EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 25

Overview

- Sparse coding
- Overcomplete dictionary
- Matching pursuit
- Basis pursuit
- K-SVD
- Applications

Main idea

- Sparse representation of signals
- Learning an overcomplete dictionary that contains prototypes or signal-atoms
- Signals are described by sparse linear combination of these atoms
- Given dictionary, how to find sparse representation?
- Given data, how to find dictionary?
- K-SVD: An iterative method that alternates between
- sparse coding of the examples based on the current dictionary, and
- a process of updating the dictionary atoms to better fit the data

Sparse representation of signals

- Using an overcomplete dictionary matrix $D \in \mathbb{R}^{n \times K}$ that contains K prototype signal-atoms for columns $\left\{\mathbf{d}_{j}\right\}_{j=1}^{K}$, a signal $\mathbf{y} \in \mathbb{R}^{n}$ can be represented as a sparse linear combination of these atoms

$$
\mathbf{y}=D \mathbf{x}, \text { or } \mathbf{y} \approx D \mathbf{x} \text { subject to }\|\mathbf{y}-D \mathbf{x}\|_{p} \leq \varepsilon
$$

where the vector $\mathbf{x} \in \mathbb{R}^{K}$ contains the representation coefficients of the signal \mathbf{y}, and ℓ_{p}-norm for $p=1,2$, and ∞ are often used

- If $n<K$ and D is a full-rank matrix, an infinite number of solutions are available for the representation problems, hence constraints on the solution must be set
- The sparsest representation is the solution of either

$$
\begin{array}{r}
\left(P_{0}\right) \min _{\mathbf{x}}\|\mathbf{x}\|_{0} \text { subject to } \mathbf{y}=D \mathbf{x} \\
\left(P_{0}, \varepsilon\right) \min _{\mathbf{x}}\|\mathbf{x}\|_{0} \text { subject to }\|\mathbf{y}-D \mathbf{x}\|_{2} \leq \varepsilon \tag{2}
\end{array}
$$

where $\|\cdot\|_{0}$ is the ℓ_{0}-norm, counting the nonzero entries of a vector

The choice of the dictionary

- Can either be chosen as a prespecified set of function (i.e., non-adaptive) or designed by adapting its content to fit a given set of signal examples
- Prespecified transform matrix: wavelets, curvelets, contourlets, steerable wavelet filters, short-time Fourier transforms, random matrices, and more
- K-SVD: learn a dictionary D from training examples
- Compressive sensing: use random matrices

Sparse coding

- Sparse coding: Computing the representation coefficients \mathbf{x} based on the given signal \mathbf{y} and the dictionary D
- Commonly referred as as atom decomposition and requires formulation of (1) or (2)
- Exact determination of sparest representation proves to be an NP-hard problem
- Typically done by a "pursuit algorithm" that finds an approximate solution
- matching pursuit (MP) and orthogonal matching pursuit (OMP) algorithms: require inner products between signals and dictionary columns
- basis pursuit (BP) algorithms: a convexification of the problems in (1) or (2) by replacing the ℓ_{0}-norm with an ℓ_{1}-norm with iterative methods
- The focal underdetermined system solver (FOCUSS) is very similar using the ℓ_{p}-norm with $p \leq 1$ although the overall problem becomes non-convex
- BP and FOCUSS algorithms can also be motivated based on maximum a posteriori (MAP) estimation

Matching pursuit

- Greedy algorithm that finds best matching projection of multidimensional data onto an overcomplete dictionary D
- Each such dictionary D is a collection of waveforms $\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}$ with γ a parameter

$$
\mathbf{y}=\sum_{\gamma \in \Gamma} \alpha_{\gamma} \boldsymbol{\phi}_{\gamma}, \text { or } \quad \mathbf{y}=\sum_{i=1}^{m} \alpha_{\gamma_{i}} \boldsymbol{\phi}_{\gamma_{i}}+R^{(m)}
$$

as an approximate decomposition with residual $R^{(m)}$

- Start with an initial approximation $\mathbf{y}^{(0)}=0$ and residual $R^{(0)}=\mathbf{y}$, build up a sequence of sparse approximations stepwise
- At step k, identify the atom that best correlates with the residual (by sweeping all samples), and then add to the current approximation a scalar multiple of that atom, so that $\mathbf{y}^{(k)}=\mathbf{y}^{(k-1)}+\alpha_{k} \boldsymbol{\phi}_{\gamma k}$ where $\alpha_{k}=\left\langle R^{(k-1)}, \phi_{\gamma_{k}}\right\rangle$ and $R^{(k)}=\mathbf{y}-\mathbf{y}^{(k)}$
- After m steps, obtain the representation in (7) with residual $R=R^{(m)}$

