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Overview

@ Basic definition: matrix norm, range, rank, null space, matrix inverse

o Elementary analytical ad topological properties

)
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Reading

o Chapter 1-3 Numerical Linear Algebra by Trefethen and Bau

@ Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan

o Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer

@ Chapter 2 of Optimization by Vector Space Methods by David
Luenberger

@ Chapter 3 and Chapter 4 of Matrix Algebra From a Statistician’s
Perspective by David Harville
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Matrix norm

@ Matrix form: a function, f : IR™*" — IR is a matrix norm if the
following properties hold:

f(A) >0 A€ Rm™<n
f(A+ B) < f(A)+ f(B) A BeIR™"
f(aA) = |a|f(A) a€R,Ae RM¥n

@ Frobenius norm:

ZZI%!Q ZHA Hz—ZHA )5 = 1/tr(ATA)

i=1 j=1

|AllF =

@ The Frobenius norm suggests
1AX(13 = 327y JAG, %2 < 3270 A, )IBIxI3 = IAIE 113

[Ax[[2 < [[All£|Ix]l2
@ For matrices A and B
[ABI[r < |AllFlIBll



Matrix norm (cont'd)

@ p-norms:

A
1Al = sup 12xle
<20 [Ixllp

Note that matrix p-norms are defined in terms of vector p-norms.
@ It is clear that ||Al|, is the p-norm of the largest vector obtained by
applying A to a unit p-norm vector

1Al =sup|| A( 5 ) || = max 1Al
x7#0 P

lIxllp=1

@ When A is non-singular,

1
min ||Ax||, = ———
=1 [|AT,

@ Frobenius norm and p-norms define families norms that
1ABlp < [AllplIBll, A€ R™", B IR

o For every A R™" and x € IR", we have ||Ax||, < [|Allplx|l
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Matrix norm (cont'd)

@ Not all matrix norms satisfy the sub-multiplicative property
|AB]| < [|A[lllB]

o For example, if ||Al|a = max]ajj|, and

11
A:B:[l 1}

then ||AB||a > || AllallBlla

6
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Matrix norm (cont'd)

@ More generally, for any vector norm || - || on IR" and || - ||g on IR™, we

have [[Ax||g < [|A]

a,8]|X||a where ||Al|4 5 is @ matrix norm defined by

[| Ax||
Al = SUP 5
1%l

o We say that || -||4,g is subordinate to the vector norms || - ||, and || - g

@ Since the set {x € IR" : ||x||o = 1} is compact and || - || is
continuous, it follows that

1Allap = max [|Ax]ls = [|Ax"]|s

lIxlla=

for some x* € IR" having unit a-norm
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Matrix norm properties

@ For A€ IR™*", the Frobenius and p-norms satisfy certain important
properties
[Allz < [[AllF < V/nl|All2

max;; |aj| < [|All2 < v/mnmax; |aj|
[AllL = maxi<j<n D272 |ay]
[Alloo = maxi<i<m 2571 |aj]
\%HAHoo < All2 < vVm|| Al
T Al < [JAll2 < VallAlly
[All2 < VIIAll1 1Al oo

[A( = 2,41 2 2)llp < [|Allp
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Example

Given a matrix,

4 O w

|All1 = max(3+2+0,5+6+2,
column sum)

|Allooc = max(3+5+7,2+6+4,0+2+8) =15 (maximum
absolute row sum)

I|A[F = 14.3875

8) = 19 (maximum absolute



Matrix 2-norm
Theorem

If A€ IR™ ", then there exists a unit 2-norm z € IR" such that
AT Az = 1z where 1 = ||Al|>.

Proof.

