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Overview

Compressive sensing

Applications
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Compressive sensing: Background

Nyquist/Shannon sampling theory:
I the number of samples needed to reconstruct a signal without error is

dictated by its bandwidth, i.e., at least 2 times the bandwidth
I the length of the shortest interval which contains the support of the

spectrum of the signal

Has significant interactions and bearings on some fields in the applied
science and engineering such as statistics, information theory, coding
theory, theoretical computer science

Sparsity: has bearing on the data acquisition process itself, and leads
to efficient data acquisition protocols

Sparse coding: well known in numerous fields such as visual cortex,
neuroscience, computer vision, image processing, and machine
learning
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Compressible signals

Consider a real-valued finite-length one-dimensional, discrete-time
signal x ∈ IRN

Any signal in IRN can be represented in terms of basis N × 1 vectors
{ψi}Ni=1

For simplicity, assume orthonormal basis, and x is represented as

x =
N∑
i=1

siψi , or x = Ψs (1)

where s is the N × 1 vector of weighted coefficients,
si = 〈x,ψi 〉 = ψ>i x

The signal x is K -sparse if it is a linear combination of only K basis
vectors, i.e., , only K of the si coefficients are nonzero and N − K are
zero (of great interest when K � N)

The signal is compressible if (1) has only a few large coefficients and
many small coefficients
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Transform coding

The fact that compressible signals are well approximated by K -sparse
representations forms the foundation of transform coding

In data acquisition (e.g., digital cameras) transform coding plays a
central role:

1 full N-sample signal x is acquired
2 complete set of transform coefficients {si} is computed via s = Ψ>x
3 K largest coefficients are located and the N − K smallest coefficients

are discarded
4 K values and locations of the largest coefficients re encoded

JPEG: exploits sparse representation based on discrete cosine
transform (DCT)

JPEG 2000: exploits sparse representation based on discrete wavelet
transform (DWT)
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Compressive sensing: Main idea

Standard compression schemes
I acquire the full signal
I compute the complete set of transform coefficients
I encode the largest coefficients
I discard all the others
I operate at Nyquist rate

Compressive sensing/sampling (aka compressed sensing):
I directly acquire the data in already compressed form
I does not need to throw away anything
I sample at rate lower than Nyquist rate
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Compressive sensing: Two principles

Sparsity:
I information rate of a continuous time signal may be much smaller than

suggested by its bandwidth
I discrete time signal depends on a number of degree of freedom which is

much smaller than its length
I many natural signals are sparse or compressible

Incoherence:
I extends the duality between time and frequency domains
I objects having a sparse representation in Ψ must be spread out in the

domain in which they are sampled, just as a Dirac or spike in the time
domain is spread out in the frequency domain

I unlike the signal of interest, the sampling/sensing waveforms have a
extremely dense representation in Ψ
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Compressive sensing

Consider a general linear measurement process that computes M < N
inner products between x and a collection of vectors {φj}Mj=1 as in
yj = 〈x,φj〉
Arrange the measurements yj in an M × 1 vector y and the
measurement vectors φ>j as rows in an M × N matrix Φ, we have

y = Φx = ΦΨs = Θs

where Θ = ΦΨ is an M × N matrix

Nonadaptive measurement process, i.e., Φ is fixed and does not
depend on x

I need to find a stable measurement matrix Φ such that the salient
information in any K -sparse or compressible signals is not damaged by
dimensionality reduction from x ∈ IRN to y ∈ IRM (M < N)

I a reconstruction algorithm to recover x from only M ≈ K
measurements y
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Designing a stable measurement matrix

The measurement matrix Φ must allow reconstruction of the length
N signal x from M < N measurements (i.e., y)

Appear to be ill-posed at first glance

If, however, x is K -sparse and the K locations of nonzero coefficients
in s are known, then the problem can be solved provided M ≥ K

A necessary and sufficient condition is, for any vector v sharing the
same K nonzero entries as s and for some ε > 0

1− ε ≤ ‖Θv‖2
‖v‖2

≤ 1 + ε (2)

That is, the matrix Θ must preserve the lengths of these particular
K -sparse vectors

In general, the locations of the K nonzero entries in s are not known
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Designing a stable measurement matrix (cont’d)

Restricted isometry property (RIP): A sufficient condition for a stable
solution for both K -sparse and compressible signals is that Θ satisfies
(2) for an arbitrary 3K -sparse vector v

Incoherence: A related condition that requires the row {φi} of Φ
cannot sparsely represent the columns {φi} of Ψ, and vice versa

Direct construction of Φ such that Θ = ΦΨ has the RIP requires
verifying (2) for each of the

(N
K

)
possible combinations

However, both the RIP and incoherence can be achieved with high
probability simply by selecting Φ as a random matrix

For example, let the matrix elements φj ,i be independently and
identically distributed (iid) random variables form a Gaussian
probability density function with zero mean and variance 1/N

Then the measurements y are merely M different randomly weighted
linear combinations of the elements of x
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Gaussian random measurements

The measurement matrix Φ is incoherent with the basis Ψ = I of
data spikes with high probability

More specifically, an M × N iid Gaussian matrix Θ = ΦI = Φ can be
shown to have the RIP with high probability if M ≥ c K log(N/K )
with c a small constant

Thus, K -sparse and compressible signals of length N can be recovered
from only M ≥ c K log(N/K )� N random Gaussian measurements

The matrix Φ is universal in the sense that Θ = ΦΨ will be iid
Gaussian and thus have the RIP with high probability regardless of
choice of orthonormal basis Ψ
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Signal reconstruction

Take M measurements in the vector y, the random measurement
matrix Φ, and the basis Ψ to reconstruct x (or equivalently its sparse
coefficient s)

For K -sparse signals, there are infinitely man s′ that satisfy Θs′ = y′

since M < N

An underconstrained problem and for Θs = y, there exists
Θ(s + r) = y for any vector r in the null space N (Θ) of Θ

The signal reconstruction algorithm aims to find the signal’s sparse
coefficient vector in the (N −M)-dimensional translated null space
H = N (Θ) + s
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Optimization problems
Minimum `2-norm reconstruction

ŝ = arg min
‖s′‖2

Θs′ = y

which can be solved with closed form solution, ŝ = Θ>(ΘΘ>)−1y,
but almost never find a K -sparse solution
Minimum `0-norm reconstruction

ŝ = arg min
‖s′‖0

Θs′ = y

which can recover a K -sparse signals with only M = K + 1 iid
Gaussian measurements, but it is both numerically unstable and
NP-complete
Minimum `1-norm reconstruction

ŝ = arg min
‖s′‖1

Θs′ = y

which can recover K -sparse signals and closely approximate
compressible signals with high probability using only
M ≤ c K log(N/K ) iid Gaussian measurements via convex
optimization
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Applications
Single pixel, compressive digital camera that directly acquires M
random linear measurements without first collecting the N pixel values
Use digital micromirror device consisting of an array of N tiny mirrors
where each one can be independently oriented
To collect measurements, a random number generator sets the mirror
orientations in a pseudorandom pattern to create the measurement φj

and the voltage at the photodiode equals yj , the inner product
between φj and x
The process repeats M times to obtain y

[Baraniuk 07]
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