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Overview

@ Multidimensional scaling

@ Spectral methods for dimensionality reduction
@ Spectral graph theory

@ Spectral clustering

@ Random walk
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Principal component analysis (PCA)

@ Compute the low dimensional representation of high dimensional data

@ The input x; € IR™ are projected into the d-dimensional subspace
that minimizes the reconstruction error

n
Epca= > || xi = S0 1(Xi - Ya)Ya [
i—1

@ The basis vectors y of the subspace are given by the top ¢
eigenvectors of the g X g covariance matrix (assume x; is centered)

1 1 — 1
C:;ZX,'X,'T:EZ.XI'(@X,':EXXT
1 1

where ® is the outer product operator, and X is a matrix of all data
points, X = [x1 X2 ... Xp]
@ Based on the second order statistics
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Multidimensional scaling (MDS)

e Compute the low dimensional representation ¢ € IR? of a high
dimensional data x € IR™ that most faithfully preserves pairwise
distances (or similarities which are inversely proportional to distances)

@ Euclidean distance between two points

dij = [Ixi — x;|13 = (xi —x;) " (x; — x7)

@ The solution is obtained by minimizing
Emps = Y (Xi-Xj — ;- ¢;)°
i

and the minimum error is obtained from the spectral decomposition
of the n x n Gram matrix of inner products

G=X"X, Gj=xx

Denoting the top g eigenvectors of the Gram matrix by {u,}7_; and
their respective eigenvalues by {\,}7_;, the outputs of MDS are

given by ¢, = vV AqUqi



MDS: derivation

@ Assume the centroid of the configuration of n points is at the origin

zn:x,-jzo,jzl,...,m

@ To find the Gram matrix G, from

dij = (xi — ;)T (xi —x;) = %} x; + x}—xj —2x/ %

, and hence
1 27:1 d,-z =1 Zf_ xTx, + xLTrxj
_/ ld2 = ); X,—I— ZJ 1X
n2 Zl_l d = Z/— X Xj
Gj = XITXJ

1 1
_E(di?_; d2_7 j= 1d2+n2 Z/—l j= 1d2)
= a;—a.—a; —i—a..

1 1 1
Z;E. 2, a.jZ;E_ ajj, a.:;g E ajj
j=1 i=1 i J

where
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MDS: derivation (cont'd)

@ Define matrix A as Aj = aj; and hence the Gram matrix G is
G = HAH
where H is the centering matrix,

ff:/-—lllT
n

where 1 = (1,1,...,1)T, a vector of n ones

@ G can be written in terms of spectral decomposition (e.g., SVD)
G=UxU'
@ Since G has a most g non-zero singular values
G ~ UgZqU; = (UgZs/®)(Ugsy?)T

G ~ ®d ", the coordinate in lower dimensional space is UC,Z},/2

@ MDS on Euclidean distance is equivalent to PCA
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Isometric mapping (Isomap)

@ Compute the low dimensional representation of a high dimensional
data set that most faithfully preserves the pairwise geodesic distance
[Tenenbaum et al. Science 00]

@ Geodesic distances are approximated as measured along the
submanifold from which the data points are sampled

@ Can be understood as a variant of MDS in which estimates of
geodesic distances along the submanifold are substituted (instead of
Euclidean distance)

@ Main steps:

@ Construct adjacency graph: Find neighbors using K nearest neighbor or
€ distance

@ Estimate geodesic distance: Compute pairwise shortest distance using
dynamic programming

© Metric MDS: Uncover the embedding from the top d eigenvectors of
Gram matrix



Spectral graph theory

@ Analyze graph structure and properties using linear algebra, i.e., the
study of eigenvalues and eigenvectors of matrices associated graphs

@ Related to random walk

@ Applications: spectral clustering, shape matching, mesh compression,
PageRank, etc.

e Given a graph G = (V, E) and its weighted adjacency matrix W, we
compute a diagonal matrix D