Orthogonal matching pursuit

- When the dictionary is orthogonal (e.g., orthogonal wavelet), MP recovers the underlying sparse structure well
- Computational complexity of MP for encoder is high
- Improvements include the use of approximate dictionary representations and suboptimal ways of choosing the best match at each iteration (atom extraction)
- Orthogonal matching pursuit (OMP): an extra step of orthogonalization in MP
- Take all m terms that have entered at step m and solve the least squares problem

$$
\min _{\left(\alpha_{i}\right)}\left\|\mathbf{y}-\sum_{i=1}^{m} \alpha_{i} \phi_{\gamma_{i}}\right\|_{2}
$$

for coefficients $\left(\alpha_{i}^{(m)}\right)$

- Then forms the residual $\bar{R}^{[m]}=\mathbf{y}-\sum_{i=1}^{m} \alpha_{i}^{(m)} \boldsymbol{\phi}_{\gamma_{i}}$ which will be orthogonal to all terms currently in the model

Basis pursuit

- Matching pursuit can be viewed as a greedy approximation to solve

$$
\min \|\boldsymbol{\alpha}\|_{0} \text { subject to } \Phi \boldsymbol{\alpha}=\mathbf{y}
$$

- Basis pursuit: A principle for decomposing a signals into an optimal superposition of dictionary elements
- Approximate sparsity with ℓ_{1}-norm
- Optimal in the sense of having smallest ℓ_{1}-norm among all such decompositions

$$
\min \|\boldsymbol{\alpha}\|_{1} \text { subject to } \Phi \boldsymbol{\alpha}=\mathbf{y}
$$

- A convex optimization problem that can be solved via linear programming

Why ℓ_{1}-norm?

- Consider a two-dimensional case

Design of dictionaries

- There is an intriguing relation between sparse representation and clustering (i.e., vector quantization)
- In clustering, a set of descriptive vectors $\left\{\mathbf{d}_{k}\right\}_{k=1}^{K}$ is learned, and each sample is represented by one of these vectors (based on distance metric e.g., ℓ_{2}-norm)
- Can think of this as an extreme sparse representation, where only one atom is allowed in the signal decomposition
- K-means algorithm, also known as the generalized Lloyd (GLA) algorithm, is the most commonly used procedure for clustering
- Dictionary learning can be considered as generalization of K-means algorithm:
- given $\left\{\mathbf{d}_{k}\right\}_{k=1}^{K}$, assign the training examples to their nearest neighbor
- given that assignment, update $\left\{\mathbf{d}_{k}\right\}_{k=1}^{K}$ to better fit the examples

Maximum likelihood methods

- Formulate the problem with Gaussian distributions

$$
\mathbf{y}=D \mathbf{x}+\mathbf{v}
$$

where \mathbf{v} are white Gaussian white noise, and

$$
p(Y \mid D)=\prod_{i=1}^{N} p\left(\mathbf{y}_{i} \mid D\right)
$$

, and consider \mathbf{x} as the hidden variables

$$
\begin{aligned}
p\left(\mathbf{y}_{i} \mid D\right) & =\int p\left(\mathbf{y}_{i}, \mathbf{x} \mid D\right) d \mathbf{x}=\int p\left(\mathbf{y}_{i} \mid \mathbf{x}, D\right) p(\mathbf{x}) d \mathbf{x} \\
& =C \int \exp \left(\frac{1}{2 \sigma^{2}}\left\|D \mathbf{x}-\mathbf{y}_{i}\right\|^{2}\right) p(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

where C is a constant

- The prior distribution is assumed to be zero-mean with Cauchy or Laplace distribution

Maximum likelihood methods (cont'd)

- Assuming the prior is with Laplace distribution

$$
\begin{aligned}
p\left(\mathbf{y}_{i} \mid D\right) & =\int p\left(\mathbf{y}_{i} \mid \mathbf{x}, D\right) p(\mathbf{x}) d \mathbf{x} \\
& =C \int \exp \left(\frac{1}{2 \sigma^{2}}\left\|D \mathbf{x}-\mathbf{y}_{i}\right\|^{2}\right) \exp \left(\lambda\|\mathbf{x}\|_{1}\right) d \mathbf{x}
\end{aligned}
$$

- Difficult to evaluate but can be simplified with

$$
\begin{align*}
D & =\underset{D}{\operatorname{argmax}} \sum_{i=1}^{N} \max _{\mathbf{x}_{i}} p\left(\mathbf{y}_{i}, \mathbf{x}_{i} \mid D\right) \\
& =\underset{D}{\operatorname{argmin}} \sum_{i=1}^{N} \min _{\mathbf{x}_{i}}\left\|D \mathbf{x}_{i}-\mathbf{y}_{i}\right\|^{2}+\lambda\left\|\mathbf{x}_{i}\right\|_{1} \tag{3}
\end{align*}
$$

