EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 23

Overview

- Multidimensional scaling
- Spectral methods for dimensionality reduction
- Spectral graph theory
- Spectral clustering
- Random walk

Principal component analysis (PCA)

- Compute the low dimensional representation of high dimensional data
- The input $\mathbf{x}_{i} \in \mathbb{R}^{m}$ are projected into the d-dimensional subspace that minimizes the reconstruction error

$$
\mathcal{E}_{P C A}=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\sum_{\alpha=1}^{m}\left(\mathbf{x}_{i} \cdot \mathbf{y}_{\alpha}\right) \mathbf{y}_{\alpha}\right\|^{2}
$$

- The basis vectors \mathbf{y} of the subspace are given by the top q eigenvectors of the $q \times q$ covariance matrix (assume \mathbf{x}_{i} is centered)

$$
C=\frac{1}{n} \sum_{i}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}=\frac{1}{n} \sum_{i}^{n} \mathbf{x}_{i} \otimes \mathbf{x}_{i}=\frac{1}{n} X X^{\top}
$$

where \otimes is the outer product operator, and X is a matrix of all data points, $X=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n}\end{array}\right]$

- Based on the second order statistics

Multidimensional scaling (MDS)

- Compute the low dimensional representation $\phi \in \mathbb{R}^{q}$ of a high dimensional data $\mathbf{x} \in \mathbb{R}^{m}$ that most faithfully preserves pairwise distances (or similarities which are inversely proportional to distances)
- Euclidean distance between two points

$$
d_{i j}=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\top}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
$$

- The solution is obtained by minimizing

$$
\mathcal{E}_{M D S}=\sum_{i} \sum_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}-\phi_{i} \cdot \phi_{j}\right)^{2}
$$

and the minimum error is obtained from the spectral decomposition of the $n \times n$ Gram matrix of inner products

$$
G=X^{\top} X, \quad G_{i j}=\mathbf{x}_{i} \cdot \mathbf{x}_{j}
$$

Denoting the top q eigenvectors of the Gram matrix by $\left\{\mathbf{u}_{\alpha}\right\}_{\alpha=1}^{m}$ and their respective eigenvalues by $\left\{\lambda_{\alpha}\right\}_{\alpha=1}^{m}$, the outputs of MDS are given by $\phi_{i \alpha}=\sqrt{\lambda_{\alpha}} \mathbf{u}_{\alpha i}$

MDS: derivation

- Assume the centroid of the configuration of n points is at the origin

$$
\sum_{i=1}^{n} \mathbf{x}_{i j}=0, j=1, \ldots, m
$$

- To find the Gram matrix G, from

$$
d_{i j}=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\top}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\mathbf{x}_{i}^{\top} \mathbf{x}_{i}+\mathbf{x}_{j}^{\top} \mathbf{x}_{j}-2 \mathbf{x}_{i}^{\top} \mathbf{x}_{j}
$$

, and hence

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} d_{i j}^{2} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i}+\mathbf{x}_{j}^{\top} \mathbf{x}_{j} \\
\frac{1}{n} \sum_{j=1}^{n} d_{i j}^{2} & =\frac{\mathbf{x}_{i}^{\top} \mathbf{x}_{i}+\frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j}^{\top} \mathbf{x}_{j}}{G_{i j}}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}^{2}
\end{aligned}=\frac{2}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} \mathbf{x}_{i} .
$$

where

$$
a_{i .}=\frac{1}{n} \sum_{j=1} a_{i j}, \quad a_{. j}=\frac{1}{n} \sum_{i=1} a_{i j}, \quad a_{. .}=\frac{1}{n^{2}} \sum_{i} \sum_{j} a_{i j}
$$

MDS: derivation (cont'd)