Dip = Wj
J
the graph Laplacian is

D—-Ww

and normalized graph Laplacian is

L=D"Y)(D-wW)DV2 = |- D YV2Wp~1/?
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Spectral graph theory (cont'd)

@ Graph Laplacian
> a symmetric, positive semidefinite matrix which can be thought as an
operator on function defined on vertices of G
> the eigenvalues of £ are called spectrum of L (or the spectrum of the
associated graph G)
» used to find the properties of diameter of a graph, graph cut, etc.
> used to determine the spectral embedding of the graph
@ Recall Laplacian operator

A=V?’=V.V
In Euclidean space

0? 0? 0?
@ See Fan R. K. Chung's book “Spectral Graph Theory” on the
relationship of graph Laplacian and Laplace-Beltrami operator for
Riemannian manifold
@ See Daniel Spielman’s lecture notes

(www.cs.yale.edu/homes/spielman/)
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Laplacian eigenmap

e Algorithm: Given n points in IR [Belkin and Niyogi NIPS 02]
@ Constructing the graph: nodes i and j are connected by an edge if
||x; — x;||> < € or based on K nearest neighbors
@ Choosing the weights: compute the weighted graph

2
X =1

VV,-J-:e t

where t is the kernel width (i.e., heat kernel)
© Compute Laplacian eigenmap: Assume G is connected, otherwise apply
this step to each component
Compute eigenvalues and eigenvectors for the generalized eigenvalue
problem:
Ly = A\Dy

where D is the diagonal matrix and L = D — W is the graph Laplacian
matrix

Let yo, Y1, Yk—1 be the eigenvectors, ordered ascendingly to their
eigenvalues. The image of x; under the embedding into the lower
dimensional space R™ is given by (y1(/),...,ym(/)).
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Corresponding continuum model

@ Let M be a Riemannian manifold (isometrically) embedded in IR"
e For a differential map f : M — R

[F(X) = F()| ~ IVE)] - daa(x, %) + O(dr(x,x))

@ The geodesic distance on M and the ambient Euclidean distance are
locally similar

dp(x,x') =[x = X[ + O(|x — x'[])

@ Choose f to preserve distance by minimizing

/ IVFX)|Pdx  subject to [|Fl 2 = L, (F, i) = 0
M

where dx is the uniform measure on M

e Minimizing [, |[Vf(x)|? corresponds to minimizing Lf = :
Zu(f, — f;)>Wj; on a graph, i.e., finding eigenfunctions of the
Laplace-Beltrami operator £
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Laplace Beltrami operator

@ Graph Laplacian is analogous to the Laplace-Beltrami operator on
manifolds

o Define Lf = —div Vf where div is the divergence

@ From Stokes’ theorem

/HVf(x)H2dx:/ F(X)(LF)(x)dx
M M

@ That is L is positive semi-definite, with spectrum 0 = X g < Ay < -+

and corresponding eigenfunctions fy, f1, - -
@ The embedding is given by

x =y =(f(x),...,f(x))
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Spectral clustering

See Tommi Jaakkola's lecture notes on spectral clustering
Unified view of existing algorithms: [Weiss ICCV 99]
» Feature grouping [Scott and Longuet-Higgins BMVC 90]
Multibody factorization [Costeria and Kanade ICCV 95]
Image segmentation [Shi and Malik CVPR 97]
Grouping [Perona and Freeman ECCV 98]
Analysis of spectral clustering: [Ng et al. NIPS 01] [Kannan et al.
JACM 04]

Image segmentation: [Shi and Malik CVPR 97] [Meila and Shi NIPS
01]

See also semi-supervised learning with spectral graph

(] ®
v vy
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Normalized graph Laplacian and random walk

@ Given an undirected weighted graph G = (V, E, W), the random
walk on the graph is given by the transition matrix

P=D"'w (1)
where D is a diagonal matrix
Dj; = Z Wi
J
@ Normalized graph Laplacian
L£L=D"Y>(D—-W)DY? = |- D Y2wWp"1/? (2)
@ The random walk matrix has the same eigenvalues as | — L