Suppose z € R" is a unit vector such that ||Az|2 = ||A||2. Since z
maximizes the function

_ 1]|Ax|3  1xTATAx

T2 T2 xx

g(x)

it follows that with by setting gradient Vg(z) =0,

Jg(2)
0z;

— [ @) XL (AT Az — (2T AT A2)z; | /(2T 2)P Vi

In vector notation, AT Az = (z" AT Az)z. The theorem follows by setting
= ||zl o
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Matrix 2-norm (cont'd)

o It implies that ||A||3 is a zero of the polynomial
p(A) =det(ATA—\I), ie.,

[All2 = max [[Ax[l2 = v/ Amax

lIxl2=1

where \,ax is the largest eigenvalue.

o ||A||2 is the square root of the largest eigenvalue of AT A.

@ When A is non-singular

1 1
minju,=1 [AX]2 v Amin

where A, is the smallest eigenvalue of ATA

1A= |2 =
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Matrix 2-norm (cont'd)

( mex ax) = 1A

[

min ||Ax| =
HtzlH I lA-4]]

@ ||A]| represents the maximum extent to which a vector on the unit
sphere can be stretched by A.

° ﬁ measures the extent to which a non-singular matrix A can
shrink vectors on the unit sphere.

12 /17



Matrix 2-norm (cont'd)

@ Computation of matrix 2-norm is iterative and more complicated than
that of the matrix 1-norm or co-norm.

@ The order of magnitude of ||A|l2 can be computed easily.

Corollary
IfA e R™", then ||All2 < /TATL Al |
Proof.

If z# 0 is such that AT Az = iz with = ||A||2, then
p2llzlls = AT Azlly < |AT[11]|All1lizlls = [|Alloo|lAll2l1z]]1 [

13 /17




Example

@ Given the matrix

o 7

and two points (1,0) and (0, 1)

@ The amplification factors for 1-norm is 4, and co-norm is 3

o The amplification factor for 2-norm is at least v/8 ~ 2.8284 as (0, 1)
is mapped to (2,2). In fact ||A|2 ~ 2.9208

(2,2

] o
L-norm: ‘ — Al =4
\4/"(1.0? .07
2-norm: W — & [|All2 &~ 2.9208
©oo-norm: . ]T — . 140 =3
Figure 3.1. On the left, the unit balls of R? with respect to ||+ |1, || - ||z, and

|| - - On the right, their images under the matriz A of (3.7). Dashed lines
mark the vectors that are amplified most by A in each norm.
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Independence, subspace, and span

@ A set of vectors {aj,...,ap} € R™ is linearly independent if
> iy ajaj =0 implies a; = 0
e Otherwise, nontrivial combination of the a; is zero and {ay,...,a,} is
linearly dependent
@ A subspace of IR™ is a subset that is also a vector space
@ Given a collection of vectors, ay,...,a, € IR™, the set of all linear
combinations of vectors in a subspace referred to as the span of
{a1,...,a,}
n
span{ai,...,a,} = Zﬁjaj i eR
=1
o If {a1,...,a,} is independent and b € span{ai,...,a,}, then b is a

unique linear combination of the a;
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Range, null space, and rank
@ Range: The range of A€ IR™*" is
ran(A) ={y e R™ :y = Ax,x € R"}

@ Null space:
null(A) = {x e R" : Ax =0}

o If A=Jay,...,a,], then

ran(A) = span{as,...,an}

@ Rank: the number of linear independent columns of A.

rank(A) = dim(ran(A))

A is rank deficient if rank(A) < min{m, n}.
o If Ac IR™*", then

dim(null(A)) + rank(A) = n

16
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Matrix inverse

@ The n-by-n identity matrix /, is defined by the columns

I =lei,...,e,
where
ex=(0,...,0,1,0,...,0)"
k—1 k

If Aand X are in IR"*" and satisfy AX =/, then X is the inverse of
A and is denoted by A! (i.e.,, AA"L =),
o If A1 exists, then A is said to be nonsingular. Otherwise, A is
singular.
Several matrix inverse properties
(AB)"! = B 1Al
Bl = Al'-BYB-AA!

Sherman-Morrison-Woodbury formula
(A+uvHl=A1_ Aty +viAlu)ytvial
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