EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 24

Overview

- Least-norm solutions of underdetermined equations
- General norm minimization with equality constraints

Underdetermined linear equations

- Consider $\mathbf{y}=A \mathbf{x}$ where $A \in \mathbb{R}^{m \times n}$ is fat $(m<n)$ i.e.,
- there are more variables than equations
- \mathbf{x} is underdetermined, i.e., many choices \mathbf{x} lead to the same \mathbf{y}
- Assume A is full rank (m), so each $\mathbf{y} \in \mathbb{R}^{m}$, there is a solution set of all solutions has form

$$
\{\mathbf{x} \mid A \mathbf{x}=\mathbf{y}\}=\left\{\mathbf{x}_{p}+\mathbf{z} \mid \mathbf{z} \in \mathcal{N}(A)\right\}
$$

where \mathbf{x}_{p} is any (particular) solution i.e., $A \mathbf{x}_{p}=\mathbf{y}$ and $\mathcal{N}(A)$ is the null space of A

- z characterizes available choices in solution
- A solution has $\operatorname{dim}(\mathcal{N}(A))=n-m$ degrees of freedom
- Can choose \mathbf{z} to satisfy other specifications or optimize among solutions

Least-norm solutions

- One particular solution is

$$
\mathbf{x}_{l n}=A^{\top}\left(A A^{\top}\right)^{-1} \mathbf{y}
$$

($A A^{\top}$ is invertible since A is full rank)

- $\mathbf{x}_{/ n}$ is the solution $\mathbf{y}=A \mathbf{x}$ that minimizes $\|\mathbf{x}\|_{2}$, i.e., $\mathbf{x}_{1 n}$ is solution of optimization problem

$$
\begin{aligned}
& \min \|\mathbf{x}\|_{2} \\
& \text { subject to } \quad A \mathbf{x}=\mathbf{y}
\end{aligned}
$$

with available $\mathbf{x} \in \mathbb{R}^{n}$

Least-norm solution (cont'd)

- One particular solution for $A \mathbf{x}=\mathbf{y}$ is

$$
\mathbf{x}_{l n}=A^{\top}\left(A A^{\top}\right)^{-1} \mathbf{y}
$$

- Suppose $A \mathbf{x}=\mathbf{y}$, so $A\left(\mathbf{x}-\mathbf{x}_{\text {/n }}\right)=0$, and

$$
\begin{aligned}
\left(\mathbf{x}-\mathbf{x}_{l n}\right)^{\top} \mathbf{x}_{l n} & =\left(\mathbf{x}-\mathbf{x}_{1 n}\right)^{\top} A^{\top}\left(A A^{\top}\right)^{-1} \mathbf{y} \\
& =\left(A\left(\mathbf{x}-\mathbf{x}_{/ n}\right)\right)^{\top}\left(A A^{\top}\right)^{-1} \mathbf{y} \\
& =0
\end{aligned}
$$

i.e., $\left(\mathbf{x}-\mathbf{x}_{\text {/n }}\right) \perp \mathbf{x}_{\text {/n }}$, so

$$
\|\mathbf{x}\|^{2}=\left\|\mathbf{x}_{l n}+\mathbf{x}-\mathbf{x}_{l n}\right\|^{2}=\left\|\mathbf{x}_{l n}\right\|^{2}+\left\|\mathbf{x}-\mathbf{x}_{l n}\right\|^{2} \geq\left\|\mathbf{x}_{l n}\right\|^{2}
$$

i.e., $\mathbf{x}_{/ n}$ has the smallest norm of any solution

Geometric interpretation

- Orthogonality condition: $\mathbf{x}_{\ln } \perp \mathcal{N}(A)$
- Projection interpretation: $\mathbf{x}_{1 n}$ is projection of $\mathbf{0}$ on solution set $\{\mathbf{x} \mid A \mathbf{x}=\mathbf{y}\}$
- $A^{\dagger}=A^{\top}\left(A A^{\top}\right)^{-1}$ is called the pseudoinverse of full rank, fat A
- $A^{\top}\left(A A^{\top}\right)^{-1}$ is a right inverse of A, i.e., $A \underbrace{A^{\top}\left(A A^{\top}\right)^{-1}}_{A^{\dagger}}=I$
- $I-A^{\top}\left(A A^{\top}\right)^{-1} A$ gives projection onto $\mathcal{N}(A)$

