EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 22

Overview

- Algorithms for Modern Massive Data Sets (MMDS):
- Explore algorithms for modeling and analyzing massive, high dimensional and nonlinear structured data
- Bring together computer scientists, computational and applied mathematicians, and practitioners
- Tools: numerical linear algebra, kernel methods, multilinear algebra, randomized algorithms, optimization, differential geometry, geometry and topology, etc.
- Organized by Gene Golub et al. in 2006, 2008 and 2010
- Slides available at mmds.stanford.edu

Topics

- Low rank matrix approximation: theory, sampling algorithms
- Nearest neighbor algorithms and approximation
- Spectral graph theory and applications
- Non-negative matrix factorization
- Kernel methods
- Algebraic topology and analysis of high dimensional data
- Higher order statistics, tensors and approximations

Matrix factorization and applications

- Treat each data point as a vector
- 2D image $\rightarrow 1 \mathrm{D}$ vector of intensity values
- 3D models \rightarrow 1D vector of 3D coordinates
- Document \rightarrow 1D vector of term frequency
- Massive data set
- High dimensional data
- Find a low dimensional representation using eigendecomposition
- See O'Leary's slides

Low rank matrix approximation

- SVD is great but computationally expensive for large scale problems
- Efficient randomized algorithms for low rank approximation with guaranteed error bounds
- CX algorithm [Drineas and Kanna FOCS 01]: randomly pick k columns

$$
A_{m \times n} \approx C_{m \times k} X_{k \times n}
$$

- CUR algorithm [Drineas and Kannan SODA 03]: randomly pick c columns and r rows

$$
A_{m \times n} \approx C_{m \times c} U_{c \times r} R_{r \times n}
$$

- Element-wise sampling [Achiloptas and McSherry STOC 01]

$$
A_{m \times n} \approx S_{m \times n}, S_{i j}= \begin{cases}A_{i j} / p_{i j} & , \text { with probability } p_{i j} \\ 0 & , \text { with probability } 1-p_{i j}\end{cases}
$$

- See Kannan's slides and Drineas' slides.

Approximating matrix multiplication

- Given an m by n matrix A and an n by p matrix B,

$$
A B=\sum_{i=1}^{n} \underbrace{A^{(i)} B_{(i)}}_{\in \mathbb{R}^{m \times p}}
$$

where $A^{(i)}$ are the i-th column of A and $B_{(i)}$ is the i-th row of B

- Each term is a rank-one matrix
- Random sampling algorithm
- fix a set of probabilities $p_{i} i=1, \ldots, n$ summing up to 1
- for $t=1$ up to s, set $j_{t}=i$ where $\operatorname{Pr}\left(j_{t}=i\right)=p_{i}$ (pick s terms of the sum with replacement w.r.t. p_{i})
- approximate $A B$ by the sum of s terms, after scaling

$$
A B \approx \frac{1}{s} \sum_{t=1}^{s} \frac{1}{p_{j_{t}}} \underbrace{A^{\left(j_{t}\right)} B_{\left(j_{t}\right)}}_{\in \mathbb{R}^{m \times p}}
$$

Approximating matrix multiplication (cont'd)

- In matrix notation

$$
A_{m \times n} B_{n \times p} \approx C_{m \times s} R_{s \times p}
$$

- Create C and R i.i.d. trials with replacement
- For $t=1$ up to s, pick a column $A^{\left(j_{t}\right)}$ and a row $B_{\left(j_{t}\right)}$ with probability

$$
\operatorname{Pr}\left(j_{t}=i\right)=\frac{\left\|A^{(i)}\right\|_{2}\left\|B_{(i)}\right\|_{2}}{\sum_{i=1}^{n}\left\|A^{(i)}\right\|_{2}\left\|B_{(i)}\right\|_{2}}
$$

- Include $A^{\left(j_{t}\right)} /\left(s p_{j_{t}}\right)^{1 / 2}$ as a column of C and $B_{\left(j_{t}\right)} /\left(s p_{j_{t}}\right)^{1 / 2}$ as a row of R

