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Overview
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Random walk
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Principal component analysis (PCA)

Compute the low dimensional representation of high dimensional data

The input xi ∈ IRm are projected into the d-dimensional subspace
that minimizes the reconstruction error

EPCA =
n∑

i=1

∥∥ xi −
∑m

α=1(xi · yα)yα
∥∥2

The basis vectors y of the subspace are given by the top q
eigenvectors of the q × q covariance matrix (assume xi is centered)

C =
1

n

n∑
i

xix
>
i =

1

n

n∑
i

xi ⊗ xi =
1

n
XX>

where ⊗ is the outer product operator, and X is a matrix of all data
points, X = [x1 x2 . . . xn]

Based on the second order statistics
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Multidimensional scaling (MDS)

Compute the low dimensional representation φ ∈ IRq of a high
dimensional data x ∈ IRm that most faithfully preserves pairwise
distances (or similarities which are inversely proportional to distances)

Euclidean distance between two points

dij = ‖xi − xj‖22 = (xi − xj)
>(xi − xj)

The solution is obtained by minimizing

EMDS =
∑
i

∑
j

(xi · xj − φi · φj)
2

and the minimum error is obtained from the spectral decomposition
of the n × n Gram matrix of inner products

G = X>X , Gij = xi · xj
Denoting the top q eigenvectors of the Gram matrix by {uα}mα=1 and
their respective eigenvalues by {λα}mα=1, the outputs of MDS are
given by φiα =

√
λαuαi
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MDS: derivation

Assume the centroid of the configuration of n points is at the origin
n∑

i=1

xij = 0, j = 1, . . . ,m

To find the Gram matrix G, from

dij = (xi − xj)
>(xi − xj) = x>i xi + x>j xj − 2x>i xj

, and hence
1
n

∑n
i=1 d

2
ij = 1

n

∑n
i=1 x

>
i xi + x>j xj

1
n

∑n
j=1 d

2
ij = x>i xi + 1

n

∑n
j=1 x

>
j xj

1
n2
∑n

i=1

∑n
j=1 d

2
ij = 2

n

∑n
i=1 x

>
i xi

Gij = x>i xj
= −1

2(d2
ij −

1
n

∑n
i=1 d

2
ij −

1
n

∑n
j=1 d

2
ij + 1

n2
∑n

i=1

∑n
j=1 d

2
ij )

= aij − ai . − a.j + a..
where

ai . =
1

n

∑
j=1

aij , a.j =
1

n

∑
i=1

aij , a.. =
1

n2

∑
i

∑
j

aij
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MDS: derivation (cont’d)

Define matrix A as Aij = aij and hence the Gram matrix G is

G = HAH

where H is the centering matrix,

H = I − 1

n
11>

where 1 = (1, 1, . . . , 1)>, a vector of n ones

G can be written in terms of spectral decomposition (e.g., SVD)

G = UΣU>

Since G has a most q non-zero singular values

G ≈ UqΣqU
>
q = (UqΣ

1/2
q )(UqΣ

1/2
q )>

G ≈ ΦΦ>, the coordinate in lower dimensional space is UqΣ
1/2
q

MDS on Euclidean distance is equivalent to PCA
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Isometric mapping (Isomap)

Compute the low dimensional representation of a high dimensional
data set that most faithfully preserves the pairwise geodesic distance
[Tenenbaum et al. Science 00]

Geodesic distances are approximated as measured along the
submanifold from which the data points are sampled

Can be understood as a variant of MDS in which estimates of
geodesic distances along the submanifold are substituted (instead of
Euclidean distance)

Main steps:
1 Construct adjacency graph: Find neighbors using K nearest neighbor or
ε distance

2 Estimate geodesic distance: Compute pairwise shortest distance using
dynamic programming

3 Metric MDS: Uncover the embedding from the top d eigenvectors of
Gram matrix
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Spectral graph theory

Analyze graph structure and properties using linear algebra, i.e., the
study of eigenvalues and eigenvectors of matrices associated graphs

Related to random walk

Applications: spectral clustering, shape matching, mesh compression,
PageRank, etc.

