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Overview

o Compressive sensing

@ Applications
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Compressive sensing: Background

e Nyquist/Shannon sampling theory:
» the number of samples needed to reconstruct a signal without error is
dictated by its bandwidth, i.e., at least 2 times the bandwidth
> the length of the shortest interval which contains the support of the
spectrum of the signal
@ Has significant interactions and bearings on some fields in the applied
science and engineering such as statistics, information theory, coding
theory, theoretical computer science
@ Sparsity: has bearing on the data acquisition process itself, and leads
to efficient data acquisition protocols
@ Sparse coding: well known in numerous fields such as visual cortex,
neuroscience, computer vision, image processing, and machine
learning



Compressible signals

Consider a real-valued finite-length one-dimensional, discrete-time
signal x ¢ RV

Any signal in RN can be represented in terms of basis N x 1 vectors

{1y

For simplicity, assume orthonormal basis, and x is represented as
N
x:Zs,ﬂ,b,-, or x="Vs (1)

i=1
where s is the N x 1 vector of weighted coefficients,
si = (%, 1) = ¥ x
The signal x is K-sparse if it is a linear combination of only K basis
vectors, i.e., , only K of the s; coefficients are nonzero and N — K are
zero (of great interest when K < N)
The signal is compressible if (1) has only a few large coefficients and
many small coefficients



Transform coding

The fact that compressible signals are well approximated by K-sparse
representations forms the foundation of transform coding

In data acquisition (e.g., digital cameras) transform coding plays a
central role:

@ full N-sample signal x is acquired

@ complete set of transform coefficients {s;} is computed via s = W 'x

© K largest coefficients are located and the N — K smallest coefficients
are discarded

© K values and locations of the largest coefficients re encoded

JPEG: exploits sparse representation based on discrete cosine
transform (DCT)

JPEG 2000: exploits sparse representation based on discrete wavelet
transform (DWT)
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Compressive sensing: Main idea

@ Standard compression schemes
» acquire the full signal
» compute the complete set of transform coefficients
» encode the largest coefficients
» discard all the others
» operate at Nyquist rate

o Compressive sensing/sampling (aka compressed sensing):

» directly acquire the data in already compressed form
» does not need to throw away anything
» sample at rate lower than Nyquist rate

6
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Compressive sensing: Two principles

@ Sparsity:
» information rate of a continuous time signal may be much smaller than
suggested by its bandwidth
» discrete time signal depends on a number of degree of freedom which is
much smaller than its length
» many natural signals are sparse or compressible

@ Incoherence:

> extends the duality between time and frequency domains

> objects having a sparse representation in W must be spread out in the
domain in which they are sampled, just as a Dirac or spike in the time
domain is spread out in the frequency domain

» unlike the signal of interest, the sampling/sensing waveforms have a
extremely dense representation in W



Compressive sensing

o Consider a general linear measurement process that computes M < N
inner products between x and a collection of vectors {qu}j"il as in
yj = <X, ¢J>

@ Arrange the measurements y; in an M x 1 vector y and the
measurement vectors ¢J~T as rows in an M x N matrix ®, we have

y=®x =dVUs=0Os

where © = ®V is an M x N matrix

@ Nonadaptive measurement process, i.e., ® is fixed and does not
depend on x
> need to find a stable measurement matrix ® such that the salient
information in any K-sparse or compressible signals is not damaged by
dimensionality reduction from x € R" to y ¢ RY (M < N)
> a reconstruction algorithm to recover x from only M =~ K
measurements y
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Designing a stable measurement matrix

@ The measurement matrix & must allow reconstruction of the length
N signal x from M < N measurements (i.e., y)

@ Appear to be ill-posed at first glance
o If, however, x is K-sparse and the K locations of nonzero coefficients
in s are known, then the problem can be solved provided M > K
@ A necessary and sufficient condition is, for any vector v sharing the
same K nonzero entries as s and for some € > 0
©v
L levls
Ivl2
@ That is, the matrix © must preserve the lengths of these particular
K-sparse vectors

<l+e¢ (2)

@ In general, the locations of the K nonzero entries in s are not known



Designing a stable measurement matrix (cont'd)

@ Restricted isometry property (RIP): A sufficient condition for a stable
solution for both K-sparse and compressible signals is that © satisfies
(2) for an arbitrary 3K-sparse vector v

@ Incoherence: A related condition that requires the row {¢;} of ®
cannot sparsely represent the columns {¢;} of W, and vice versa

@ Direct construction of ® such that © = ®WV has the RIP requires
verifying (2) for each of the (%) possible combinations

@ However, both the RIP and incoherence can be achieved with high
probability simply by selecting ® as a random matrix

e For example, let the matrix elements ¢; ; be independently and
identically distributed (iid) random variables form a Gaussian
probability density function with zero mean and variance 1/N

@ Then the measurements y are merely M different randomly weighted
linear combinations of the elements of x
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Gaussian random measurements

@ The measurement matrix ® is incoherent with the basis W =/ of
data spikes with high probability

@ More specifically, an M x N iid Gaussian matrix © = ®/ = ® can be
shown to have the RIP with high probability if M > ¢ K log(N/K)
with ¢ a small constant

@ Thus, K-sparse and compressible signals of length N can be recovered
from only M > ¢ Klog(N/K) < N random Gaussian measurements

@ The matrix ® is universal in the sense that © = ®W will be iid
Gaussian and thus have the RIP with high probability regardless of
choice of orthonormal basis W

11 /14



Signal reconstruction

@ Take M measurements in the vector y, the random measurement
matrix ®, and the basis W to reconstruct x (or equivalently its sparse
coefficient s)

@ For K-sparse signals, there are infinitely man s’ that satisfy ©s’ =y’
since M < N

@ An underconstrained problem and for ©s =y, there exists
©(s + r) =y for any vector r in the null space N'(©) of ©

@ The signal reconstruction algorithm aims to find the signal’s sparse
coefficient vector in the (N — M)-dimensional translated null space

H=N(O)+s
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Optimization problems

@ Minimum /¢>-norm reconstruction
§=argminOs =y
lIs"ll2
which can be solved with closed form solution, § = @7 (00 7)1y,
but almost never find a K-sparse solution
@ Minimum £y-norm reconstruction

§=argminBOs’ =y
lIs"llo

which can recover a K-sparse signals with only M = K + 1 iid
Gaussian measurements, but it is both numerically unstable and
NP-complete

@ Minimum /¢1-norm reconstruction

§=argminOs =y
lIs"llx

which can recover K-sparse signals and closely approximate
compressible signals with high probability using only
M < ¢ Klog(N/K) iid Gaussian measurements via convex

optimization
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Applications

@ Single pixel, compressive digital camera that directly acquires M

random linear measurements without first collecting the N pixel values
@ Use digital micromirror device consisting of an array of N tiny mirrors

where each one can be independently oriented

@ To collect measurements, a random number generator sets the mirror
orientations in a pseudorandom pattern to create the measurement ¢;

and the voltage at the photodiode equals y;, the inner product

between ¢; and x
@ The process repeats M times to obtain y

Reconstruction

Image
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