Overconstrained and underconstrained linear equations

Overconstrained	Underconstrained				
$\min \\|A \mathbf{x}-\mathbf{y}\\|^{2}$	$\min \\|\mathbf{x}\\|$ subject to $A \mathbf{x}=\mathbf{y}$				
$A \mathbf{x}=\mathbf{y}, m>n$	$A \mathbf{x}=\mathbf{y}, m<n$				
$A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$	$A^{\dagger}=A^{\top}\left(A A^{\top}\right)^{-1}$				
$\left(A^{\top} A\right)^{-1} A^{\top}$ is a left inverse of A	$A^{\top}\left(A A^{\top}\right)^{-1}$ is a right inverse of A				
$A\left(A^{\top} A\right)^{-1} A^{\top}$	$I-A^{\top}\left(A A^{\top}\right)^{-1} A$				
gives projection onto $\mathcal{R}(A)$	gives projection onto $\mathcal{N}(A)$				

Least-norm solution via QR factorization

- Find $Q R$ factorization of A^{\top}, i.e., $A^{\top}=Q R$ with
- $Q \in \mathbb{R}^{n \times m}, Q^{\top} Q=I_{m}$
- $R \in \mathbb{R}^{m \times m}$, upper triangular, nonsingular
- $\mathbf{x}_{l n}=A^{\top}\left(A A^{\top}\right)^{-1} \mathbf{y}=Q R^{-\top} \mathbf{y}$
- $\left\|\mathbf{x}_{\text {ln }}\right\|=\left\|R^{-\top} \mathbf{y}\right\|$

Derivation via Lagrange multipliers

- Least-norm solution solves optimization problem $\left(\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{\top} \mathbf{x}\right)$

$$
\begin{aligned}
& \min \mathbf{x}^{\top} \mathbf{x} \\
& \text { subject to } \quad A \mathbf{x}=\mathbf{y}
\end{aligned}
$$

- Introduce Lagrange multiplers: $L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{x}^{\top} \mathbf{x}+\boldsymbol{\lambda}^{\top}(A \mathbf{x}-\mathbf{y})$
- Optimality conditions are

$$
\nabla_{\mathbf{x}} L=2 \mathbf{x}+A^{\top} \boldsymbol{\lambda}=0, \quad \nabla_{\boldsymbol{\lambda}} L=A \mathbf{x}-\mathbf{y}=0
$$

- From the first condition, $\mathbf{x}=-A^{\top} \boldsymbol{\lambda} / 2$
- Substitute into the second condition, $\boldsymbol{\lambda}=-2\left(A A^{\top}\right)^{-1} \mathbf{y}$
- Hence $\mathbf{x}=A^{\top}\left(A A^{\top}\right)^{-1} \mathbf{y}$

Relation to regularized least-squares

- Suppose $A \in \mathbb{R}^{m \times n}$ is fat, full rank
- Define $J_{1}=\|A \mathbf{x}-\mathbf{y}\|^{2}, J_{2}=\|\mathbf{x}\|^{2}$
- Least-norm solution minimizes J_{2} with $J_{1}=0$
- Minimizer of weighted-sum objective $J_{1}+\mu J_{2}=\|A \mathbf{x}-\mathbf{y}\|^{2}+\mu\|\mathbf{x}\|^{2}$ is