Given a graph G = (V ,E ) and its weighted adjacency matrix W , we
compute a diagonal matrix D

Dii =
∑
j

Wij

the graph Laplacian is
D −W

and normalized graph Laplacian is

L = D−1/2(D −W )D−1/2 = I − D−1/2WD−1/2
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Spectral graph theory (cont’d)
Graph Laplacian

I a symmetric, positive semidefinite matrix which can be thought as an
operator on function defined on vertices of G

I the eigenvalues of L are called spectrum of L (or the spectrum of the
associated graph G )

I used to find the properties of diameter of a graph, graph cut, etc.
I used to determine the spectral embedding of the graph

Recall Laplacian operator

∆ = ∇2 = ∇ · ∇
In Euclidean space

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

See Fan R. K. Chung’s book “Spectral Graph Theory” on the
relationship of graph Laplacian and Laplace-Beltrami operator for
Riemannian manifold
See Daniel Spielman’s lecture notes
(www.cs.yale.edu/homes/spielman/)
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Laplacian eigenmap

Algorithm: Given n points in IRm [Belkin and Niyogi NIPS 02]
1 Constructing the graph: nodes i and j are connected by an edge if
||xi − xj ||2 < ε or based on K nearest neighbors

2 Choosing the weights: compute the weighted graph

Wij = e−
||xi−xj ||

2

t

where t is the kernel width (i.e., heat kernel)
3 Compute Laplacian eigenmap: Assume G is connected, otherwise apply

this step to each component
Compute eigenvalues and eigenvectors for the generalized eigenvalue
problem:

Ly = λDy

where D is the diagonal matrix and L = D −W is the graph Laplacian
matrix
Let y0, y1, yk−1 be the eigenvectors, ordered ascendingly to their
eigenvalues. The image of xi under the embedding into the lower
dimensional space Rm is given by (y1(i), . . . , ym(i)).
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Corresponding continuum model

Let M be a Riemannian manifold (isometrically) embedded in IRm

For a differential map f :M→ IR

|f (x′)− f (x)| ∼ ‖∇f (x)‖ · dM(x, x′) + O(dM(x, x′))

The geodesic distance on M and the ambient Euclidean distance are
locally similar

dM(x, x′) = ‖x− x′‖+ O(‖x− x′‖)

Choose f to preserve distance by minimizing∫
M
‖∇f (x)‖2dx subject to ‖f ‖L2(M) = 1, 〈f , 1〉L2(M) = 0

where dx is the uniform measure on M
Minimizing

∫
M ‖∇f (x)‖2 corresponds to minimizing Lf = 1

2∑
ij(fi − fj)

2Wij on a graph, i.e., finding eigenfunctions of the
Laplace-Beltrami operator L
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Laplace Beltrami operator

Graph Laplacian is analogous to the Laplace-Beltrami operator on
manifolds

Define Lf = −div ∇f where div is the divergence

From Stokes’ theorem∫
M
‖∇f (x)‖2dx =

∫
M

f (x)(Lf )(x)dx

That is L is positive semi-definite, with spectrum 0 = λ0 ≤ λ1 ≤ · · ·
and corresponding eigenfunctions f0, f1, · · ·
The embedding is given by

x→ y = (f1(x), . . . , fq(x))
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Spectral clustering

See Tommi Jaakkola’s lecture notes on spectral clustering

Unified view of existing algorithms: [Weiss ICCV 99]
I Feature grouping [Scott and Longuet-Higgins BMVC 90]
I Multibody factorization [Costeria and Kanade ICCV 95]
I Image segmentation [Shi and Malik CVPR 97]
I Grouping [Perona and Freeman ECCV 98]

Analysis of spectral clustering: [Ng et al. NIPS 01] [Kannan et al.
JACM 04]

Image segmentation: [Shi and Malik CVPR 97] [Meila and Shi NIPS
01]

See also semi-supervised learning with spectral graph
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Normalized graph Laplacian and random walk

Given an undirected weighted graph G = (V ,E ,W ), the random
walk on the graph is given by the transition matrix

P = D−1W (1)

where D is a diagonal matrix

Dii =
∑
j

Wij

Normalized graph Laplacian

L = D−1/2(D −W )D−1/2 = I − D−1/2WD−1/2 (2)