- Define matrix A as $A_{i j}=a_{i j}$ and hence the Gram matrix G is

$$
G=H A H
$$

where H is the centering matrix,

$$
H=I-\frac{1}{n} \mathbf{1 1}^{\top}
$$

where $\mathbf{1}=(1,1, \ldots, 1)^{\top}$, a vector of n ones

- G can be written in terms of spectral decomposition (e.g., SVD)

$$
G=U \Sigma U^{\top}
$$

- Since G has a most q non-zero singular values

$$
G \approx U_{q} \Sigma_{q} U_{q}^{\top}=\left(U_{q} \Sigma_{q}^{1 / 2}\right)\left(U_{q} \Sigma_{q}^{1 / 2}\right)^{\top}
$$

- $G \approx \Phi \Phi^{\top}$, the coordinate in lower dimensional space is $U_{q} \Sigma_{q}^{1 / 2}$
- MDS on Euclidean distance is equivalent to PCA

Isometric mapping (Isomap)

- Compute the low dimensional representation of a high dimensional data set that most faithfully preserves the pairwise geodesic distance [Tenenbaum et al. Science 00]
- Geodesic distances are approximated as measured along the submanifold from which the data points are sampled
- Can be understood as a variant of MDS in which estimates of geodesic distances along the submanifold are substituted (instead of Euclidean distance)
- Main steps:
(1) Construct adjacency graph: Find neighbors using K nearest neighbor or ϵ distance
(2) Estimate geodesic distance: Compute pairwise shortest distance using dynamic programming
(3) Metric MDS: Uncover the embedding from the top d eigenvectors of Gram matrix

Spectral graph theory

- Analyze graph structure and properties using linear algebra, i.e., the study of eigenvalues and eigenvectors of matrices associated graphs
- Related to random walk
- Applications: spectral clustering, shape matching, mesh compression, PageRank, etc.
- Given a graph $G=(V, E)$ and its weighted adjacency matrix W, we compute a diagonal matrix D

$$
D_{i i}=\sum_{j} W_{i j}
$$

the graph Laplacian is

$$
D-W
$$

and normalized graph Laplacian is

$$
\mathcal{L}=D^{-1 / 2}(D-W) D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

Spectral graph theory (cont'd)

- Graph Laplacian
- a symmetric, positive semidefinite matrix which can be thought as an operator on function defined on vertices of G
- the eigenvalues of \mathcal{L} are called spectrum of L (or the spectrum of the associated graph G)
- used to find the properties of diameter of a graph, graph cut, etc.
- used to determine the spectral embedding of the graph
- Recall Laplacian operator

$$
\Delta=\nabla^{2}=\nabla \cdot \nabla
$$

In Euclidean space

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

- See Fan R. K. Chung's book "Spectral Graph Theory" on the relationship of graph Laplacian and Laplace-Beltrami operator for Riemannian manifold
- See Daniel Spielman's lecture notes (www.cs.yale.edu/homes/spielman/)

Laplacian eigenmap

- Algorithm: Given n points in \mathbb{R}^{m} [Belkin and Niyogi NIPS 02]
(1) Constructing the graph: nodes i and j are connected by an edge if $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}<\epsilon$ or based on K nearest neighbors
(2) Choosing the weights: compute the weighted graph

$$
W_{i j}=e^{-\frac{\left.\left\|x_{i}-x_{j}\right\|\right|^{2}}{t}}
$$

where t is the kernel width (i.e., heat kernel)
(3) Compute Laplacian eigenmap: Assume G is connected, otherwise apply this step to each component
Compute eigenvalues and eigenvectors for the generalized eigenvalue problem:

$$
L \mathbf{y}=\lambda D \mathbf{y}
$$

where D is the diagonal matrix and $L=D-W$ is the graph Laplacian matrix
Let $\mathbf{y}_{0}, \mathbf{y}_{1}, \mathbf{y}_{k-1}$ be the eigenvectors, ordered ascendingly to their eigenvalues. The image of \mathbf{x}_{i} under the embedding into the lower dimensional space R^{m} is given by $\left(\mathbf{y}_{1}(i), \ldots, \mathbf{y}_{m}(i)\right)$.

