EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 4
Overview

- Basic definition: orthogonality, orthogonal projection, distance between subspaces, matrix inverse
- Matrix decomposition: singular value decomposition
Reading

- Chapter 4 of *Numerical Linear Algebra* by Lloyd Trefethen and David Bau
- Chapters 2 and 3 of *Matrix Computations* by Gene Golub and Charles Van Loan
- Chapter 3 of *Mathematical Modeling of Continuous Systems* by Carlo Tomasi
Matrix multiplication

Let $A = [a_1, \ldots, a_n]$, $A \in \mathbb{R}^{m \times n}$, then

$$Ax = \sum_{j=1}^{n} x_j a_j$$

The output vector is a linear combination of matrix columns with coefficients given by the entries of x

Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} + \begin{bmatrix} 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
Orthogonality

- A set vectors \(\{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \) in \(\mathbb{R}^m \) is orthogonal if \(\mathbf{x}_i^\top \mathbf{x}_j = 0 \) when \(i \neq j \), and orthonormal if \(\mathbf{x}_i^\top \mathbf{x}_j = \delta_{ij} \).

- Orthogonal vectors are maximally independent for they point in totally different directions.

- Subspace: A collection of subspaces \(S_1, \ldots, S_p \) in \(\mathbb{R}^m \) is mutually orthogonal if \(\mathbf{x}^\top \mathbf{y} = 0 \) whenever \(\mathbf{x} \in S_i \) and \(\mathbf{y} \in S_j \) for \(i \neq j \).

- The orthogonal complement of a subspace \(S \subset \mathbb{R}^m \) is

\[
S^\perp = \{\mathbf{y} \in \mathbb{R}^m : \mathbf{y}^\top \mathbf{x} = 0 \ \forall \mathbf{x} \in S\}
\]

- It can be shown that \(\text{ran}(A)^\perp = \text{null}(A^\top) \).

- The vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) form an orthonormal basis for a subspace \(S \subset \mathbb{R}^m \) if they are orthonormal and span \(S \).

Orthogonality (cont’d)

- A matrix $Q \in \mathbb{R}^{m \times m}$ is said to be orthogonal if $Q^\top Q = I$
- If $Q = [q_1, \ldots, q_m]$ is orthogonal, then the q_i form an orthonormal basis for \mathbb{R}^m
- It is always possible to extend such a basis to a full orthonormal basis $\{v_1, \ldots, v_m\}$ for \mathbb{R}^m

Theorem

*If $V_1 \in \mathbb{R}^{m \times r}$ has orthonormal columns, then there exists $V_2 \in \mathbb{R}^{m \times (m-r)}$ such that

\[
V = [V_1 \ V_2] \in \mathbb{R}^{m \times m}
\]

is orthogonal. Note that $\text{ran}(V_1)^\perp = \text{ran}(V_2)$*

Proof.

This is a standard result from introductory linear algebra
The vector 2-norm is invariant under orthogonal transformation Q

$$\| Qx \|_2^2 = x^\top Q^\top Qx = x^\top x = \| x \|_2^2$$

Likewise, matrix 2-norm and Frobenius norm are invariant with respect to orthogonal transformations Q and Z

$$\| QAZ \|_F = \| A \|_F$$
$$\| QAZ \|_2 = \| A \|_2$$
Singular values and singular vectors

- Let S be the unit sphere in \mathbb{R}^n and any $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $\text{ran}(A) = n$. The image AS is a hyperellipse in \mathbb{R}^m.

- The n singular values of A, $\sigma_1, \sigma_2, \ldots, \sigma_n$, are the lengths of the n principal semi-axes of AS, where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0$.

- The n left singular vectors of A are the unit vectors $\{u_1, u_2, \ldots, u_n\}$ oriented in the directors of the principal semi-axes of AS.

- The n right singular vectors of A are the unit vectors $\{v_1, v_2, \ldots, v_n\} \in S$ that are the preimages of the principal semi-axes of AS, numbered so that $Av_j = \sigma_j u_j$.

![Diagram](image.png)

Figure 4.1. SVD of a 2×2 matrix.
Singular value decomposition (SVD)

Theorem

If A is a real m-by-n matrix, then there exists orthogonal matrices

$$U = [u_1, \ldots, u_m] \in \mathbb{R}^{m \times m}, \text{ and } V = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$$

such that

$$U^\top AV = \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p) \in \mathbb{R}^{m \times n}, \ p = \min(m, n),$$

where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$, or

$$A = U\Sigma V^\top$$

- The σ_i are the singular values of A and the vectors u_i and v_i are the i-th left singular vector and the i-th right singular vector respectively.
- It follows that $AV = U\Sigma$, and $A^\top U = V\Sigma^\top$.
Existence of SVD

Proof.
Let \(\mathbf{x} \in \mathbb{R}^n \) and \(\mathbf{y} \in \mathbb{R}^m \) be unit 2-norm vectors that satisfy \(A\mathbf{x} = \sigma \mathbf{y} \) with \(\sigma = \|A\|_2 \). There exists \(V_2 \in \mathbb{R}^{n \times (n-1)} \) and \(U_2 \in \mathbb{R}^{m \times (m-1)} \) so \(V = [\mathbf{x} \ V_2] \in \mathbb{R}^{n \times n} \) and \(U = [\mathbf{y} \ U_2] \in \mathbb{R}^{m \times m} \) are orthogonal. It follows that

\[
U^\top AV = U^\top \begin{bmatrix} \sigma & \mathbf{y} \\ \mathbf{0} & AV_2 \end{bmatrix} = \begin{bmatrix} \sigma \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w}^\top \\ B \end{bmatrix} \equiv A_1
\]

for some \(\mathbf{w} \) and \(B \). Since

\[
\|A_1 \begin{bmatrix} \sigma \\ \mathbf{w} \end{bmatrix} \|_2^2 \geq (\sigma^2 + \mathbf{w}^\top \mathbf{w})^2
\]

we have \(\|A_1\|_2^2 \geq (\sigma^2 + \mathbf{w}^\top \mathbf{w}) \). But \(\sigma^2 = \|A\|_2^2 = \|A_1\|_2^2 \), and thus \(\mathbf{w} \) must be \(\mathbf{0} \). By induction, we complete this proof. \(\square \)
Singular vectors