- This problem does not penalize the entries of D as it does for of \mathbf{x}_{i}, thereby the solution tends to increase the dictionary entries
- An iterative method was suggested: first calculate the coefficients \mathbf{x}_{i} using a simple gradient descent procedure and then update the dictionary using

$$
D^{(n+1)}=D^{(n)}-\eta \sum_{i=1}^{N}\left(D^{(n)} \mathbf{x}_{i}-\mathbf{y}_{i}\right) \mathbf{x}_{i}^{\top}
$$

- Related to independent component analysis (ICA) which maximizes the mutual information between inputs (samples) and outputs (coefficients)

Method of optimal directions (MOD)

- Follow closely the K-means outline with a sparse coding stage that uses either OMP or FOCUSS followed by an update of the dictionary
- Assume that the sparse coding for each example is known, we define the errors $\mathbf{e}_{i}=\mathbf{y}_{i}-D \mathbf{x}_{i}$, the overall representation error is

$$
\|E\|_{F}^{2}=\left\|\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{N}\right]\right\|_{F}^{2}=\|Y-D X\|_{F}^{2}
$$

- Assume X is fixed, we can seek an update to D such that the above error is minimized by taking derivative of the above equation w.r.t. $D,(Y-D X) X^{\top}=0$, and have

$$
D^{(n+1)}=Y X^{(n)^{\top}}\left(X^{(n)} X^{(n)^{\top}}\right)^{-1}
$$

- Related to the maximum likelihood methods

K-means algorithm for vector quantization

- A codebook that includes K codewords (representatives, prototypes) is used to represent a family of vectors (signals) $Y=\left\{\mathbf{y}_{i}\right\}_{i=1}^{N}$ ($N \gg K$) by nearest neighbor assignment
- Efficient compression or description of signals as clusters
- The dictionary of VQ codewords, $C=\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{K}\right]$ is typically trained using the K-means algorithm
- When C is given, each signal is represented as its closest codeword (using ℓ_{2} norm), i.e., $\mathbf{y}_{i}=C \mathbf{x}_{i}$ where $\mathbf{x}_{i}=\mathbf{e}_{j}$ is a canonical vector (trivial basis) with all zero entries except a one in the j-th position

$$
\forall k \neq j \quad\left\|\mathbf{y}_{i}-C \mathbf{e}_{j}\right\|_{2}^{2} \leq\left\|\mathbf{y}_{i}-C \mathbf{e}_{k}\right\|_{2}^{2}
$$

- The mean square error is $r_{i}^{2}=\left\|\mathbf{y}_{i}-C \mathbf{x}_{i}\right\|_{2}^{2}$, and the overall MSE is $E=\sum_{i=1}^{K} r_{i}^{2}=\|Y-C X\|_{2}^{2}$
- The VQ training process is to find a codebook C that minimizes E subject to X

$$
\begin{equation*}
\min _{C, X}\|Y-C X\|_{F}^{2} \quad \text { subject to } \quad \forall i \quad \mathbf{x}_{i}=\mathbf{e}_{k} \text { for some } k \tag{4}
\end{equation*}
$$

K-SVD: Generalizing the K-means

- The sparse representation problem can be viewed as a generalization of the VQ problem (4) in which we allow each input signal to be represented by a linear combination

$$
\begin{equation*}
\min _{D, X}\|Y-D X\|_{F}^{2} \text { subject to } \forall i\left\|\mathbf{x}_{i}\right\|_{0} \leq T_{0} \tag{5}
\end{equation*}
$$

, or

$$
\begin{equation*}
\min _{D, X}\|Y-D X\|_{F}^{2} \text { subject to }\|Y-D X\|_{F}^{2} \leq \varepsilon \tag{6}
\end{equation*}
$$

- Minimize (5) iteratively by first fix D and find the coefficient matrix X using any pursuit method, and then search for a better dictionary
- It update one column at a time, fixing all the other columns, and find a new column d_{k} and new values for its coefficients that best reduce the MSE
- The process of updating only one column of D at a time is a problem having a straightforward solution based on SVD

Updating dictionary

- Assume that both X and D are fixed, and want to add on column in the dictionary \mathbf{d}_{k} and the coefficients of k-th row of X is \mathbf{x}_{T}^{k} (different from the vector \mathbf{x}_{k} which is the k-th column in X)
- The objective function can be rewritten as

$$
\begin{aligned}
\|Y-D X\|_{F}^{2} & =\left\|Y-D_{j=1}^{K} \mathbf{d}_{j} x_{T}^{j}\right\|_{F}^{2} \\
& =\left\|\left(Y-\sum_{j \neq k} \mathbf{d}_{j} x_{T}^{j}\right)-\mathbf{d}_{k} \mathbf{x}_{T}^{k}\right\|_{F}^{2} \\
& =\left\|E_{k}-\mathbf{d}_{k} \mathbf{x}_{T}^{k}\right\|_{F}^{2}
\end{aligned}
$$

