EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang

Lecture 3

Overview

- Basic definition: matrix norm, range, rank, null space, matrix inverse
- Elementary analytical ad topological properties

Reading

- Chapter 1-3 Numerical Linear Algebra by Trefethen and Bau
- Chapter 2 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl Meyer
- Chapter 2 of Optimization by Vector Space Methods by David Luenberger
- Chapter 3 and Chapter 4 of Matrix Algebra From a Statistician's Perspective by David Harville

Matrix norm

• Matrix form: a function, $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a matrix norm if the following properties hold:

$$f(A) \ge 0$$
 $A \in \mathbb{R}^{m \times n}$
 $f(A+B) \le f(A) + f(B)$ $A, B \in \mathbb{R}^{m \times n}$
 $f(\alpha A) = |\alpha| f(A)$ $\alpha \in \mathbb{R}, A \in \mathbb{R}^{m \times n}$

• Frobenius norm:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sum_{i=1}^m ||A(i,:)||_2^2 = \sum_{j=1}^n ||A(:,j)||_2^2 = \sqrt{\operatorname{tr}(A^\top A)}$$

The Frobenius norm suggests

$$||A\mathbf{x}||_2^2 = \sum_{i=1}^n |A(i,:)\mathbf{x}|^2 \le \sum_{i=1}^n ||A(i,:)||_2^2 ||\mathbf{x}||_2^2 = ||A||_F^2 ||\mathbf{x}||_2^2$$

$$||A\mathbf{x}||_2 \leq ||A||_F ||\mathbf{x}||_2$$

For matrices A and B

$$\|AB\|_F \leq \|A\|_F \|B\|_F$$

Matrix norm (cont'd)

• *p*-norms:

$$||A||_p = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p}$$

Note that matrix p-norms are defined in terms of vector p-norms.

• It is clear that $||A||_p$ is the *p*-norm of the largest vector obtained by applying A to a unit p-norm vector

$$||A||_p = \sup_{\mathbf{x} \neq \mathbf{0}} ||A\left(\frac{\mathbf{x}}{\|\mathbf{x}\|_p}\right)||_p = \max_{\|\mathbf{x}\|_p = 1} ||A\mathbf{x}||_p$$

• When A is non-singular,

$$\min_{\|\mathbf{x}\|_{\rho}=1} \|A\mathbf{x}\|_{\rho} = \frac{1}{\|A^{-1}\|_{\rho}}$$

• Frobenius norm and p-norms define families norms that

$$||AB||_p < ||A||_p ||B||_p \quad A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times q}$$

• For every $A \in {\rm I\!R}^{m \times n}$ and ${\bf x} \in {\rm I\!R}^n$, we have $\|A{\bf x}\|_p \le \|A\|_p \|{\bf x}\|_p$

Matrix norm (cont'd)

• Not all matrix norms satisfy the sub-multiplicative property

$$||AB|| \leq ||A|| ||B||$$

• For example, if $||A||_{\Delta} = \max |a_{ij}|$, and

$$A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

then $||AB||_{\Delta} > ||A||_{\Delta} ||B||_{\Delta}$

Matrix norm (cont'd)

• More generally, for any vector norm $\|\cdot\|_{\alpha}$ on \mathbb{R}^n and $\|\cdot\|_{\beta}$ on \mathbb{R}^m , we have $\|A\mathbf{x}\|_{\beta} \leq \|A\|_{\alpha,\beta}\|\mathbf{x}\|_{\alpha}$ where $\|A\|_{\alpha,\beta}$ is a matrix norm defined by

$$||A||_{\alpha,\beta} = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||_{\beta}}{||\mathbf{x}||_{\alpha}}$$