- As $A = U\Sigma V^\top$, by comparing the columns in the equations $AV = U\Sigma$ and $A^\top U = V\Sigma^\top$, it is easy to show

$$Av_i = \sigma u_i$$
$$A^\top u_i = \sigma v_i$$

where $i = 1, \ldots, \min(m, n)$

- The σ_i are the singular values of A and the vectors u_i and v_i are the i-th left singular vector and i-th right singular vector respectively

- U is a set of eigenvectors of $AA^\top \in \mathbb{R}^{m\times m}$

- Σ is a diagonal matrix whose values are the square root of eigenvalues of $AA^\top \in \mathbb{R}^{m\times m}$

- V is a set of eigenvectors of $A^\top A \in \mathbb{R}^{n\times n}$

- It can be shown that singular values σ_i are the square roots of eigenvalues, λ_i, i.e., $\sigma_i = \sqrt{\lambda_i}$
Singular values

- The singular values of a matrix A are precisely the lengths of the semi-axes of the hyperellipsoid E defined by $E = \{ Ax : \|x\|_2 = 1 \}$
- The semi-axes are described by the singular vectors

The SVD reveals the structure of a matrix. Let

$$\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_p = 0$$

then

$$\text{rank}(A) = r$$

$$\text{null}(A) = \text{span}\{v_{r+1}, \ldots, v_n\}$$

$$\text{ran}(A) = \text{span}\{u_1, \ldots, u_r\}$$
Geometric interpretation of SVD

Consider $A \mathbf{x} = \mathbf{b}$ where $A \in \mathbb{R}^{3 \times 2}$, $\mathbf{x} \in \mathbb{R}^{2 \times 1}$ and $\mathbf{b} \in \mathbb{R}^{3 \times 1}$, and $A = U \Sigma V^\top$

- Apply left rotation to \mathbf{x} using right singular vectors V, $\xi = V^\top \mathbf{x}$
- Scale with Σ, i.e., $\eta = \Sigma \xi = \Sigma V^\top \mathbf{x}$
- Apply right rotation using left singular vectors U, $\mathbf{b} = U \eta = U \Sigma V^\top \mathbf{x}$
- Best approximation with r eigenvectors in 2-norm
SVD expansion

- We can decompose A in terms of singular values and vectors

$$A = U\Sigma V^\top = \sum_{i=1}^{r} \sigma_i u_i v_i^\top = \sum_{i=1}^{r} \sigma_i u_i \otimes v_i$$

where \otimes is the Kronecker product

- Matrix 2-norm and Frobenius norm

$$\|A\|_F = \sqrt{\sigma_1^2 + \cdots + \sigma_p^2}, \quad p = \min(m, n)$$

$$\max_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \|A\|_2 = \sigma_1$$

$$\min_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \sigma_n, \quad m \geq n$$

and $|\det(A)| = \prod_{i=1}^{n} \sigma_i$

- Closely related to eigenvalues, eigen-decomposition and principal component analysis
Application of SVD

- Matrix algebra: pseudo inverse, solving homogeneous linear equation, least squares minimization, rank, null space, etc.
- Computer vision: denoise, eigenface, eigentexture, eigen-X, structure from motion, etc.
- Pattern recognition: principal component analysis, dimensionality reduction, multivariate Gaussian, etc.
- Application: image/data analysis, document retrieval, etc.
Covariance matrix

- Let $\mathbf{x}_i \in \mathbb{R}^m$ and $\mathbf{X} = [\mathbf{x}_1, \ldots, \mathbf{x}_n]$, covariance matrix $\mathbf{C} \in \mathbb{R}^{m \times m}$,

$$
\mathbf{C} = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^\top] = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^\top \\
= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mu) \otimes (\mathbf{x}_i - \mu) = \mathbb{E}[\mathbf{xx}^\top] - \mu\mu^\top = \frac{1}{n} \mathbf{X} \mathbf{X}^\top
$$

where $\mu = \mathbb{E}[\mathbf{x}] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$, and $\overline{\mathbf{X}} = \mathbf{X} - \mathbf{1}\mu$

- Covariance \mathbf{C} is positive semi-definite (i.e., $\mathbf{x}^\top \mathbf{C} \mathbf{x} \geq 0$)

- Second order statistics of \mathbf{x}

- The variation can be compactly modeled with principal component analysis

- Related to multivariate Gaussian distribution, principal component analysis, SVD, and others
Gram matrix

- Let \(x_i \in \mathbb{R}^m \) and \(X = [x_1, \ldots, x_n] \), Gram matrix, \(G \in \mathbb{R}^{n \times n} \) is defined by

\[
G = X^\top X
\]

where \(G_{ij} = x_i \cdot x_j = \langle x_i | x_j \rangle \)

- Compute the pairwise similarities or correlations between two points

- Related to kernel methods (e.g., kernel PCA, support vector machine), regression, spectral clustering, SVD, and others