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Main idea

Sparse representation of signals

Learning an overcomplete dictionary that contains prototypes or
signal-atoms

Signals are described by sparse linear combination of these atoms

Given dictionary, how to find sparse representation?

Given data, how to find dictionary?

K-SVD: An iterative method that alternates between
I sparse coding of the examples based on the current dictionary, and
I a process of updating the dictionary atoms to better fit the data
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Sparse representation of signals

Using an overcomplete dictionary matrix D ∈ IRn×K that contains K
prototype signal-atoms for columns {dj}Kj=1, a signal y ∈ IRn can be
represented as a sparse linear combination of these atoms

y = Dx, or y ≈ Dx subject to ‖y − Dx‖p ≤ ε

where the vector x ∈ IRK contains the representation coefficients of
the signal y,and `p-norm for p = 1, 2, and ∞ are often used

If n < K and D is a full-rank matrix, an infinite number of solutions
are available for the representation problems, hence constraints on the
solution must be set

The sparsest representation is the solution of either

(P0) min
x
‖x‖0 subject to y = Dx (1)

(P0, ε) min
x
‖x‖0 subject to ‖y − Dx‖2 ≤ ε (2)

where ‖ · ‖0 is the `0-norm, counting the nonzero entries of a vector
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The choice of the dictionary

Can either be chosen as a prespecified set of function (i.e.,
non-adaptive) or designed by adapting its content to fit a given set of
signal examples

Prespecified transform matrix: wavelets, curvelets, contourlets,
steerable wavelet filters, short-time Fourier transforms, random
matrices, and more

K-SVD: learn a dictionary D from training examples

Compressive sensing: use random matrices
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Sparse coding

Sparse coding: Computing the representation coefficients x based on
the given signal y and the dictionary D

Commonly referred as as atom decomposition and requires
formulation of (1) or (2)

Exact determination of sparest representation proves to be an
NP-hard problem
Typically done by a “pursuit algorithm” that finds an approximate
solution

I matching pursuit (MP) and orthogonal matching pursuit (OMP)
algorithms: require inner products between signals and dictionary
columns

I basis pursuit (BP) algorithms: a convexification of the problems in (1)
or (2) by replacing the `0-norm with an `1-norm with iterative methods

I The focal underdetermined system solver (FOCUSS) is very similar
using the `p-norm with p ≤ 1 although the overall problem becomes
non-convex

I BP and FOCUSS algorithms can also be motivated based on maximum
a posteriori (MAP) estimation
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Matching pursuit

Greedy algorithm that finds best matching projection of
multidimensional data onto an overcomplete dictionary D

Each such dictionary D is a collection of waveforms (φγ)γ∈Γ with γ a
parameter

y =
∑
γ∈Γ

αγφγ , or y =
m∑
i=1

αγiφγi + R(m)

as an approximate decomposition with residual R(m)

Start with an initial approximation y(0) = 0 and residual R(0) = y,
build up a sequence of sparse approximations stepwise

At step k , identify the atom that best correlates with the residual (by
sweeping all samples), and then add to the current approximation a
scalar multiple of that atom, so that y(k) = y(k−1) + αkφγk where

αk = 〈R(k−1),φγk 〉 and R(k) = y − y(k)

After m steps, obtain the representation in (7) with residual R = R(m)
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Orthogonal matching pursuit

When the dictionary is orthogonal (e.g., orthogonal wavelet), MP
recovers the underlying sparse structure well

Computational complexity of MP for encoder is high

Improvements include the use of approximate dictionary
representations and suboptimal ways of choosing the best match at
each iteration (atom extraction)

Orthogonal matching pursuit (OMP): an extra step of
orthogonalization in MP

Take all m terms that have entered at step m and solve the least
squares problem

min
(αi )
‖y −

m∑
i=1

αiφγi‖2

for coefficients (α
(m)
i )

Then forms the residual R
[m]

= y −
∑m

i=1 α
(m)
i φγi which will be

orthogonal to all terms currently in the model
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Basis pursuit

Matching pursuit can be viewed as a greedy approximation to solve

min ‖α‖0 subject to Φα = y

Basis pursuit: A principle for decomposing a signals into an optimal
superposition of dictionary elements

Approximate sparsity with `1-norm

Optimal in the sense of having smallest `1-norm among all such
decompositions

min ‖α‖1 subject to Φα = y

A convex optimization problem that can be solved via linear
programming
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Why `1-norm?

