EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang

Lecture 24

1/13

Overview

- Least-norm solutions of underdetermined equations
- General norm minimization with equality constraints

Underdetermined linear equations

• Consider $\mathbf{y} = A\mathbf{x}$ where $A \in {\rm I\!R}^{m imes n}$ is fat (m < n) i.e.,

- there are more variables than equations
- **x** is underdetermined, i.e., many choices **x** lead to the same **y**
- Assume A is full rank (m), so each $\mathbf{y} \in \mathrm{I\!R}^m$, there is a solution set of all solutions has form

$$\{\mathbf{x}|A\mathbf{x}=\mathbf{y}\}=\{\mathbf{x}_{p}+\mathbf{z}|\mathbf{z}\in\mathcal{N}(A)\}$$

where \mathbf{x}_p is any (particular) solution i.e., $A\mathbf{x}_p = \mathbf{y}$ and $\mathcal{N}(A)$ is the null space of A

- z characterizes available choices in solution
- A solution has $\dim(\mathcal{N}(A)) = n m$ degrees of freedom
- Can choose z to satisfy other specifications or optimize among solutions

Least-norm solutions

• One particular solution is

$$\mathbf{x}_{ln} = A^{ op} (AA^{ op})^{-1} \mathbf{y}$$

 $(AA^{\top} \text{ is invertible since } A \text{ is full rank})$

• \mathbf{x}_{ln} is the solution $\mathbf{y} = A\mathbf{x}$ that minimizes $\|\mathbf{x}\|_2$, i.e., \mathbf{x}_{ln} is solution of optimization problem

イロン イロン イヨン イヨン 三日

4/13

with available $\mathbf{x} \in {\rm I\!R}^n$

Least-norm solution (cont'd)

• One particular solution for $A\mathbf{x} = \mathbf{y}$ is

$$\mathbf{x}_{ln} = A^{ op} (AA^{ op})^{-1} \mathbf{y}$$

• Suppose $A\mathbf{x} = \mathbf{y}$, so $A(\mathbf{x} - \mathbf{x}_{ln}) = 0$, and

$$(\mathbf{x} - \mathbf{x}_{ln})^{\top} \mathbf{x}_{ln} = (\mathbf{x} - \mathbf{x}_{ln})^{\top} A^{\top} (AA^{\top})^{-1} \mathbf{y}$$

= $(A(\mathbf{x} - \mathbf{x}_{ln}))^{\top} (AA^{\top})^{-1} \mathbf{y}$
= 0

i.e.,
$$(\mathbf{x} - \mathbf{x}_{ln}) \perp \mathbf{x}_{ln}$$
, so
 $\|\mathbf{x}\|^2 = \|\mathbf{x}_{ln} + \mathbf{x} - \mathbf{x}_{ln}\|^2 = \|\mathbf{x}_{ln}\|^2 + \|\mathbf{x} - \mathbf{x}_{ln}\|^2 \ge \|\mathbf{x}_{ln}\|^2$

i.e., \mathbf{x}_{ln} has the smallest norm of any solution

Geometric interpretation

- Orthogonality condition: $\mathbf{x}_{ln} \perp \mathcal{N}(A)$
- Projection interpretation: $\mathbf{x}_{\textit{ln}}$ is projection of $\mathbf{0}$ on solution set $\{\mathbf{x}|A\mathbf{x}=\mathbf{y}\}$
- $A^{\dagger} = A^{\top} (AA^{\top})^{-1}$ is called the pseudoinverse of full rank, fat A
- $A^{\top}(AA^{\top})^{-1}$ is a right inverse of A, i.e., $A \underbrace{A^{\top}(AA^{\top})^{-1}}_{= I} = I$

• $I - A^{\top} (AA^{\top})^{-1} A$ gives projection onto $\mathcal{N}(A)$

6/13

Overconstrained and underconstrained linear equations

Overconstrained	Underconstrained
min $\ A\mathbf{x} - \mathbf{y}\ ^2$	min x
	subject to $A\mathbf{x}=\mathbf{y}$
$A\mathbf{x} = \mathbf{y}, \ m > n$	$A\mathbf{x} = \mathbf{y}, \ m < n$
$A^{\dagger} = (A^{ op}A)^{-1}A^{ op}$	$A^{\dagger} = A^{ op} (A A^{ op})^{-1}$
$(A^{\top}A)^{-1}A^{\top}$ is a left inverse of A	$A^{ op}(AA^{ op})^{-1}$ is a right inverse of A
$A(A^{ op}A)^{-1}A^{ op}$	$I - A^{ op} (AA^{ op})^{-1}A$
gives projection onto $\mathcal{R}(A)$	gives projection onto $\mathcal{N}(A)$

Least-norm solution via QR factorization

• Find QR factorization of A^{\top} , i.e., $A^{\top} = QR$ with

$$\blacktriangleright \ Q \in {\rm I\!R}^{n \times m}, Q^\top Q = I_m$$

• $R \in {\rm I\!R}^{m imes m}$, upper triangular, nonsingular

•
$$\mathbf{x}_{ln} = A^{ op} (AA^{ op})^{-1} \mathbf{y} = QR^{- op} \mathbf{y}$$