D—IW _ D—1/2(D—1/2WD—1/2)D1/2 — D—I/Z(I o E)Dl/Q (3)
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PageRank algorithm

0‘0

@ Interpret the weighted graph as transition matrix, P, where Pj; is the
probability of jumping from j to /

@ Suppose we have a set of four web pages with distribution
m = [r m2...7,)" at the outset, The probability of reaching page 1
is

T = %71'2 + 1m3 + %71'4
m = 0+ %Wz + %W4
™ o= Zj Pyjm;

o= > Py

Note that > ; pj=1and > ;7 =1
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PageRank algorithm (cont'd)

@ In matrix form

™
2
T =
Tn
7w = P, mle=1

wheree=[11...1]"
@ Can be viewed as random walk or Markov chain
1) — pgp0)
@ — pp) = p2,(0)

@ The transition matrix after t-step converges
PO — plt-p _ pl-21p2 _

@ Find the stationary distribution of P as t — oo by solving the
homogeneous linear system 7(/ — P) =0

16

27



PageRank algorithm (cont'd)

@ The dominant eigenvector is the PageRank vector

@ Random surfer:

N

where ¢ is a damping factor to account for whether a surfer follows a
link or not (empirically set to 0.85 by Page and Brim)

c
M = ee' + cP

@ The PR values are the entries of the dominant (i.e., first) eigenvector
of the modified transition matrix M

1—c¢ 1—c¢

T =Mn=

ee' T+ cPw = e+ cPm

@ The world's largest matrix computation!
@ Solved by power iteration

@ See "An eigenvector based ranking approach for hypertext” [Page and
Brim SIGIR 98]
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Locally linear embedding (LLE)

@ Compute the low dimensional representation that most faithfully
preserves the local liner structure of nearby data points [Roweis and
Saul Science 00]

@ Find the neighbors of each data point
@ Find the best local linear reconstruction

Ew = Jxi = > Wixj|"
j j

subject to >, Wj; =1
© Preserving the structure by minimizing

Ep = Z i — Z W, |°
i J

subject to two constraints: (1) >, ¢; = 0, and (2) the outputs have

. . 1 T _
unit covariance matrix, = > . ¢;¢p; =1/
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Maximum variance unfolding

e Find a low dimensional representation that most faithfully preserves
the distance and angles between nearby input data points [Weinberger
and Saul CVPR 04]

© First find k-nearest neighbors of each input data point. Denote n; = 1
if x; and x; are neighbors
@ The constraints to preserve distances and angles between k nearest
neighbors are
;= #5117 = lIxi — ;]|
forall m; =1, x€IR" and ¢ € R?
To eliminate a translational degree of freedom

Z¢i:07 ¢i€Rq

© Unfold the input data points by maximizing the variance of the outputs

var(¢) = Z ;112

@ The optimization problem is formulated as a semi-definite
programming problem
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Maximum variance unfolding (cont’d)

@ Solving

maXZij & — ¢jH2
subject to > ;¢p; =0
|¢; — ¢;||> = Dy for all (i,j) whose n; =1

@ The above optimization problem is not convex as it involves
maximizing a quadratic function with quadratic equality constraints

@ Reformulate the problem to a convex one

o Let .K,-J- = ;- b denc?te the Gram matrix of the outputs, the
semidefinite program is

max tr(K)
subject to K =0

ZiZj Kij =0
Kii — 2Kjj + Kjj = [|x; — xJ-||2 for all (i,j) whose n; =1

20 /27



Convex optimization

Second Order Cone Program (SOCP): a linear program that is
minimized over the intersection of an affine set and the product of
second order (quadratic) cones

min f'x
subject to |Aix +b;|| <c¢/x+d;, i=1,...,n

Semidefinite program (SDP): a linear program that is minimized over
the intersection of positive semidefinite matrices

@ Linear and positive semidefinite constraints are convex

o Efficient (polynomial time) algorithms exist to compute global

minimum

@ See “Convex optimization” by Boyd and Vandeberghe

@ See "“Convex optimization of graph Laplacian eigenvalues’ [Boyd ICM

06]
See “A duality view of spectral methods for dimensionality reduction”
[Xiao et al. ICML 06]
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Kernel PCA

