilon F)\mathbf{x}(\varepsilon) = \mathbf{b} + \varepsilon f \quad \mathbf{x}(0) = \mathbf{x}$$

where $F \in \mathbb{R}^{n \times n}$ and $f \in \mathbb{R}^n$

- If A is nonsingular, then $\mathbf{x}(\epsilon)$ is differentiable in a neighborhood of zero
- Moreover, $\dot{\mathbf{x}} = A^{-1}(f F\mathbf{x})$ and the Taylor series expansion

$$\mathbf{x}(\varepsilon) = \mathbf{x} + \varepsilon \dot{\mathbf{x}}(0) + O(\varepsilon^2)$$

Using any vector norm

$$\frac{\|\mathbf{x}(\varepsilon) - \mathbf{x}\|}{\|\mathbf{x}\|} \le |\varepsilon| \|A^{-1}\| \left\{ \frac{\|f\|}{\|\mathbf{x}\|} + \|F\| \right\} + O(\varepsilon^2)$$

Condition number

For square matrices A, define the condition number by

$$\kappa(A) = ||A|| ||A^{-1}||$$

with the convention that $\kappa(A) = \infty$ for singular A

• Using the inequality $\|\mathbf{b}\| \le \|A\| \|\mathbf{x}\|$ it follows that

$$\frac{\|\mathbf{x}(\varepsilon)-\mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(A)(\rho_A+\rho_b)+O(\varepsilon^2)$$

where

$$\rho_A = |\varepsilon| \frac{\|F\|}{\|A\|} \text{ and, } \rho_b = |\varepsilon| \frac{\|f\|}{\|\mathbf{b}\|}$$

represent the relative errors in A and ${\bf b}$

- The relative error in \mathbf{x} is $\kappa(A)$ times the relative error in A and \mathbf{b}
- The condition $\kappa(A)$ quantifies the sensitivity of the $A\mathbf{x} = \mathbf{b}$ problem

Condition number (cont'd)

• Note that $\kappa(\cdot)$ depends on the underlying norm

$$\kappa_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_1(A)}{\sigma_n(A)}$$

• $\kappa_2(A)$ measures the elongation of the hyperellipsoid $\{A\mathbf{x}: \|\mathbf{x}\|_2 = 1\}$

- If $\kappa(A)$ is large, then A is said to be an ill-conditioned matrix
- $\kappa_{\alpha}(\cdot)$ and $\kappa_{\beta}(\cdot)$ on $\mathbb{R}^{n \times n}$ are equivalent if constants c_1 and c_2 can be found such that $c_1 \kappa_{\alpha}(A) \leq \kappa_{\beta}(A) \leq c_2 \kappa_{\alpha}(A)$, e.g.,

$$\begin{array}{ll} \frac{1}{n}\kappa_2(A) & \leq \kappa_1(A) & \leq n\kappa_2(A) \\ \frac{1}{n}\kappa_\infty(A) & \leq \kappa_2(A) & \leq n\kappa_\infty(A) \\ \frac{1}{n^2}\kappa_1(A) & \leq \kappa_\infty(A) & \leq n^2\kappa_1(A) \end{array}$$

• For any p-norm, we have $\kappa(A) \ge 1$, and matrices with small conditional number are said to be well-conditioned

Minimum norm least square solution

Theorem

The minimum norm least squares solution to a linear system $A\mathbf{x} = \mathbf{b}$, that is, the shortest vector \mathbf{x} that achieves $\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|$ is unique, and is given by

$$\hat{\mathbf{x}} = V \Sigma^{\dagger} U^{\top} \mathbf{b}$$

where

$$\Sigma^\dagger = egin{bmatrix} 1/\sigma_1 & & & 0 & \cdots & 0 \ & \ddots & & & & & \vdots & & \vdots \ & & 1/\sigma_r & & & \vdots & & \vdots \ & & 0 & & & & & & \vdots \ & & & \ddots & & & & & & & \end{bmatrix}$$

• The matrix $A^{\dagger} = V \Sigma^{\dagger} U^{\top}$ is the pseudoinverse of A

Minimum norm solution

• The minimum norm solution to $A\mathbf{x} = b$ is the vector that minimizes $||A\mathbf{x} - b||$,

$$\|U\Sigma V^{\top}\mathbf{x} - \mathbf{b}\| = \|U(\Sigma V^{\top}\mathbf{x} - U^{\top}b)\|$$

and so it is equivalent to solve $\|\Sigma V^{\top} \mathbf{x} - U^{\top} \mathbf{b}\|$

• Let $\mathbf{y} = V^{\top} \mathbf{x}$ and $\mathbf{c} = U^{\top} \mathbf{b}$, it becomes

$$\|\Sigma \mathbf{y} - \mathbf{c}\|$$

$$\begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ & \sigma_r & & \\ \vdots & & 0 & \vdots \\ & & \ddots & \\ & & & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_r \\ y_{r+1} \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} c_1 \\ \vdots \\ c_r \\ c_{r+1} \\ \vdots \\ c_m \end{bmatrix}$$

Minimum norm solution (cont'd)

• The optimal y has the following components

$$y_i = \frac{c_i}{\sigma_i}$$
 for $i = 1, ..., r$
 $y_i = 0$ for $i = r + 1, ..., n$

In vector form

$$\mathbf{y}=\Sigma^{\dagger}\mathbf{c}$$

- Notice there is no other choice for \mathbf{y} , which is therefore unique: minimum residual forces the choice of y_1, \ldots, y_r , and minimum norm solution forces the other entries of \mathbf{y}
- The minimum norm least squares solution is

$$\hat{\mathbf{x}} = V\mathbf{y} = V\Sigma^{\dagger}\mathbf{c} = V\Sigma^{\dagger}U^{\top}\mathbf{b}$$

The residual is

$$\|A\mathbf{x} - \mathbf{b}\|^2 = \|\Sigma \mathbf{y} - \mathbf{c}\|^2 = \sum_{i=r+1}^m c_i^2 = \sum_{i=r+1}^m (\mathbf{u}_i^{\mathsf{T}} \mathbf{b})^2$$

which is the projection of **b** onto the complement of the range of A

Least squares solution of homogeneous linear systems

Theorem

For $A\mathbf{x} = \mathbf{0}$ or $\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$. Let $A = U\Sigma V^{\top}$, the solution is

$$\mathbf{x} = \alpha_1 \mathbf{v}_{n-k+1} + \ldots + \alpha_k \mathbf{v}_n$$

where k is the largest integer such that $\sigma_{n-k+1} = \ldots = \sigma_n$, and $\alpha_1^2 + \ldots + \alpha_k^2 = 1$

 $\alpha_1 = y_{n-k+1}, \ldots, \alpha_k = y_n$

Proof.

Consider the unit-norm least square solution

$$\|A\mathbf{x}\| = \|U\Sigma V^{\top}\mathbf{x}\| \equiv \|\Sigma V^{\top}\mathbf{x}\| = \|\Sigma\mathbf{y}\|$$

where $\mathbf{y} = V^{\top}\mathbf{x}$. Thus the unit norm vector \mathbf{y} that minimizes the norm $\sigma_1^2y_1^2 + \ldots + \sigma_n^2y_n^2$

which is achieved by concentrating all the mass of \mathbf{y} w.r.t smallest σ $y_1 = \ldots = y_{n-k} = 0$

and thus $\mathbf{x} = V\mathbf{y} = y_1\mathbf{v}_1 + \ldots + y_{n-k+1}\mathbf{v}_{n-k+1} + \ldots + y_n\mathbf{v}_n$ and