Consider a two-dimensional case
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Design of dictionaries

There is an intriguing relation between sparse representation and
clustering (i.e., vector quantization)

In clustering, a set of descriptive vectors {dk}Kk=1 is learned, and each
sample is represented by one of these vectors (based on distance
metric e.g., `2-norm)

Can think of this as an extreme sparse representation, where only one
atom is allowed in the signal decomposition

K -means algorithm, also known as the generalized Lloyd (GLA)
algorithm, is the most commonly used procedure for clustering

Dictionary learning can be considered as generalization of K -means
algorithm:

I given {dk}Kk=1, assign the training examples to their nearest neighbor
I given that assignment, update {dk}Kk=1 to better fit the examples
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Maximum likelihood methods

Formulate the problem with Gaussian distributions

y = Dx + v

where v are white Gaussian white noise, and

p(Y |D) =
N∏
i=1

p(yi |D)

, and consider x as the hidden variables

p(yi |D) =
∫
p(yi , x|D)dx =

∫
p(yi |x,D)p(x)dx

= C
∫

exp( 1
2σ2 ‖Dx− yi‖2)p(x)dx

where C is a constant

The prior distribution is assumed to be zero-mean with Cauchy or
Laplace distribution
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Maximum likelihood methods (cont’d)
Assuming the prior is with Laplace distribution

p(yi |D) =
∫
p(yi |x,D)p(x)dx

= C
∫

exp( 1
2σ2 ‖Dx− yi‖2) exp(λ‖x‖1)dx

Difficult to evaluate but can be simplified with
D = argmax

D

∑N
i=1 maxxi p(yi , xi |D)

= argmin
D

∑N
i=1 minxi ‖Dxi − yi‖2 + λ‖xi‖1

(3)

This problem does not penalize the entries of D as it does for of xi ,
thereby the solution tends to increase the dictionary entries
An iterative method was suggested: first calculate the coefficients xi
using a simple gradient descent procedure and then update the
dictionary using

D(n+1) = D(n) − η
N∑
i=1

(D(n)xi − yi )x
>
i

Related to independent component analysis (ICA) which maximizes
the mutual information between inputs (samples) and outputs
(coefficients)
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Method of optimal directions (MOD)

Follow closely the K -means outline with a sparse coding stage that
uses either OMP or FOCUSS followed by an update of the dictionary

Assume that the sparse coding for each example is known, we define
the errors ei = yi − Dxi , the overall representation error is

‖E‖2
F = ‖[e1, e2, . . . , eN ]‖2

F = ‖Y − DX‖2
F

Assume X is fixed, we can seek an update to D such that the above
error is minimized by taking derivative of the above equation w.r.t.
D, (Y − DX )X> = 0, and have

D(n+1) = YX (n)>(X (n)X (n)>)−1

Related to the maximum likelihood methods
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K -means algorithm for vector quantization
A codebook that includes K codewords (representatives, prototypes)
is used to represent a family of vectors (signals) Y = {yi}Ni=1

(N � K ) by nearest neighbor assignment
Efficient compression or description of signals as clusters
The dictionary of VQ codewords, C = [c1, . . . , cK ] is typically trained
using the K -means algorithm
When C is given, each signal is represented as its closest codeword
(using `2 norm), i.e., yi = Cxi where xi = ej is a canonical vector
(trivial basis) with all zero entries except a one in the j-th position