Approximating matrix multiplication (cont'd)

- The input matrices are given in "sparse unordered representation," e.g., their non-zero entries are presented as triples $\left(i, j, A_{i j}\right)$ in any order
- The expectation of $C R$ (element-wise) is $A B$
- The nonuniform sampling minimizes the variance of this estimator
- Easy to implement the sampling algorithm in two phases
- If the matrices are dense the algorithm runs in $O(s m p)$ time instead of $O(n m p)$ time
- Require only $O(s m+s p)$ memory space
- Does not tamper with the sparsity of the matrices
- For the above algorithm

$$
E\left(\|A B-C R\|_{2, F}\right) \leq \frac{1}{\sqrt{s}}\|A\|_{F}\|B\|_{F}
$$

- With probability at least $1-\delta$

$$
\|A B-C R\|_{2, F} \leq \frac{O(\log (1 / \delta))}{\sqrt{s}}\|A\|_{F}\|B\|_{F}
$$

Special case: $B=A^{\top}$

- If $B=A^{\top}$, then the sampling probabilities are

$$
\operatorname{Pr}(\text { picking } i)=\frac{\left\|A^{(i)}\right\|_{2}^{2}}{\sum_{i=1}^{n}\left\|A^{(i)}\right\|_{2}^{2}}=\frac{\left\|A^{(i)}\right\|_{2}^{2}}{\|A\|_{F}^{2}}
$$

- Also $R=C^{\top}$, and the error bounds are

$$
E\left(\left\|A A^{\top}-C C^{\top}\right\|_{2, F}\right) \leq \frac{1}{\sqrt{s}}\|A\|_{F}^{2}
$$

- Improvement for the spectral norm bound for the special case

$$
E\left(\left\|A A^{\top}-C C^{\top}\right\|_{2}\right) \leq \frac{4 \sqrt{\log s}}{\sqrt{s}}\|A\|_{F}\|A\|_{2}
$$

- The sampling procedure is slightly different; s columns/rows are kept in expectation, i.e., column i is picked with probability

$$
\operatorname{Pr}(\text { picking } i)=\min \left(1, \frac{s\left\|A^{(i)}\right\|_{2}^{2}}{\|A\|_{F}^{2}}\right)
$$

Approximating SVD in $O(n)$ time

- The complexity of computing SVD of a m by n matrix A is $O\left(\min \left(m n^{2}, m^{2} n\right)\right)$ (e.g., using Golub-Kahan algorithm)
- The top few singular vectors/values can be approximated faster using Lanczos/Arnoldi methods
- Let A_{k} be rank k approximation of A
- A_{k} is a matrix of rank k such that $\left\|A-A_{k}\right\|_{2, F}$ is minimized over all rank k matrices
- Approximate SVD in linear time $O(m+n)$
- sample c columns from A and rescale to form the $m \times c$ matrix C
- compute the $m \times k$ matrix H_{k} of the top k left singular vectors C
- Structural theorem: For any probabilities and number of columns

$$
\left\|A-H_{k} H_{k}^{\top} A\right\|_{2, F}^{2} \leq\left\|A-A_{k}\right\|_{2, F}^{2}+2 \sqrt{k}\left\|A A^{\top}-C C^{\top}\right\|_{F}
$$

- Algorithmic theorem: If $p_{i}=\left\|A^{(i)}\right\|_{2}^{2} /\|A\|_{F}^{2}$ and $c \leq 4 \eta^{2} k / \varepsilon^{2}$, then

$$
\left\|A-H_{k} H_{k}^{\top} A\right\|_{2, F}^{2} \leq\left\|A-A_{k}\right\|_{2, F}^{2}+\varepsilon\|A\|_{F}^{2}
$$

Example of randomized SVD

- Compute the top k left singular vectors of matrix C and restore them in the 512-by- k matrix H_{k}

