
EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 22

1 / 21



Overview

Algorithms for Modern Massive Data Sets (MMDS):
I Explore algorithms for modeling and analyzing massive, high

dimensional and nonlinear structured data
I Bring together computer scientists, computational and applied

mathematicians, and practitioners

Tools: numerical linear algebra, kernel methods, multilinear algebra,
randomized algorithms, optimization, differential geometry, geometry
and topology, etc.

Organized by Gene Golub et al. in 2006, 2008 and 2010

Slides available at mmds.stanford.edu

2 / 21



Topics

Low rank matrix approximation: theory, sampling algorithms

Nearest neighbor algorithms and approximation

Spectral graph theory and applications

Non-negative matrix factorization

Kernel methods

Algebraic topology and analysis of high dimensional data

Higher order statistics, tensors and approximations

3 / 21



Matrix factorization and applications

Treat each data point as a vector
I 2D image → 1D vector of intensity values
I 3D models → 1D vector of 3D coordinates
I Document → 1D vector of term frequency

Massive data set

High dimensional data

Find a low dimensional representation using eigendecomposition

See O’Leary’s slides

4 / 21



Low rank matrix approximation

SVD is great but computationally expensive for large scale problems

Efficient randomized algorithms for low rank approximation with
guaranteed error bounds

CX algorithm [Drineas and Kanna FOCS 01]: randomly pick k
columns

Am×n ≈ Cm×kXk×n

CUR algorithm [Drineas and Kannan SODA 03]: randomly pick c
columns and r rows

Am×n ≈ Cm×cUc×rRr×n

Element-wise sampling [Achiloptas and McSherry STOC 01]

Am×n ≈ Sm×n, Sij =

{
Aij/pij ,with probability pij
0 ,with probability 1− pij

See Kannan’s slides and Drineas’ slides.

5 / 21



Approximating matrix multiplication

Given an m by n matrix A and an n by p matrix B,

AB =
n∑

i=1

A(i)B(i)︸ ︷︷ ︸
∈IRm×p

where A(i) are the i-th column of A and B(i) is the i-th row of B

Each term is a rank-one matrix

Random sampling algorithm
I fix a set of probabilities pi i = 1, . . . , n summing up to 1
I for t = 1 up to s, set jt = i where Pr(jt = i) = pi (pick s terms of the

sum with replacement w.r.t. pi )
I approximate AB by the sum of s terms, after scaling

AB ≈ 1

s

s∑
t=1

1

pjt
A(jt)B(jt)︸ ︷︷ ︸
∈IRm×p

6 / 21



Approximating matrix multiplication (cont’d)

In matrix notation

Am×nBn×p ≈ Cm×sRs×p

Create C and R i.i.d. trials with replacement

For t = 1 up to s, pick a column A(jt) and a row B(jt) with probability

Pr(jt = i) =
‖A(i)‖2‖B(i)‖2∑n
i=1 ‖A(i)‖2‖B(i)‖2

Include A(jt)/(spjt )
1/2 as a column of C and B(jt)/(spjt )

1/2 as a row
of R

7 / 21



Approximating matrix multiplication (cont’d)

The input matrices are given in “sparse unordered representation,”
e.g., their non-zero entries are presented as triples (i , j ,Aij) in any
order

The expectation of CR (element-wise) is AB

The nonuniform sampling minimizes the variance of this estimator

Easy to implement the sampling algorithm in two phases

If the matrices are dense the algorithm runs in O(smp) time instead
of O(nmp) time