∀k 6= j ‖yi − Cej‖2
2 ≤ ‖yi − Cek‖2

2

The mean square error is r2
i = ‖yi − Cxi‖2

2, and the overall MSE is

E =
∑K

i=1 r
2
i = ‖Y − CX‖2

2

The VQ training process is to find a codebook C that minimizes E
subject to X

min
C ,X
‖Y − CX‖2

F subject to ∀i xi = ek for some k (4)
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K-SVD: Generalizing the K -means

The sparse representation problem can be viewed as a generalization
of the VQ problem (4) in which we allow each input signal to be
represented by a linear combination

min
D,X
‖Y − DX‖2

F subject to ∀i ‖xi‖0 ≤ T0 (5)

, or
min
D,X
‖Y − DX‖2

F subject to ‖Y − DX‖2
F ≤ ε (6)

Minimize (5) iteratively by first fix D and find the coefficient matrix
X using any pursuit method, and then search for a better dictionary

It update one column at a time, fixing all the other columns, and find
a new column dk and new values for its coefficients that best reduce
the MSE

The process of updating only one column of D at a time is a problem
having a straightforward solution based on SVD
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Updating dictionary

Assume that both X and D are fixed, and want to add on column in
the dictionary dk and the coefficients of k-th row of X is xkT
(different from the vector xk which is the k-th column in X )

The objective function can be rewritten as

‖Y − DX‖2
F =

∥∥Y − DK
j=1djx

j
T

∥∥2

F

=
∥∥(Y −

∑
j 6=k djx

j
T )− dkx

k
T

∥∥2

F

=
∥∥Ek − dkx

k
T

∥∥2

F

Decompose DX to the sum of K rank-1 matrices where K − 1 terms
are fixed and the k-th term remains in question

It would be tempting to suggest the use of SVD to find alternative dk
and xkT
The SVD finds the closest rank-1 matrix that approximate Ek

However, this minimization does not take sparsity into consideration
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Updating dictionary (cont’d)
One remedy to enforce sparsity is to favor the dictionary atoms that
have been used frequently
Define ωk as the group of indices pointing to examples {yi} that use
atom dk , i.e., those where xkT (i) is nonzero

ωk = {i |1 ≤ i ≤ K , xkT (i) 6= 0}
Define Ωk as a matrix of size N × |ωk | with ones on the (ωk(i), i)-th
entries and zeros elsewhere
When multiplying xkR = xkTΩk , this shrinks the row vector xkT by
discarding of the zero entries, resulting with the row vector xkR of
length |ωk |
Similarly, Y R

k = YΩk creates a matrix of size n× |ωk | that includes a
subset of examples that are currently using the dk atom
Same for ER

k = EkΩk , implying a selection of error columns that
correspond to examples that use the atom dk
The equivalent minimization

‖EkΩk − dkx
k
TΩk‖2

F = ‖ER
k − dkx

k
R‖2

F

which can now be solved by SVD
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Updating dictionary (cont’d)

Taking the restricted matrix ER
k , SVD decomposes it to ER

k = UΣV>

Define the solution for d̃k as the first column of U, and the coefficient
vector xkR as the fist column of V multiplied by σ1

In the K-SVD algorithm, one needs to sweep through the columns
and use always the most updated coefficients as they emerge from the
SVD steps
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The K-SVD algorithm
Initialize: Normalize columns of the dictionary matrix D(0) ∈ IRn×K

for J = 1, 2, . . . do
Sparse coding: Use any pursuit algorithm to compute the
representation vector xi for each example yi , by approximating the
solution of

i = 1, . . . ,N, min
xi
‖yi − Dx‖2

2 subject to ‖xi‖0 ≤ T0

Codebook update: For each column k = 1, . . . ,K in D(J−1)

Define the group of examples that use this atom,
ωk = {i |1 ≤ i ≤ N, xkT (i) 6= 0}
Compute the overall representation error Ek = Y −

∑
j 6=k djx

j
T

Restrict Ek by choosing only the columns corresponding to ωk

and obtain ER
k

Apply SVD decomposition ER
k = UΣV>. Choose the updated

dictionary column d̃k to be the first column of U. Update the
coefficient vector xkR to be the first column of V multiplied by σ1

end for
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