$$
\mathbf{x}_{\mu}=\left(A^{\top} A+\mu I\right)^{-1} A^{\top} \mathbf{y}
$$

- Fact: $\mathbf{x}_{\mu} \rightarrow \mathbf{x}_{/ n}$ as $\mu \rightarrow 0$, i.e., regularized solution converges to least-norm solution as $\mu \rightarrow 0$
- In matrix form, as $\mu \rightarrow 0$

$$
\left(A^{\top} A+\mu I\right)^{-1} A^{\top} \rightarrow A^{\top}\left(A A^{\top}\right)^{-1}
$$

for full rank, fat A

General norm minimization with equality constraints

- Consider the problem

$$
\begin{aligned}
& \min \|A \mathbf{x}-\mathbf{b}\| \\
& \text { subject to } \quad C \mathbf{x}=\mathbf{d}
\end{aligned}
$$

with variable \mathbf{x}

- Includes least-squares and least-norm problems as special cases
- Equivalent to

$$
\begin{aligned}
& \min \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2} \\
& \text { subject to } \quad C \mathbf{x}=\mathbf{d}
\end{aligned}
$$

- Lagrangian is

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\boldsymbol{\lambda}^{\top}(C \mathbf{x}-\mathbf{d}) \\
& =\frac{1}{2} \mathbf{x}^{\top} A^{\top} A \mathbf{x}-\mathbf{b}^{\top} A \mathbf{x}+\frac{1}{2} \mathbf{b}^{\top} \mathbf{b}+\boldsymbol{\lambda}^{\top} C \mathbf{x}-\boldsymbol{\lambda}^{\top} \mathbf{d}
\end{aligned}
$$

Norm minimization with equality constraints (cont'd)

- Lagrangian is

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\boldsymbol{\lambda}^{\top}(C \mathbf{x}-\mathbf{d}) \\
& =\frac{1}{2} \mathbf{x}^{\top} A^{\top} A \mathbf{x}-\mathbf{b}^{\top} A \mathbf{x}+\frac{1}{2} \mathbf{b}^{\top} \mathbf{b}+\boldsymbol{\lambda}^{\top} C \mathbf{x}-\boldsymbol{\lambda}^{\top} \mathbf{d}
\end{aligned}
$$

- Optimality conditions are

$$
\nabla_{\mathbf{x}} L=A^{\top} A \mathbf{x}-A^{\top} \mathbf{b}+C^{\top} \boldsymbol{\lambda}=0, \quad \nabla_{\boldsymbol{\lambda}} L=C \mathbf{x}-\mathbf{d}=0
$$

- Put in matrix form

$$
\left[\begin{array}{cc}
A^{\top} A & C^{\top} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
A^{\top} \mathbf{b} \\
\mathbf{d}
\end{array}\right]
$$

- If the block matrix is invertible, we have

$$
\left[\begin{array}{l}
\mathbf{x} \\
\lambda
\end{array}\right]=\left[\begin{array}{cc}
A^{\top} A & C^{\top} \\
C & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
A^{\top} \mathbf{b} \\
\mathbf{d}
\end{array}\right]
$$

Norm minimization with equality constraints (cont'd)

- If $A^{\top} A$ is invertible, we can derive a more explicit formula for \mathbf{x}
- From the first block equation, we have

$$
\mathbf{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} \mathbf{b}-C^{\top} \boldsymbol{\lambda}\right)
$$

- Substitute into $C \mathbf{x}=\mathbf{d}$

$$
C\left(A^{\top} A\right)^{-1}\left(A^{\top} \mathbf{b}-C^{\top} \boldsymbol{\lambda}\right)=\mathbf{d}
$$

SO

$$
\boldsymbol{\lambda}=\left(C\left(A^{\top} A\right)^{-1} C^{\top}\right)^{-1}\left(C\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}-\mathbf{d}\right)
$$

- Recover \mathbf{x} from equation above

$$
\mathbf{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} \mathbf{b}-C^{\top}\left(C\left(A^{\top} A\right)^{-1} C^{\top}\right)^{-1}\left(C\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}-\mathbf{d}\right)\right)
$$