Require only O(sm + sp) memory space

Does not tamper with the sparsity of the matrices

For the above algorithm

E (‖AB − CR‖2,F ) ≤ 1√
s
‖A‖F‖B‖F

With probability at least 1− δ

‖AB − CR‖2,F ≤
O(log(1/δ))√

s
‖A‖F‖B‖F

8 / 21



Special case: B = A>

If B = A>, then the sampling probabilities are

Pr(picking i) =
‖A(i)‖22∑n
i=1 ‖A(i)‖22

=
‖A(i)‖22
‖A‖2F

Also R = C>, and the error bounds are

E (‖AA> − CC>‖2,F ) ≤ 1√
s
‖A‖2F

Improvement for the spectral norm bound for the special case

E (‖AA> − CC>‖2) ≤ 4
√

log s√
s
‖A‖F‖A‖2

The sampling procedure is slightly different; s columns/rows are kept
in expectation, i.e., column i is picked with probability

Pr(picking i) = min(1,
s‖A(i)‖22
‖A‖2F

)

9 / 21



Approximating SVD in O(n) time

The complexity of computing SVD of a m by n matrix A is
O(min(mn2,m2n)) (e.g., using Golub-Kahan algorithm)

The top few singular vectors/values can be approximated faster using
Lanczos/Arnoldi methods

Let Ak be rank k approximation of A

Ak is a matrix of rank k such that ‖A− Ak‖2,F is minimized over all
rank k matrices

Approximate SVD in linear time O(m + n)
I sample c columns from A and rescale to form the m × c matrix C
I compute the m × k matrix Hk of the top k left singular vectors C

Structural theorem: For any probabilities and number of columns

‖A− HkH
>
k A‖22,F ≤ ‖A− Ak‖22,F + 2

√
k‖AA> − CC>‖F

Algorithmic theorem: If pi = ‖A(i)‖22/‖A‖2F and c ≤ 4η2k/ε2, then

‖A− HkH
>
k A‖22,F ≤ ‖A− Ak‖22,F + ε‖A‖2F

10 / 21



Example of randomized SVD

Compute the top k left singular vectors of matrix C and restore them
in the 512-by-k matrix Hk

Original matrix A After sampling columns C HkH
>
k A

11 / 21



Potential problems with SVD

Structure in the data is not respected by mathematical operations on
the data:

I Reification: maximum variance directions
I Interpretability: what does a linear combination of 6000 genes mean?
I Sparsity: destroyed by orthogonalization
I Non-negativity: is a convex but not linear algebraic notion

Does there exist “better” low-rank matrix approximation?
I “better” structure properties for certain applications
I “better” at respecting relevant structure
I “better” for Interpretability and informing intuition

12 / 21



CX matrix decomposition

Goal: Find Am×n ≈ Cm×c̃Xc̃×n so that A− CX small in some norm

One way to approach this is

min
X∈IRc×n

‖A− CX‖F = ‖A− C (C †A)‖F

where C † is the pseudoinverse of C

SVD of A: Ak = UkΣkV
>
k where Ak is of m × n, Uk of m × k , Σ of

k × k , and V>k of k × n

Subspace sampling: Vk is an orthogonal matrix containing the top k
left singular vectors of A

The columns of Vk are orthonormal vectors, but the rows of Vk ,
denoted by (Vk)(i) are not orthonormal vectors

Subspace sampling in O(SVDk(A)) time

∀i = 1, 2, . . . , n, pi =
‖(Vk)(i)‖22

k

13 / 21



Relative error CX

Relative error CX decomposition
I compute the probabilities pi
I for each i = 1, 2, . . . , n, pick the i-th column of A with probability

min(1, cpi )
I let C be the matrix containing the sampled columns

Theorem

For any k, let Ak be the best rank k approximation to A. In O(SVDk(A))
we can compute pi such that if c = O(k log k/ε2) then with probability at
least 1− δ

minX∈IRc×n ‖A− CX‖F = ‖A− CC †A‖F
≤ (1 + ε)‖A− Ak‖F

14 / 21



CUR decomposition

Goal: Find Am×n ≈ Cm×cUc×rRr×n so that ‖A− CUR‖ is small in
some norm

Why: After making two passes over A, one can compute provably C ,
U, and R and store them (sketch) instead of A of O(m + n) vs.
O(mn)