Corresponding continuum model

- Let \mathcal{M} be a Riemannian manifold (isometrically) embedded in \mathbb{R}^{m}
- For a differential map $f: \mathcal{M} \rightarrow \mathbb{R}$

$$
\left|f\left(\mathbf{x}^{\prime}\right)-f(\mathbf{x})\right| \sim\|\nabla f(\mathbf{x})\| \cdot d_{\mathcal{M}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+O\left(d_{\mathcal{M}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
$$

- The geodesic distance on \mathcal{M} and the ambient Euclidean distance are locally similar

$$
d_{\mathcal{M}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|+O\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right)
$$

- Choose f to preserve distance by minimizing

$$
\int_{\mathcal{M}}\|\nabla f(\mathbf{x})\|^{2} d \mathbf{x} \quad \text { subject to }\|f\|_{L^{2}(\mathcal{M})}=1,\langle f, 1\rangle_{L^{2}(\mathcal{M})}=0
$$

where $d \mathbf{x}$ is the uniform measure on \mathcal{M}

- Minimizing $\int_{\mathcal{M}}\|\nabla f(\mathbf{x})\|^{2}$ corresponds to minimizing $L f=\frac{1}{2}$ $\sum_{i j}\left(f_{i}-f_{j}\right)^{2} W_{i j}$ on a graph, i.e., finding eigenfunctions of the Laplace-Beltrami operator \mathcal{L}

Laplace Beltrami operator

- Graph Laplacian is analogous to the Laplace-Beltrami operator on manifolds
- Define $\mathcal{L} f=-\operatorname{div} \nabla f$ where div is the divergence
- From Stokes' theorem

$$
\int_{\mathcal{M}}\|\nabla f(\mathbf{x})\|^{2} d \mathbf{x}=\int_{\mathcal{M}} f(\mathbf{x})(\mathcal{L} f)(\mathbf{x}) d \mathbf{x}
$$

- That is \mathcal{L} is positive semi-definite, with spectrum $0=\lambda_{0} \leq \lambda_{1} \leq \cdots$ and corresponding eigenfunctions f_{0}, f_{1}, \ldots
- The embedding is given by

$$
\mathbf{x} \rightarrow \mathbf{y}=\left(f_{1}(\mathbf{x}), \ldots, f_{q}(\mathbf{x})\right)
$$

Spectral clustering

- See Tommi Jaakkola's lecture notes on spectral clustering
- Unified view of existing algorithms: [Weiss ICCV 99]
- Feature grouping [Scott and Longuet-Higgins BMVC 90]
- Multibody factorization [Costeria and Kanade ICCV 95]
- Image segmentation [Shi and Malik CVPR 97]
- Grouping [Perona and Freeman ECCV 98]
- Analysis of spectral clustering: [Ng et al. NIPS 01] [Kannan et al. JACM 04]
- Image segmentation: [Shi and Malik CVPR 97] [Meila and Shi NIPS 01]
- See also semi-supervised learning with spectral graph

Normalized graph Laplacian and random walk

- Given an undirected weighted graph $G=(V, E, W)$, the random walk on the graph is given by the transition matrix

$$
\begin{equation*}
P=D^{-1} W \tag{1}
\end{equation*}
$$

where D is a diagonal matrix

$$
D_{i i}=\sum_{j} W_{i j}
$$

- Normalized graph Laplacian

$$
\begin{equation*}
\mathcal{L}=D^{-1 / 2}(D-W) D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2} \tag{2}
\end{equation*}
$$

- The random walk matrix has the same eigenvalues as $I-\mathcal{L}$

$$
\begin{equation*}
D^{-1} W=D^{-1 / 2}\left(D^{-1 / 2} W D^{-1 / 2}\right) D^{1 / 2}=D^{-1 / 2}(I-\mathcal{L}) D^{1 / 2} \tag{3}
\end{equation*}
$$