The random walk matrix has the same eigenvalues as I − L

D−1W = D−1/2(D−1/2WD−1/2)D1/2 = D−1/2(I − L)D1/2 (3)

14 / 27



PageRank algorithm

Interpret the weighted graph as transition matrix, P, where Pij is the
probability of jumping from j to i

Suppose we have a set of four web pages with distribution
π = [π1 π2 . . . πn]> at the outset, The probability of reaching page 1
is

π1 = 1
2π2 + 1π3 + 1

3π4
π3 = 0 + 1

2π2 + 1
3π4

π1 =
∑

j P1jπj
πi =

∑
j Pijπj

Note that
∑

i pij = 1 and
∑

i πi = 1
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PageRank algorithm (cont’d)
In matrix form

π =


π1
π2
...
πn


π = Pπ, π>e = 1

where e = [1 1 . . . 1]>

Can be viewed as random walk or Markov chain

π(1) = Pπ(0)

π(2) = Pπ(1) = P2π(0)

. . .

The transition matrix after t-step converges

P(t) = P(t−1)P = P(t−2)P2 = . . .

Find the stationary distribution of P as t →∞ by solving the
homogeneous linear system π(I − P) = 0
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PageRank algorithm (cont’d)

The dominant eigenvector is the PageRank vector

Random surfer:

M =
1− c

N
ee> + cP

where c is a damping factor to account for whether a surfer follows a
link or not (empirically set to 0.85 by Page and Brim)

The PR values are the entries of the dominant (i.e., first) eigenvector
of the modified transition matrix M

π = Mπ =
1− c

N
ee>π + cPπ =

1− c

N
e + cPπ

The world’s largest matrix computation!

Solved by power iteration

See “An eigenvector based ranking approach for hypertext” [Page and
Brim SIGIR 98]
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Locally linear embedding (LLE)

Compute the low dimensional representation that most faithfully
preserves the local liner structure of nearby data points [Roweis and
Saul Science 00]

1 Find the neighbors of each data point
2 Find the best local linear reconstruction

EW =
∑
i

∥∥xi −∑
j

Wijxj
∥∥2

subject to
∑

j Wij = 1
3 Preserving the structure by minimizing

Eφ =
∑
i

∥∥φi −
∑
j

Wijφj

∥∥2
subject to two constraints: (1)

∑
i φi = 0, and (2) the outputs have

unit covariance matrix, 1
n

∑
i φiφ

>
i = I
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Maximum variance unfolding
Find a low dimensional representation that most faithfully preserves
the distance and angles between nearby input data points [Weinberger
and Saul CVPR 04]

1 First find k-nearest neighbors of each input data point. Denote ηij = 1
if xi and xj are neighbors

2 The constraints to preserve distances and angles between k nearest
neighbors are

‖φi − φj‖2 = ‖xi − xj‖2

for all ηij = 1, x ∈ IRm and φ ∈ IRq

To eliminate a translational degree of freedom∑
i

φi = 0, φi ∈ Rq

3 Unfold the input data points by maximizing the variance of the outputs

var(φ) =
∑
i

‖φi‖2

The optimization problem is formulated as a semi-definite
programming problem
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Maximum variance unfolding (cont’d)

Solving

max
∑

ij ‖φi − φj‖2
subject to

∑
i φi = 0

‖φi − φj‖2 = Dij for all (i , j) whose ηij = 1

The above optimization problem is not convex as it involves
maximizing a quadratic function with quadratic equality constraints

Reformulate the problem to a convex one

Let Kij = φi · φj denote the Gram matrix of the outputs, the
semidefinite program is

max tr(K )
subject to K � 0∑

i

∑
j Kij = 0

Kii − 2Kij + Kjj = ‖xi − xj‖2 for all (i , j) whose ηij = 1

20 / 27



Convex optimization

Second Order Cone Program (SOCP): a linear program that is
minimized over the intersection of an affine set and the product of
second order (quadratic) cones

min f >x
subject to ‖Aix + bi‖ ≤ c>i x + di , i = 1, . . . , n

Semidefinite program (SDP): a linear program that is minimized over
the intersection of positive semidefinite matrices

