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Overview

@ Basic definition: orthogonality, orthogonal projection, distance
between subspaces, matrix inverse

@ Matrix decomposition: singular value decomposition
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Reading

o Chapter 4 of Numerical Linear Algebra by Lloyd Trefethen and David
Bau

o Chapters 2 and 3 of Matrix Computations by Gene Golub and Charles
Van Loan

@ Chapter 3 of Mathematical Modeling of Continuous Systems by Carlo
Tomasi



Matrix multiplication

o Let A=Jay,...,a,], A€ R™", then

n
Ax = E xjaj
Jj=1

The output vector is a linear combination of matrix columns with
coefficients given by the entries of x

o Example

3 =B BB+ F - -




Orthogonality

A set vectors {xi,...,X,} in IR™ is orthogonal if x; x; = 0 when
i # j, and orthonormal if x,-ij = 0jj

Orthogonal vectors are maximally independent for they point in
totally different directions

Subspace: A collection of subspaces Si,...,S, in IR™ is mutually
orthogonal if x"y = 0 whenever x € S; and y € Sjfor i #j

The orthogonal complement of a subspace S C IR" is
St={yeR™:y'x=0V¥xe S}

It can be shown that ran(A)* = null(AT)

The vectors vy, ..., vk form an orthonormal basis for a subspace
S ¢ R™ if they are orthonormal and span S
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Orthogonality (cont'd)

o A matrix @ € IR™™ is said to be orthogonal if QT Q =/

e If Q=1q1,...,qm] is orthogonal, then the g; form an orthonormal
basis for R™

@ It is always possible to extend such a basis to a full orthonormal basis
{vi,...,vm} for R™
Theorem

If V4 € R™" has orthonormal columns, then there exists Vi, € IR™*(m=1)
such that

V =[Vi V5] € R7X7
is orthogonal. Note that ran(V1)* = ran(V5)

Proof.

This is a standard result from introductory linear algebra O

6/17



Norms and orthogonal transformations

@ The vector 2-norm is invariant under orthogonal transformation @
Qx5 =x"QT @x = x"x = |Ix|

o Likewise, matrix 2-norm and Frobenius norm are invariant with
respect to orthogonal transformations @ and Z

1QAZ|r = |AlF
[QAZ|2 = [Al2



Singular values and singular vectors

@ Let S be the unit sphere in IR” and any A € R™*" with m > n and
ran(A) = n. The image AS is a hyperellipse in R™

@ The n singular values of A, 01,09,...,0,, are the lengths of the n
principal semi-axes of AS, where 071 > 00 > ... > 0, >0
@ The n left singular vectors of A are the unit vectors {uj, up,...,u,}

oriented in the directors of the principal semi-axes of AS

@ The n right singular vectors of A are the unit vectors
{vi,va,...,v,} € S that are the preimages of the principal semi-axes
of AS, numbered so that Av; = oju;

AN A'
N WA

Figure 4.1. SVD of a 2 x 2 matriz.



Singular value decomposition (SVD)

Theorem

If A is a real m-by-n matrix, then there exists orthogonal matrices
U=luy,...,un] € R™™ and V = |vq,...,v,] € R™"
such that
UTAV = ¥ = diag(oy, . ..,0,) € R™" p = min(m, n),
where o1 > 02 > ... > 0p >0, or

A=UzV'

@ The o; are the singular values of A and the vectors u; and v; are the
i-th left singular vector and the i-th right singular vector respectively
o It follows that AV = UYL, and ATU = VX'




Existence of SVD

Proof.

Let x € IR" and y € IR™ be unit 2-norm vectors that satisfy Ax = oy with
o = ||All2. There exists Vo € IR™ ("1 and U, € R™ ("1 5o

V=[x WeR™ and U=y U] €R™™ are orthogonal. It follows
that

.
UTAV = UT [ oy sz]:[g ‘5 }EAl

for some w and B. Since

|wo]

we have [|A1]|3 > (02 +w'w). But 02 = ||A||3 = ||A1]|3, and thus w must
be 0. By induction, we complete this proof. Ol

2
> (0 +w
2

T iap)2

w)
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Singular vectors

(]

As A= ULV, by comparing the columns in the equations
AV = UY and ATU = VX, it is easy to show

AV,' = ou;
ATU,' = OV;

where i =1,...,min(m, n)
The o; are the singular values of A and the vectors u; and v; are the
i-th left singular vector and i-th right singular vector respectively

U is a set of eigenvectors of AAT € IR™*™

> is a diagonal matrix whose values are the square root of eigenvalues
of AAT € R™*™

V is a set of eigenvectors of ATA € IR"™*"

It can be shown that singular values o; are the square roots of
eigenvalues, \;, i.e., o; = /A;
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Singular values

@ The singular values of a matrix A are precisely the lengths of the
semi-axes of the hyperellipsoid E defined by E = {Ax : ||| = 1}

@ The semi-axes are described by the singular vectors

- max [ Ax|| = [lAl

g 1.
min_ [|Ax]| = T
i, A (1A=

@ The SVD reveals the structure of a matrix. Let

Ulz...20r>ar+1:...:0'p:0
then
rank(A) = r
null(A) = span{v,41,...,Vp}

ran(A) = span{ug,...,u,}
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Geometric interpretation of SVD

Consider Ax = b where A € IR3*?,x € R?>*! and b € R3*!, and
A=UzVT

Apply left rotation to x using right singular vectors V, ¢ = V' Tx
Scale with ¥, i.e., n =L =XV x

Apply right rotation using left singular vectors U, b = Up = ULV Tx

(]

Best approximation with r eigenvectors in 2-norm
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SVD expansion

@ We can decompose A in terms of singular values and vectors
A=UZV' = Za,uv ZO’,U,@V,

where ® is the Kronecker product

@ Matrix 2-norm and Frobenius norm

IAllF = U%—I-'-- —1—0,23, p = min(m, n)
A
maXx;,éO ||HX)|(|!2 = HAHz =01
. A
minyo ”\lx)l(l‘lz = o, m>n

and |det(A)| =]/, oi
o Closely related to eigenvalues, eigen-decomposition and principal
component analysis
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Application of SVD

Matrix algebra: pseudo inverse, solving homogeneous linear equation,
least squares minimization, rank, null space, etc.

o Computer vision: denoise, eigenface, eigentexture, eigen-X, structure
from motion, etc.

@ Pattern recognition: principal component analysis, dimensionality
reduction, multivariate Gaussian, etc.

Application: image/data analysis, document retrieval, etc.
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Covariance matrix

Let x; € R™ and X = [xq,...,X,], covariance matrix C € R™*"™,

C = Ellx— EW)x = E) ) = § 50— )(xi— )
= Pl (ki —p) @ (% —p) = E[xx"] - pp’ = IX X

where = E[x] =137 x;, and X = X — 1p
o Covariance C is positive semi-definite (i.e., x' Cx > 0)
@ Second order statistics of x

@ The variation can be compactly modeled with principal component
analysis

@ Related to multivariate Gaussian distribution, principal component
analysis, SVD, and others
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Gram matrix

o Let x; € R™ and X = [x1,...,X,], Gram matrix, G € R"*" is
defined by
G=X'X
where Gjj = x; - x; =< x;[x; >
o Compute the pairwise similarities or correlations between two points

@ Related to kernel methods (e.g., kernel PCA, support vector
machine), regression, spectral clustering, SVD, and others
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