PageRank algorithm

- Interpret the weighted graph as transition matrix, P, where $P_{i j}$ is the probability of jumping from j to i
- Suppose we have a set of four web pages with distribution $\pi=\left[\pi_{1} \pi_{2} \ldots \pi_{n}\right]^{\top}$ at the outset, The probability of reaching page 1 is

$$
\begin{aligned}
& \pi_{1}=\frac{1}{2} \pi_{2}+1 \pi_{3}+\frac{1}{3} \pi_{4} \\
& \pi_{3}=0+\frac{1}{2} \pi_{2}+\frac{1}{3} \pi_{4} \\
& \pi_{1}=\sum_{j} P_{1 j} \pi_{j} \\
& \pi_{i}=\sum_{j} P_{i j} \pi_{j}
\end{aligned}
$$

Note that $\sum_{i} p_{i j}=1$ and $\sum_{i} \pi_{i}=1$

PageRank algorithm (cont'd)

- In matrix form

$$
\begin{gathered}
\boldsymbol{\pi}=\left[\begin{array}{c}
\pi_{1} \\
\pi_{2} \\
\vdots \\
\pi_{n}
\end{array}\right] \\
\boldsymbol{\pi}=P \boldsymbol{\pi}, \quad \boldsymbol{\pi}^{\top} \mathbf{e}=1
\end{gathered}
$$

where $\mathbf{e}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{\top}$

- Can be viewed as random walk or Markov chain

$$
\begin{aligned}
& \boldsymbol{\pi}^{(1)}=P \boldsymbol{\pi}^{(0)} \\
& \boldsymbol{\pi}^{(2)}=P \boldsymbol{\pi}^{(1)}=P^{2} \boldsymbol{\pi}^{(0)}
\end{aligned}
$$

- The transition matrix after t-step converges

$$
P^{(t)}=P^{(t-1)} P=P^{(t-2)} P^{2}=\ldots
$$

- Find the stationary distribution of P as $t \rightarrow \infty$ by solving the homogeneous linear system $\pi(I-P)=0$

PageRank algorithm (cont'd)

- The dominant eigenvector is the PageRank vector
- Random surfer:

$$
M=\frac{1-c}{N} \mathbf{e e}^{\top}+c P
$$

where c is a damping factor to account for whether a surfer follows a link or not (empirically set to 0.85 by Page and Brim)

- The PR values are the entries of the dominant (i.e., first) eigenvector of the modified transition matrix M

$$
\boldsymbol{\pi}=M \boldsymbol{\pi}=\frac{1-c}{N} \mathbf{e e}^{\top} \boldsymbol{\pi}+c P \boldsymbol{\pi}=\frac{1-c}{N} \mathbf{e}+c P \boldsymbol{\pi}
$$

- The world's largest matrix computation!
- Solved by power iteration
- See "An eigenvector based ranking approach for hypertext" [Page and Brim SIGIR 98]

Locally linear embedding (LLE)

- Compute the low dimensional representation that most faithfully preserves the local liner structure of nearby data points [Roweis and Saul Science 00]
(1) Find the neighbors of each data point
(2) Find the best local linear reconstruction

$$
\mathcal{E}_{W}=\sum_{i}\left\|\mathbf{x}_{i}-\sum_{j} W_{i j} \mathbf{x}_{j}\right\|^{2}
$$

subject to $\sum_{j} W_{i j}=1$
(3) Preserving the structure by minimizing

$$
\mathcal{E}_{\phi}=\sum_{i}\left\|\phi_{i}-\sum_{j} W_{i j} \phi_{j}\right\|^{2}
$$

subject to two constraints: (1) $\sum_{i} \phi_{i}=0$, and (2) the outputs have unit covariance matrix, $\frac{1}{n} \sum_{i} \phi_{i} \phi_{i}^{\top}=l$