Linear and positive semidefinite constraints are convex

Efficient (polynomial time) algorithms exist to compute global
minimum

See “Convex optimization” by Boyd and Vandeberghe

See “Convex optimization of graph Laplacian eigenvalues” [Boyd ICM
06]

See “A duality view of spectral methods for dimensionality reduction”
[Xiao et al. ICML 06]
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Kernel PCA

Conventional techniques capture only the second-order statistics of an
image ensemble (e.g., PCA based on covariance matrix)

A large part of the interesting image structure, however, is contained
in the higher-order statistics

Unfortunately, the estimation of these statistics involves a huge
number of terms which makes their explicit computation for images
infeasible in practice

Kernel methods such as KPCA provide a computationally efficient
way to compute higher order statistics

Based on Gram matrix and exploits the duality of PCA and MDS
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Various perspectives

Isomap, graph Laplacian, LLE all use local neighborhood structure to
construct a global embedding of manifold

Can be interpreted using diffusion kernels
I “Diffusion kernels on graphs and other discrete input spaces” [Kondor

and Lafferty ICML 02]
I “Diffusion kernels” [Kondor and Vert 04]

Can be viewed as kernel PCA with different Gram matrices
I “A kernel view of the dimensionality reduction of manifolds” [Ham et

al ICML 04]

From diffusion map and geometry
I “Diffusion maps, spectral clustering and eigenfunctions of

Fokker-Planck operators” [Nadler et al. NIPS 05]
I “Diffusion maps and coarse-graining: A unifying framework for

dimensionality reduction, graph partitioning, and data set
parameterization” [Lafon and Lee PAMI 06]

Constrained vs. unconstrained optimization
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Approximate nearest neighbor problem

Given a set P of points in IRm, for any query q, returns a point p ∈ P
minimizing ‖p− q‖
Want to find an approximate algorithm to save space and/or time

Locality sensitive hashing (LSH): Construct hash functions
g : IRm → U (U is a unit ball) such that for any points p and q

I If ‖p− q‖ ≤ r , then Pr [g(p) = g(q)] > P1

I If ‖p− q‖ > cr , then Pr [g(p) = g(q)] < P2

Used in various applications (e.g., vision, multimedia/database
retrieval)

See “Approximate nearest neighbors” [Indyk and Motwani STOC 98],
and “Two algorithms for nearest neighbor search in high dimensions”
[Kleinberg STOC 97]
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Multilinear algebra in data analysis

If u ∈ R l , v ∈ Rn, w ∈ Rn, the tensor product

u⊗ v ⊗w = |uivjwk |l ,m,ni ,j ,k=1

For example

b⊗ a =


b1
b2
b3
b4

⊗ [ a1 a2 a3
]

=


a1b1 a2b1 a3b1
a1b2 a2b2 a3b2
a1b3 a2b3 a3b3
a1b4 a2b4 a3b4


[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=

a11
[
b11 b12
b21 b22

]
a12

[
b11 b12
b21 b22

]
a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]


=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


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Multilinear algebra in data analysis (cont’d)

Matrix is rank 2 tensor

Related to moments, cumulants, and are of particular importance in
independence component analysis. Let x(n) = x⊗ x . . .⊗ x

M2 = E [x⊗ x>] = Cov(x)

Mn = E [x(n−1) ⊗ x>]

Computationally expensive even for 3-tensor space

Needs low rank tensor approximation

Applications: signal processing, information retrieval, computer vision,
etc.
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Summary

Different perspectives to solve the same problems

Manifold, geometry, graph, dynamics, random walk, low rank
approximation, etc.

Useful materials:
I “Geometric methods for feature extraction and dimensional reduction”

[Burges 05]
I “Spectral methods for dimensionality reduction” [Saul NIPS 05 tutorial]
I “Learning representation and behavior: Manifold and spectral methods

for Markov decision processes and reinforcement learning” [Mahadevan
and Maggioni ICML 06 tutorial]

I “Spectral methods for dimensionality reduction” by Saul et al.
I Hessian eigenmap by Donoho and Grimes
I Diffusion maps by Lafon et al.
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