• $\|\mathbf{x}_{ln}\| = \|R^{-\top}\mathbf{y}\|$

Derivation via Lagrange multipliers

• Least-norm solution solves optimization problem $(||\mathbf{x}||_2^2 = \mathbf{x}^\top \mathbf{x})$

min
$$\mathbf{x}^{\top}\mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{y}$

- Introduce Lagrange multiplers: $L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^{\top} \mathbf{x} + \boldsymbol{\lambda}^{\top} (A\mathbf{x} \mathbf{y})$
- Optimality conditions are

$$abla_{\mathbf{x}} L = 2\mathbf{x} + A^{\top} \boldsymbol{\lambda} = 0, \quad \nabla_{\boldsymbol{\lambda}} L = A\mathbf{x} - \mathbf{y} = 0$$

- From the first condition, $\mathbf{x} = -\mathbf{A}^{ op} \mathbf{\lambda}/2$
- Substitute into the second condition, $oldsymbol{\lambda} = -2(AA^ op)^{-1} oldsymbol{y}$
- Hence $\mathbf{x} = A^{\top} (AA^{\top})^{-1} \mathbf{y}$

Relation to regularized least-squares

- Suppose $A \in {\rm I\!R}^{m imes n}$ is fat, full rank
- Define $J_1 = ||A\mathbf{x} \mathbf{y}||^2$, $J_2 = ||\mathbf{x}||^2$
- Least-norm solution minimizes J_2 with $J_1 = 0$
- Minimizer of weighted-sum objective $J_1 + \mu J_2 = \|A\mathbf{x} \mathbf{y}\|^2 + \mu \|\mathbf{x}\|^2$ is

$$\mathbf{x}_{\mu} = (A^{ op}A + \mu I)^{-1}A^{ op}\mathbf{y}$$

- Fact: $\mathbf{x}_{\mu} \rightarrow \mathbf{x}_{ln}$ as $\mu \rightarrow 0$, i.e., regularized solution converges to least-norm solution as $\mu \rightarrow 0$
- In matrix form, as $\mu
 ightarrow 0$

$$(A^{\top}A + \mu I)^{-1}A^{\top} \rightarrow A^{\top}(AA^{\top})^{-1}$$

for full rank, fat A

General norm minimization with equality constraints

• Consider the problem

min
$$||A\mathbf{x} - \mathbf{b}||$$

subject to $C\mathbf{x} = \mathbf{d}$

with variable **x**

- Includes least-squares and least-norm problems as special cases
- Equivalent to

min
$$\frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2$$

subject to $C\mathbf{x} = \mathbf{d}$

Lagrangian is

$$L(\mathbf{x}, \lambda) = \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||^2 + \lambda^\top (C\mathbf{x} - \mathbf{d})$$

= $\frac{1}{2} \mathbf{x}^\top A^\top A \mathbf{x} - \mathbf{b}^\top A \mathbf{x} + \frac{1}{2} \mathbf{b}^\top \mathbf{b} + \lambda^\top C \mathbf{x} - \lambda^\top \mathbf{d}$

Norm minimization with equality constraints (cont'd)

• Lagrangian is

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2 + \boldsymbol{\lambda}^\top (C\mathbf{x} - \mathbf{d}) = \frac{1}{2} \mathbf{x}^\top A^\top A \mathbf{x} - \mathbf{b}^\top A \mathbf{x} + \frac{1}{2} \mathbf{b}^\top \mathbf{b} + \boldsymbol{\lambda}^\top C \mathbf{x} - \boldsymbol{\lambda}^\top \mathbf{d}$$

• Optimality conditions are

$$abla_{\mathbf{x}} L = A^{\top} A \mathbf{x} - A^{\top} \mathbf{b} + C^{\top} \lambda = 0, \quad \nabla_{\lambda} L = C \mathbf{x} - \mathbf{d} = 0$$

• Put in matrix form

$$\begin{bmatrix} A^{\top}A & C^{\top} \\ C & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{\lambda} \end{bmatrix} = \begin{bmatrix} A^{\top}\mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

If the block matrix is invertible, we have

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{\lambda} \end{bmatrix} = \begin{bmatrix} A^{\top}A & C^{\top} \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} A^{\top}\mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

12/13

Norm minimization with equality constraints (cont'd)

• If $A^{\top}A$ is invertible, we can derive a more explicit formula for **x**

• From the first block equation, we have

$$\mathbf{x} = (A^{\top}A)^{-1}(A^{\top}\mathbf{b} - C^{\top}\lambda)$$

• Substitute into $C\mathbf{x} = \mathbf{d}$

$$C(A^{\top}A)^{-1}(A^{\top}\mathbf{b}-C^{\top}\boldsymbol{\lambda})=\mathbf{d}$$

so

$$\boldsymbol{\lambda} = (\boldsymbol{C}(\boldsymbol{A}^{\top}\boldsymbol{A})^{-1}\boldsymbol{C}^{\top})^{-1}(\boldsymbol{C}(\boldsymbol{A}^{\top}\boldsymbol{A})^{-1}\boldsymbol{A}^{\top}\mathbf{b} - \mathbf{d})$$

• Recover **x** from equation above

$$\mathbf{x} = (A^{\top}A)^{-1}(A^{\top}\mathbf{b} - C^{\top}(C(A^{\top}A)^{-1}C^{\top})^{-1}(C(A^{\top}A)^{-1}A^{\top}\mathbf{b} - \mathbf{d}))$$