SVD of Am×n = Um×pΣp×pV
>
p×n where ran(A) = p

Exact computation of the SVD takes O(min(mn2,m2n)) and the top
k left/right singular vectors/values can be computed from
Lanczos/Arnoldi methods

Rank k approximation Ak = UkΣk×kV
>
k where Σk×k is a diagonal

matrix with top k singular values of A

Note that the columns of Uk are linear combinations of all columns of
A, and the rows of V>k are linear combinations of all rows of A

15 / 21



The CUR decomposition

Sampling columns for C : use CX algorithm to sample columns of A
I C has c̃ columns in expectation

C = UC ΣC V>
C

m × c̃ m × ρ ρ× ρ ρ× c̃

I UC is the orthogonal matrix containing the left singular vectors of C
and ρ is the rank of C

I Let (UC )(i) denote the i-th row of U

Sampling rows for R:
I subspace sampling in O(c2m) time with probability qi

∀i = 1, 2, . . . ,m qi =
‖(UC )(i)‖22

ρ

I R has r̃ rows in expectation

Compute U:
I Let W be the intersection of C and R
I Let U be a rescaled pseudoinverse of W

16 / 21



The CUR decomposition (cont’d)

Put together

A ≈ CUR

A ≈ C

([
D W

]†
D

)
R

m × n m × c̃ r̃ × c̃ r̃ × n

where D is a diagonal rescaling matrix and

U = (DW )†D

Theorem

Given C, in O(c2m) time, one can compute qi such that

‖A− CUR‖F ≤ (1 + ε)‖A− C (C †A)‖F

holds with probability at least 1− δ if r = O(c log c/ε2) rows

17 / 21



Relative error CUR

Theorem

For any k, it takes O(SVDk(A)) time to construct C , U, and R such that

‖A− CUR‖F ≤ (1 + ε)‖A− UkΣkV
>
k ‖F

= (1 + ε)‖A− Ak‖F
holds with probability at least 1− δ by picking

O(k log k log(1/δ)/ε2) columns, and
O(k log2 k log(1/δ)/ε6) rows

where O(SVDk(A)) is the time to compute the top k top left/right
singular values

Applications: Genomic microarray data, time-resolved fMRI data,
sequence and mutational data, hyperspectral color cancer data

For small k , in O(SVDk(A)) time we can construct C , U, and R s.t.
‖A− CUR‖F ≤ (1 + 0.001)‖A− Ak‖F by typically at most k + 5
columns and at most k + 5 rows

18 / 21



Element-wise sampling

Main idea:
I to approximate matrix A, keep a few elements of the matrix (instead of

sampling rows or columns) and zero out the remaining elements
I compute a rank k approximation to this sparse matrix (using Lanczos

methods)

Create the matrix S from A such that

Sij =

{
Aij/pij with probability pij

0 with probability 1− pij

It can be shown that ‖A− S‖2 is bounded and the singular values of
S and A are close

Under additional assumptions the top k left singular vectors of S span
a subspace that is close to the subspace spanned by the top k left
singular vectors of A

19 / 21



Element-wise sampling (cont’d)

Approximating singular values fast:
I zero out a large number of elements of A, and scale the remaining ones

appropriately
I compute the singular values of the resulting sparse matrix using

iterative methods
I good choice for pij =

sA2
ij∑

i,j A
2
ij

where s denotes the expected number of

elements that we seek to keep in S
I note each element is kept or discarded independently of the others

Similar ideas that has been used to
I explain the success of Latent Semantic Indexing
I design recommendation systems
I speed up kernel computation

20 / 21



Element-wise sampling vs. row/column sampling

Row/column sampling preserves subspace/structural properties of the
matrices

Element-wise sampling explains how adding noise and/or quantizing
the elements of a matrix perturbs its singular values/vectors

These two techniques should be complementary

These two techniques have similar error bounds

Element-wise sampling can be carried out in one pass

Running time of element-wise sampling depends on the speed of
iterative methods

21 / 21