- Decompose $D X$ to the sum of K rank- 1 matrices where $K-1$ terms are fixed and the k-th term remains in question
- It would be tempting to suggest the use of SVD to find alternative \mathbf{d}_{k} and \mathbf{x}_{T}^{k}
- The SVD finds the closest rank-1 matrix that approximate E_{k}
- However, this minimization does not take sparsity into consideration

Updating dictionary (cont'd)

- One remedy to enforce sparsity is to favor the dictionary atoms that have been used frequently
- Define $\boldsymbol{\omega}_{k}$ as the group of indices pointing to examples $\left\{\mathbf{y}_{i}\right\}$ that use atom \mathbf{d}_{k}, i.e., those where $\mathbf{x}_{T}^{k}(i)$ is nonzero

$$
\boldsymbol{\omega}_{k}=\left\{i \mid 1 \leq i \leq K, \mathbf{x}_{T}^{k}(i) \neq 0\right\}
$$

- Define Ω_{k} as a matrix of size $N \times\left|\boldsymbol{\omega}_{k}\right|$ with ones on the $\left(\boldsymbol{\omega}_{k}(i), i\right)$-th entries and zeros elsewhere
- When multiplying $\mathbf{x}_{R}^{k}=\mathbf{x}_{T}^{k} \Omega_{k}$, this shrinks the row vector \mathbf{x}_{T}^{k} by discarding of the zero entries, resulting with the row vector \mathbf{x}_{R}^{k} of length $\left|\boldsymbol{\omega}_{k}\right|$
- Similarly, $Y_{k}^{R}=Y \Omega_{k}$ creates a matrix of size $n \times\left|\boldsymbol{\omega}_{k}\right|$ that includes a subset of examples that are currently using the \mathbf{d}_{k} atom
- Same for $E_{k}^{R}=E_{k} \Omega_{k}$, implying a selection of error columns that correspond to examples that use the atom \mathbf{d}_{k}
- The equivalent minimization

$$
\left\|E_{k} \Omega_{k}-\mathbf{d}_{k} \mathbf{x}_{T}^{k} \Omega_{k}\right\|_{F}^{2}=\left\|E_{k}^{R}-\mathbf{d}_{k} \mathbf{x}_{R}^{k}\right\|_{F}^{2}
$$

which can now be solved by SVD

Updating dictionary (cont'd)

- Taking the restricted matrix E_{k}^{R}, SVD decomposes it to $E_{k}^{R}=U \Sigma V^{\top}$
- Define the solution for $\widetilde{\mathbf{d}_{k}}$ as the first column of U, and the coefficient vector \mathbf{x}_{R}^{k} as the fist column of V multiplied by σ_{1}
- In the K-SVD algorithm, one needs to sweep through the columns and use always the most updated coefficients as they emerge from the SVD steps

The K-SVD algorithm

Initialize: Normalize columns of the dictionary matrix $D^{(0)} \in \mathbb{R}^{n \times K}$ for $J=1,2, \ldots$ do

Sparse coding: Use any pursuit algorithm to compute the representation vector \mathbf{x}_{i} for each example \mathbf{y}_{i}, by approximating the solution of

$$
i=1, \ldots, N, \quad \min _{\mathbf{x}_{i}}\left\|\mathbf{y}_{i}-D \mathbf{x}\right\|_{2}^{2} \quad \text { subject to } \quad\left\|\mathbf{x}_{i}\right\|_{0} \leq T_{0}
$$

Codebook update: For each column $k=1, \ldots, K$ in $D^{(J-1)}$

- Define the group of examples that use this atom, $\boldsymbol{\omega}_{k}=\left\{i \mid 1 \leq i \leq N, \mathbf{x}_{T}^{k}(i) \neq 0\right\}$
- Compute the overall representation error $E_{k}=Y-\sum_{j \neq k} \mathbf{d}_{j} \dot{x}_{T}^{j}$
- Restrict E_{k} by choosing only the columns corresponding to $\boldsymbol{\omega}_{k}$ and obtain E_{k}^{R}
- Apply SVD decomposition $E_{k}^{R}=U \Sigma V^{\top}$. Choose the updated dictionary column $\widetilde{\mathbf{d}}_{k}$ to be the first column of U. Update the coefficient vector \mathbf{x}_{R}^{k} to be the first column of V multiplied by σ_{1} end for