Original matrix A

After sampling columns C

$H_{k} H_{k}^{\top} A$

Potential problems with SVD

- Structure in the data is not respected by mathematical operations on the data:
- Reification: maximum variance directions
- Interpretability: what does a linear combination of 6000 genes mean?
- Sparsity: destroyed by orthogonalization
- Non-negativity: is a convex but not linear algebraic notion
- Does there exist "better" low-rank matrix approximation?
- "better" structure properties for certain applications
- "better" at respecting relevant structure
- "better" for Interpretability and informing intuition

CX matrix decomposition

- Goal: Find $A_{m \times n} \approx C_{m \times \tilde{c}} X_{\tilde{c} \times n}$ so that $A-C X$ small in some norm
- One way to approach this is

$$
\min _{X \in \mathbb{R}^{c \times n}}\|A-C X\|_{F}=\left\|A-C\left(C^{\dagger} A\right)\right\|_{F}
$$

where C^{\dagger} is the pseudoinverse of C

- SVD of A : $A_{k}=U_{k} \Sigma_{k} V_{k}^{\top}$ where A_{k} is of $m \times n, U_{k}$ of $m \times k, \Sigma$ of $k \times k$, and V_{k}^{\top} of $k \times n$
- Subspace sampling: V_{k} is an orthogonal matrix containing the top k left singular vectors of A
- The columns of V_{k} are orthonormal vectors, but the rows of V_{k}, denoted by $\left(V_{k}\right)_{(i)}$ are not orthonormal vectors
- Subspace sampling in $O\left(S V D_{k}(A)\right)$ time

$$
\forall i=1,2, \ldots, n, \quad p_{i}=\frac{\left\|\left(V_{k}\right)_{(i)}\right\|_{2}^{2}}{k}
$$

Relative error CX

- Relative error CX decomposition
- compute the probabilities p_{i}
- for each $i=1,2, \ldots, n$, pick the i-th column of A with probability $\min \left(1, c p_{i}\right)$
- let C be the matrix containing the sampled columns

Theorem

For any k, let A_{k} be the best rank k approximation to A. In $O\left(S V D_{k}(A)\right)$ we can compute p_{i} such that if $c=O\left(k \log k / \varepsilon^{2}\right)$ then with probability at least $1-\delta$

$$
\begin{aligned}
\min _{X \in \mathbb{R}^{c \times n}}\|A-C X\|_{F} & =\left\|A-C C^{\dagger} A\right\|_{F} \\
& \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}
\end{aligned}
$$

CUR decomposition

- Goal: Find $A_{m \times n} \approx C_{m \times c} U_{c \times r} R_{r \times n}$ so that $\|A-C U R\|$ is small in some norm
- Why: After making two passes over A, one can compute provably C, U, and R and store them (sketch) instead of A of $O(m+n)$ vs. $O(m n)$
- SVD of $A_{m \times n}=U_{m \times p} \Sigma_{p \times p} V_{p \times n}^{\top}$ where $\operatorname{ran}(A)=p$
- Exact computation of the SVD takes $O\left(\min \left(m n^{2}, m^{2} n\right)\right)$ and the top k left/right singular vectors/values can be computed from Lanczos/Arnoldi methods
- Rank k approximation $A_{k}=U_{k} \Sigma_{k \times k} V_{k}^{\top}$ where $\Sigma_{k \times k}$ is a diagonal matrix with top k singular values of A
- Note that the columns of U_{k} are linear combinations of all columns of A, and the rows of V_{k}^{\top} are linear combinations of all rows of A

The CUR decomposition

- Sampling columns for C : use CX algorithm to sample columns of A
- C has \tilde{c} columns in expectation

$$
\underset{m \times \tilde{c}}{C}=\begin{array}{ccc}
U_{C} & \Sigma_{C} & V_{C}^{\top} \\
m \times \rho & \rho \times \rho & \rho \times \tilde{c}
\end{array}
$$

- U_{C} is the orthogonal matrix containing the left singular vectors of C and ρ is the rank of C
- Let $\left(U_{C}\right)_{(i)}$ denote the i-th row of U
- Sampling rows for R :
- subspace sampling in $O\left(c^{2} m\right)$ time with probability q_{i}

$$
\forall i=1,2, \ldots, m \quad q_{i}=\frac{\left\|\left(U_{C}\right)_{(i)}\right\|_{2}^{2}}{\rho}
$$