Maximum variance unfolding

- Find a low dimensional representation that most faithfully preserves the distance and angles between nearby input data points [Weinberger and Saul CVPR 04]
(1) First find k-nearest neighbors of each input data point. Denote $\boldsymbol{\eta}_{i j}=1$ if \mathbf{x}_{i} and \mathbf{x}_{j} are neighbors
(2) The constraints to preserve distances and angles between k nearest neighbors are

$$
\left\|\phi_{i}-\phi_{j}\right\|^{2}=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}
$$

for all $\boldsymbol{\eta}_{i j}=1, \mathbf{x} \in \mathbb{R}^{m}$ and $\phi \in \mathbb{R}^{q}$
To eliminate a translational degree of freedom

$$
\sum_{i} \phi_{i}=0, \phi_{i} \in R^{q}
$$

(3) Unfold the input data points by maximizing the variance of the outputs

$$
\operatorname{var}(\phi)=\sum_{i}\left\|\phi_{i}\right\|^{2}
$$

- The optimization problem is formulated as a semi-definite programming problem

Maximum variance unfolding (cont'd)

- Solving

$$
\begin{aligned}
& \max \sum_{i j}\left\|\phi_{i}-\phi_{j}\right\|^{2} \\
& \text { subject to } \sum_{i} \phi_{i}=0 \\
& \left\|\phi_{i}-\phi_{j}\right\|^{2}=D_{i j} \text { for all }(i, j) \text { whose } \eta_{i j}=1
\end{aligned}
$$

- The above optimization problem is not convex as it involves maximizing a quadratic function with quadratic equality constraints
- Reformulate the problem to a convex one
- Let $K_{i j}=\phi_{i} \cdot \phi_{j}$ denote the Gram matrix of the outputs, the semidefinite program is

$$
\begin{aligned}
& \max \operatorname{tr}(K) \\
& \operatorname{subject} \text { to } K \succeq 0 \\
& \sum_{i} \sum_{j} K_{i j}=0 \\
& K_{i i}-2 K_{i j}+K_{j j}=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} \text { for all }(i, j) \text { whose } \boldsymbol{\eta}_{i j}=1
\end{aligned}
$$

Convex optimization

- Second Order Cone Program (SOCP): a linear program that is minimized over the intersection of an affine set and the product of second order (quadratic) cones

$$
\begin{aligned}
& \min f^{\top} \mathbf{x} \\
& \text { subject to }\left\|A_{i} \mathbf{x}+\mathbf{b}_{i}\right\| \leq \mathbf{c}_{i}^{\top} \mathbf{x}+\mathbf{d}_{i}, i=1, \ldots, n
\end{aligned}
$$

- Semidefinite program (SDP): a linear program that is minimized over the intersection of positive semidefinite matrices
- Linear and positive semidefinite constraints are convex
- Efficient (polynomial time) algorithms exist to compute global minimum
- See "Convex optimization" by Boyd and Vandeberghe
- See "Convex optimization of graph Laplacian eigenvalues" [Boyd ICM 06]
- See "A duality view of spectral methods for dimensionality reduction" [Xiao et al. ICML 06]

Kernel PCA

- Conventional techniques capture only the second-order statistics of an image ensemble (e.g., PCA based on covariance matrix)
- A large part of the interesting image structure, however, is contained in the higher-order statistics
- Unfortunately, the estimation of these statistics involves a huge number of terms which makes their explicit computation for images infeasible in practice
- Kernel methods such as KPCA provide a computationally efficient way to compute higher order statistics
- Based on Gram matrix and exploits the duality of PCA and MDS