@ Conventional techniques capture only the second-order statistics of an
image ensemble (e.g., PCA based on covariance matrix)

@ A large part of the interesting image structure, however, is contained
in the higher-order statistics

@ Unfortunately, the estimation of these statistics involves a huge
number of terms which makes their explicit computation for images
infeasible in practice

o Kernel methods such as KPCA provide a computationally efficient
way to compute higher order statistics

@ Based on Gram matrix and exploits the duality of PCA and MDS



Various perspectives

@ Isomap, graph Laplacian, LLE all use local neighborhood structure to
construct a global embedding of manifold
@ Can be interpreted using diffusion kernels
» “Diffusion kernels on graphs and other discrete input spaces” [Kondor
and Lafferty ICML 02]
» “Diffusion kernels” [Kondor and Vert 04]
@ Can be viewed as kernel PCA with different Gram matrices
> “A kernel view of the dimensionality reduction of manifolds” [Ham et
al ICML 04]
@ From diffusion map and geometry

» “Diffusion maps, spectral clustering and eigenfunctions of
Fokker-Planck operators” [Nadler et al. NIPS 05]

» “Diffusion maps and coarse-graining: A unifying framework for
dimensionality reduction, graph partitioning, and data set
parameterization” [Lafon and Lee PAMI 06]

@ Constrained vs. unconstrained optimization
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Approximate nearest neighbor problem

@ Given a set P of points in IR, for any query q, returns a point p € P
minimizing ||p — q||
e Want to find an approximate algorithm to save space and/or time
o Locality sensitive hashing (LSH): Construct hash functions
g :IR™ — U (U is a unit ball) such that for any points p and q
~ If [Ip — qfl < r, then Prlg(p) = g(q)] > Py
> If lp —aql| > cr, then Prig(p) = g(a)] < P2
@ Used in various applications (e.g., vision, multimedia/database
retrieval)
@ See “Approximate nearest neighbors” [Indyk and Motwani STOC 98],
and “Two algorithms for nearest neighbor search in high dimensions”
[Kleinberg STOC 97]
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Multilinear algebra in data analysis
e lfue R veR" we R" the tensor product
I,m,n

URVRW = ‘”iVjWk’iJ,k:l

@ For example

by aib1 axbr ash

| b _ | b2 axby azb

b®a= by ®[313233]7 a1bs axbs a3bs

b4 31b4 32b4 a3b4
_811 |:b11 b12] 215 [bn b12]
[311 312] ® [bll b12} _ b1 by b1 b
a1 ax by1 b a1 [bn b12:| a2 [bll b12]
b21 b22 b21 b22

[a11b11  aubiz abir awbio
aibor aiibx axbor  anbx
az1b11  anibiz  axbir  axbio
|a21b21  a21boo  axobo1  axabo
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Multilinear algebra in data analysis (cont'd)

Matrix is rank 2 tensor

Related to moments, cumulants, and are of particular importance in
independence component analysis. Let x(" = x®x...®x

M, = E[x®x']= Cov(x)
M, = E[x"YoxT]

Computationally expensive even for 3-tensor space

Needs low rank tensor approximation

Applications: signal processing, information retrieval, computer vision,
etc.
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Summary

o Different perspectives to solve the same problems

@ Manifold, geometry, graph, dynamics, random walk, low rank
approximation, etc.

@ Useful materials:

» “Geometric methods for feature extraction and dimensional reduction”
[Burges 05]

“Spectral methods for dimensionality reduction” [Saul NIPS 05 tutorial]
“Learning representation and behavior: Manifold and spectral methods
for Markov decision processes and reinforcement learning” [Mahadevan
and Maggioni ICML 06 tutorial]

“Spectral methods for dimensionality reduction” by Saul et al.

Hessian eigenmap by Donoho and Grimes

Diffusion maps by Lafon et al.

v
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