- R has \tilde{r} rows in expectation
- Compute U:
- Let W be the intersection of C and R
- Let U be a rescaled pseudoinverse of W

The CUR decomposition (cont'd)

- Put together

$$
\begin{array}{rll}
A & \approx & \text { CUR } \\
A & \approx & C \\
m \times n & & m \times \tilde{c}
\end{array}\left(\left[\begin{array}{cc}
D & W \\
& \tilde{r} \times \tilde{c}
\end{array}\right]^{\dagger} D\right) \underset{\tilde{r} \times n}{R}
$$

where D is a diagonal rescaling matrix and

$$
U=(D W)^{\dagger} D
$$

Theorem

Given C, in $O\left(c^{2} m\right)$ time, one can compute q_{i} such that

$$
\|A-C U R\|_{F} \leq(1+\varepsilon)\left\|A-C\left(C^{\dagger} A\right)\right\|_{F}
$$

holds with probability at least $1-\delta$ if $r=O\left(c \log c / \varepsilon^{2}\right)$ rows

Relative error CUR

Theorem

For any k, it takes $O\left(S V D_{k}(A)\right)$ time to construct C, U, and R such that

$$
\begin{aligned}
\|A-C U R\|_{F} & \leq(1+\varepsilon)\left\|A-U_{k} \Sigma_{k} V_{k}^{\top}\right\|_{F} \\
& =(1+\varepsilon)\left\|A-A_{k}\right\|_{F}
\end{aligned}
$$

holds with probability at least $1-\delta$ by picking
$O\left(k \log k \log (1 / \delta) / \varepsilon^{2}\right)$ columns, and $O\left(k \log ^{2} k \log (1 / \delta) / \varepsilon^{6}\right)$ rows
where $O\left(S V D_{k}(A)\right)$ is the time to compute the top k top left/right singular values

- Applications: Genomic microarray data, time-resolved fMRI data, sequence and mutational data, hyperspectral color cancer data
- For small k, in $O\left(S V D_{k}(A)\right)$ time we can construct C, U, and R s.t. $\|A-C U R\|_{F} \leq(1+0.001)\left\|A-A_{k}\right\|_{F}$ by typically at most $k+5$ columns and at most $k+5$ rows

Element-wise sampling

- Main idea:
- to approximate matrix A, keep a few elements of the matrix (instead of sampling rows or columns) and zero out the remaining elements
- compute a rank k approximation to this sparse matrix (using Lanczos methods)
- Create the matrix S from A such that

$$
S_{i j}= \begin{cases}A_{i j} / p_{i j} & \text { with probability } p_{i j} \\ 0 & \text { with probability } 1-p_{i j}\end{cases}
$$

- It can be shown that $\|A-S\|_{2}$ is bounded and the singular values of S and A are close
- Under additional assumptions the top k left singular vectors of S span a subspace that is close to the subspace spanned by the top k left singular vectors of A

Element-wise sampling (cont'd)

- Approximating singular values fast:
- zero out a large number of elements of A, and scale the remaining ones appropriately
- compute the singular values of the resulting sparse matrix using iterative methods
- good choice for $p_{i j}=\frac{s A_{i j}^{2}}{\sum_{i, j} A_{i j}^{2}}$ where s denotes the expected number of elements that we seek to keep in S
- note each element is kept or discarded independently of the others
- Similar ideas that has been used to
- explain the success of Latent Semantic Indexing
- design recommendation systems
- speed up kernel computation

Element-wise sampling vs. row/column sampling

- Row/column sampling preserves subspace/structural properties of the matrices
- Element-wise sampling explains how adding noise and/or quantizing the elements of a matrix perturbs its singular values/vectors
- These two techniques should be complementary
- These two techniques have similar error bounds
- Element-wise sampling can be carried out in one pass
- Running time of element-wise sampling depends on the speed of iterative methods