- ullet We say that $\|\cdot\|_{lpha,eta}$ is subordinate to the vector norms $\|\cdot\|_{lpha}$ and $\|\cdot\|_{eta}$
- Since the set $\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_{\alpha} = 1\}$ is compact and $\|\cdot\|_{\beta}$ is continuous, it follows that

$$\|A\|_{\alpha,\beta} = \max_{\|\mathbf{x}\|_{\alpha}=1} \|A\mathbf{x}\|_{\beta} = \|A\mathbf{x}^*\|_{\beta}$$

for some $\mathbf{x}^* \in \mathrm{I\!R}^n$ having unit lpha-norm

Matrix norm properties

• For $A \in \mathbb{R}^{m \times n}$, the Frobenius and *p*-norms satisfy certain important properties

$$\begin{split} \|A\|_2 &\leq \|A\|_F \leq \sqrt{n} \|A\|_2 \\ \max_{i,j} |a_{ij}| &\leq \|A\|_2 \leq \sqrt{mn} \max_{i,j} |a_{ij}| \\ \|A\|_1 &= \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}| \\ \|A\|_{\infty} &= \max_{1 \leq i \leq m} \sum_{j=1}^n |a_{ij}| \\ \frac{1}{\sqrt{n}} \|A\|_{\infty} &\leq \|A\|_2 \leq \sqrt{m} \|A\|_{\infty} \\ \frac{1}{\sqrt{m}} \|A\|_1 &\leq \|A\|_2 \leq \sqrt{n} \|A\|_1 \\ \|A\|_2 &\leq \sqrt{\|A\|_1 \|A\|_{\infty}} \\ \|A(i_1:i_2,j_1:j_2)\|_p \leq \|A\|_p \end{split}$$

Example

Given a matrix,

$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 6 & 4 \\ 0 & 2 & 8 \end{bmatrix}$$

- $||A||_1 = \max(3+2+0,5+6+2,7+4+8) = 19$ (maximum absolute column sum)
- $\|A\|_{\infty} = \max(3+5+7,2+6+4,0+2+8) = 15$ (maximum absolute row sum)
- $||A||_F = 14.3875$

Matrix 2-norm

Theorem

If $A \in \mathbb{R}^{m \times n}$, then there exists a unit 2-norm $\mathbf{z} \in \mathbb{R}^n$ such that $A^{\top}A\mathbf{z} = \mu^2\mathbf{z}$ where $\mu = \|A\|_2$.

Proof.

Suppose $\mathbf{z} \in R^n$ is a unit vector such that $||A\mathbf{z}||_2 = ||A||_2$. Since \mathbf{z} maximizes the function

$$g(\mathbf{x}) = \frac{1}{2} \frac{\|A\mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} = \frac{1}{2} \frac{\mathbf{x}^\top A^\top A \mathbf{x}}{\mathbf{x}^\top \mathbf{x}},$$

it follows that with by setting gradient $abla g(\mathbf{z}) = \mathbf{0}$,

$$\frac{\partial g(\mathbf{z})}{\partial z_i} = \left[(\mathbf{z}^\top \mathbf{z}) \sum_{j=1}^n (A^\top A)_{ij} z_j - (\mathbf{z}^\top A^\top A \mathbf{z}) z_i \right] / (\mathbf{z}^\top \mathbf{z})^2, \forall i$$

In vector notation, $A^{\top}A\mathbf{z} = (\mathbf{z}^{\top}A^{\top}A\mathbf{z})\mathbf{z}$. The theorem follows by setting $\mu = \|A\mathbf{z}\|_2$.

Matrix 2-norm (cont'd)

• It implies that $||A||_2^2$ is a zero of the polynomial $p(\lambda) = \det(A^\top A - \lambda I)$, i.e.,

$$\|A\|_2 = \max_{\|\mathbf{x}\|_2 = 1} \|A\mathbf{x}\|_2 = \sqrt{\lambda_{max}}$$

where λ_{max} is the largest eigenvalue.

- $||A||_2$ is the square root of the largest eigenvalue of $A^{\top}A$.
- When A is non-singular

$$\|A^{-1}\|_2 = \frac{1}{\min_{\|\mathbf{x}\|_2 = 1} \|A\mathbf{x}\|_2} = \frac{1}{\sqrt{\lambda_{min}}}$$

where λ_{min} is the smallest eigenvalue of $A^{\top}A$

Matrix 2-norm (cont'd)

- ||A|| represents the maximum extent to which a vector on the unit sphere can be stretched by A.
- $\frac{1}{\|A^{-1}\|}$ measures the extent to which a non-singular matrix A can shrink vectors on the unit sphere.

