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Overview

Least-norm solutions of underdetermined equations

General norm minimization with equality constraints
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Underdetermined linear equations

Consider y = Ax where A ∈ IRm×n is fat (m < n) i.e.,
I there are more variables than equations
I x is underdetermined, i.e., many choices x lead to the same y

Assume A is full rank (m), so each y ∈ IRm, there is a solution set of
all solutions has form

{x|Ax = y} = {xp + z|z ∈ N (A)}

where xp is any (particular) solution i.e., Axp = y and N (A) is the
null space of A

z characterizes available choices in solution

A solution has dim(N (A)) = n −m degrees of freedom

Can choose z to satisfy other specifications or optimize among
solutions
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Least-norm solutions

One particular solution is

xln = A>(AA>)−1y

(AA> is invertible since A is full rank)

xln is the solution y = Ax that minimizes ‖x‖2, i.e., xln is solution of
optimization problem

min ‖x‖2
subject to Ax = y

with available x ∈ IRn

4 / 13



Least-norm solution (cont’d)

One particular solution for Ax = y is

xln = A>(AA>)−1y

Suppose Ax = y, so A(x− xln) = 0, and

(x− xln)>xln = (x− xln)>A>(AA>)−1y
= (A(x− xln))>(AA>)−1y
= 0

i.e., (x− xln)⊥xln, so

‖x‖2 = ‖xln + x− xln‖2 = ‖xln‖2 + ‖x− xln‖2 ≥ ‖xln‖2

i.e., xln has the smallest norm of any solution
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Geometric interpretation

Orthogonality condition: xln⊥N (A)

Projection interpretation: xln is projection of 0 on solution set
{x|Ax = y}
A† = A>(AA>)−1 is called the pseudoinverse of full rank, fat A

A>(AA>)−1 is a right inverse of A, i.e., AA>(AA>)−1︸ ︷︷ ︸
A†

= I

I − A>(AA>)−1A gives projection onto N (A)
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Overconstrained and underconstrained linear equations

Overconstrained Underconstrained

min ‖Ax− y‖2 min ‖x‖
subject to Ax = y

Ax = y, m > n Ax = y, m < n

A† = (A>A)−1A> A† = A>(AA>)−1

(A>A)−1A> is a left inverse of A A>(AA>)−1 is a right inverse of A

A(A>A)−1A> I − A>(AA>)−1A

gives projection onto R(A) gives projection onto N (A)
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Least-norm solution via QR factorization

Find QR factorization of A>, i.e., A> = QR with
I Q ∈ IRn×m,Q>Q = Im
I R ∈ IRm×m, upper triangular, nonsingular

xln = A>(AA>)−1y = QR−>y

‖xln‖ = ‖R−>y‖
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Derivation via Lagrange multipliers

Least-norm solution solves optimization problem (‖x‖22 = x>x)

min x>x
subject to Ax = y

Introduce Lagrange multiplers: L(x,λ) = x>x + λ>(Ax− y)

Optimality conditions are

∇xL = 2x + A>λ = 0, ∇λL = Ax− y = 0

From the first condition, x = −A>λ/2

Substitute into the second condition, λ = −2(AA>)−1y

Hence x = A>(AA>)−1y
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Relation to regularized least-squares

Suppose A ∈ IRm×n is fat, full rank

Define J1 = ‖Ax− y‖2, J2 = ‖x‖2

Least-norm solution minimizes J2 with J1 = 0

Minimizer of weighted-sum objective J1 +µJ2 = ‖Ax− y‖2 +µ‖x‖2 is

xµ = (A>A + µI )−1A>y

Fact: xµ → xln as µ→ 0, i.e., regularized solution converges to
least-norm solution as µ→ 0

In matrix form, as µ→ 0

(A>A + µI )−1A> → A>(AA>)−1

for full rank, fat A
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General norm minimization with equality constraints

Consider the problem

min ‖Ax− b‖
subject to Cx = d

with variable x

Includes least-squares and least-norm problems as special cases

Equivalent to
min 1

2‖Ax− b‖2
subject to Cx = d

Lagrangian is

L(x,λ) = 1
2‖Ax− b‖2 + λ>(Cx− d)

= 1
2x
>A>Ax− b>Ax + 1

2b
>b + λ>Cx− λ>d
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Norm minimization with equality constraints (cont’d)

Lagrangian is

L(x,λ) = 1
2‖Ax− b‖2 + λ>(Cx− d)

= 1
2x
>A>Ax− b>Ax + 1

2b
>b + λ>Cx− λ>d

Optimality conditions are

∇xL = A>Ax− A>b + C>λ = 0, ∇λL = Cx− d = 0

Put in matrix form [
A>A C>

C 0

] [
x
λ

]
=

[
A>b
d

]
If the block matrix is invertible, we have[

x
λ

]
=

[
A>A C>

C 0

]−1 [
A>b
d

]
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Norm minimization with equality constraints (cont’d)

If A>A is invertible, we can derive a more explicit formula for x

From the first block equation, we have

x = (A>A)−1(A>b− C>λ)

Substitute into Cx = d

C (A>A)−1(A>b− C>λ) = d

so
λ = (C (A>A)−1C>)−1(C (A>A)−1A>b− d)

Recover x from equation above

x = (A>A)−1(A>b− C>(C (A>A)−1C>)−1(C (A>A)−1A>b− d))
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