Various perspectives

- Isomap, graph Laplacian, LLE all use local neighborhood structure to construct a global embedding of manifold
- Can be interpreted using diffusion kernels
- "Diffusion kernels on graphs and other discrete input spaces" [Kondor and Lafferty ICML 02]
- "Diffusion kernels" [Kondor and Vert 04]
- Can be viewed as kernel PCA with different Gram matrices
- "A kernel view of the dimensionality reduction of manifolds" [Ham et al ICML 04]
- From diffusion map and geometry
- "Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators" [Nadler et al. NIPS 05]
- "Diffusion maps and coarse-graining: A unifying framework for dimensionality reduction, graph partitioning, and data set parameterization" [Lafon and Lee PAMI 06]
- Constrained vs. unconstrained optimization

Approximate nearest neighbor problem

- Given a set P of points in \mathbb{R}^{m}, for any query \mathbf{q}, returns a point $\mathbf{p} \in P$ minimizing $\|\mathbf{p}-\mathbf{q}\|$
- Want to find an approximate algorithm to save space and/or time
- Locality sensitive hashing (LSH): Construct hash functions $g: \mathbb{R}^{m} \rightarrow U(U$ is a unit ball $)$ such that for any points \mathbf{p} and \mathbf{q}
- If $\|\mathbf{p}-\mathbf{q}\| \leq r$, then $\operatorname{Pr}[g(\mathbf{p})=g(\mathbf{q})]>P_{1}$
- If $\|\mathbf{p}-\mathbf{q}\|>c r$, then $\operatorname{Pr}[g(\mathbf{p})=g(\mathbf{q})]<P_{2}$
- Used in various applications (e.g., vision, multimedia/database retrieval)
- See "Approximate nearest neighbors" [Indyk and Motwani STOC 98], and "Two algorithms for nearest neighbor search in high dimensions" [Kleinberg STOC 97]

Multilinear algebra in data analysis

- If $\mathbf{u} \in R^{\prime}, \mathbf{v} \in R^{n}, \mathbf{w} \in R^{n}$, the tensor product

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}=\left|u_{i} v_{j} w_{k}\right|_{i, j, k=1}^{l, m, n}
$$

- For example

$$
\begin{aligned}
& \mathbf{b} \otimes \mathbf{a}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] \otimes\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} \\
a_{1} b_{2} & a_{2} b_{2} & a_{3} b_{2} \\
a_{1} b_{3} & a_{2} b_{3} & a_{3} b_{3} \\
a_{1} b_{4} & a_{2} b_{4} & a_{3} b_{4}
\end{array}\right] \\
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \otimes\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{l}
a_{11}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
a_{21}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \quad\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
a_{22}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
\end{array}\right]} \\
& =\left[\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right]
\end{aligned}
$$

Multilinear algebra in data analysis (cont'd)

- Matrix is rank 2 tensor
- Related to moments, cumulants, and are of particular importance in independence component analysis. Let $\mathbf{x}^{(n)}=\mathbf{x} \otimes \mathbf{x} \ldots \otimes \mathbf{x}$

$$
\begin{aligned}
& M_{2}=E\left[\mathbf{x} \otimes \mathbf{x}^{\top}\right]=\operatorname{Cov}(\mathbf{x}) \\
& M_{n}=E\left[\mathbf{x}^{(n-1)} \otimes \mathbf{x}^{\top}\right]
\end{aligned}
$$

- Computationally expensive even for 3-tensor space
- Needs low rank tensor approximation
- Applications: signal processing, information retrieval, computer vision, etc.

Summary

- Different perspectives to solve the same problems
- Manifold, geometry, graph, dynamics, random walk, low rank approximation, etc.
- Useful materials:
- "Geometric methods for feature extraction and dimensional reduction" [Burges 05]
- "Spectral methods for dimensionality reduction" [Saul NIPS 05 tutorial]
- "Learning representation and behavior: Manifold and spectral methods for Markov decision processes and reinforcement learning" [Mahadevan and Maggioni ICML 06 tutorial]
- "Spectral methods for dimensionality reduction" by Saul et al.
- Hessian eigenmap by Donoho and Grimes
- Diffusion maps by Lafon et al.