Matrix 2-norm (cont'd)

- Computation of matrix 2-norm is iterative and more complicated than that of the matrix 1-norm or ∞ -norm.
- The order of magnitude of $||A||_2$ can be computed easily.

Corollary

If
$$A \in \mathbb{R}^{m \times n}$$
, then $||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$

Proof.

If
$$\mathbf{z} \neq \mathbf{0}$$
 is such that $A^{\top}A\mathbf{z} = \mu^2\mathbf{z}$ with $\mu = \|A\|_2$, then $\mu^2 \|\mathbf{z}\|_1 = \|A^{\top}A\mathbf{z}\|_1 \le \|A^{\top}\|_1 \|A\|_1 \|\mathbf{z}\|_1 = \|A\|_{\infty} \|A\|_1 \|\mathbf{z}\|_1$

Example

Given the matrix

$$\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$

and two points (1,0) and (0,1)

- ullet The amplification factors for 1-norm is 4, and ∞ -norm is 3
- The amplification factor for 2-norm is at least $\sqrt{8}\approx 2.8284$ as (0,1) is mapped to (2,2). In fact $\|A\|_2\approx 2.9208$

Figure 3.1. On the left, the unit balls of \mathbb{R}^2 with respect to $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_\infty$. On the right, their images under the matrix A of (3.7). Dashed lines mark the vectors that are amplified most by A in each norm.

Independence, subspace, and span

- A set of vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_n\} \in \mathbb{R}^m$ is linearly independent if $\sum_{j=1}^n \alpha_j \mathbf{a}_j = 0$ implies $\alpha_i = 0$
- Otherwise, nontrivial combination of the \mathbf{a}_j is zero and $\{\mathbf{a}_1,\dots,\mathbf{a}_n\}$ is linearly dependent
- ullet A subspace of ${
 m I\!R}^m$ is a subset that is also a vector space
- Given a collection of vectors, $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$, the set of all linear combinations of vectors in a subspace referred to as the span of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$

$$\operatorname{\mathsf{span}}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \sum_{j=1}^n \beta_j \mathbf{a}_j : \beta_j \in \mathrm{I\!R}$$

• If $\{a_1, \ldots, a_n\}$ is independent and $\mathbf{b} \in \text{span}\{a_1, \ldots, a_n\}$, then \mathbf{b} is a unique linear combination of the \mathbf{a}_i

Range, null space, and rank

• Range: The range of $A \in \mathbb{R}^{m \times n}$ is

$$ran(A) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = A\mathbf{x}, \mathbf{x} \in \mathbb{R}^n \}$$

Null space:

$$\mathsf{null}(A) = \{\mathbf{x} \in \mathrm{I\!R}^n : A\mathbf{x} = \mathbf{0}\}$$

• If $A = [\mathbf{a}_1, \dots, \mathbf{a}_n]$, then

$$ran(A) = span\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

• Rank: the number of linear independent columns of A.

$$rank(A) = dim(ran(A))$$

- A is rank deficient if $rank(A) < min\{m, n\}$.
- If $A \in \mathbb{R}^{m \times n}$, then

$$\dim(\operatorname{null}(A)) + \operatorname{rank}(A) = n$$

Matrix inverse

• The n-by-n identity matrix I_n is defined by the columns

$$I = [\mathbf{e}_1, \dots, \mathbf{e}_n]$$

where

$$\mathbf{e}_k = (\underbrace{0,\ldots,0}_{k-1},1,\underbrace{0,\ldots,0}_{n-k})^{ op}$$

- If A and X are in $\mathbb{R}^{n \times n}$ and satisfy AX = I, then X is the inverse of A and is denoted by A^{-1} (i.e., $AA^{-1} = I$).
- If A^{-1} exists, then A is said to be nonsingular. Otherwise, A is singular.
- Several matrix inverse properties

$$(AB)^{-1} = B^{-1}A^{-1}$$

 $B^{-1} = A^{-1} - B^{-1}(B - A)A^{-1}$

• Sherman-Morrison-Woodbury formula

$$(A + UV^{\top})^{-1} = A^{-1} - A^{-1}U(I + V^{\top}A^{-1}U)^{-1}V^{\top}A^{-1}$$