EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 21

Overview

- Conjugate gradient
- Convergence rate of conjugate gradient
- Preconditioning

Reading

- Chapter 39-40 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 10 of Matrix Computations by Gene Golub and Charles Van Loan
- "An Introduction to Conjugate Gradient Method Without the Agonizing Pain" by Jonathan Shewchuk

Optimality of conjugate gradients

Theorem

Let the conjugate gradient iteration be applied to a symmetric positive definitive matrix problem $A \mathbf{x}=\mathbf{b}$. If the iteration has not already converged (i.e., $\mathbf{r}_{n-1} \neq 0$), then \mathbf{x}_{n} is the unique point in \mathcal{K}_{n} that minimizes $\left\|\mathbf{e}_{n}\right\|_{A}$. The convergence is monotonic

$$
\begin{equation*}
\left\|\mathbf{e}_{n}\right\|_{A} \leq\left\|\mathbf{e}_{n-1}\right\|_{A} \tag{1}
\end{equation*}
$$

and $\mathbf{e}_{n}=0$ is achieved for some $n \leq m$

- From previous theorem, we know that \mathbf{x}_{n} belongs to \mathcal{K}_{n}
- Consider an arbitrary point $\mathbf{x}=\mathbf{x}_{n}-\Delta \mathbf{x} \in \mathcal{K}_{n}$ with error $\mathbf{e}=\mathbf{x}_{*}-\mathbf{x}=\mathbf{e}_{n}+\Delta \mathbf{x}$, and compute

$$
\begin{aligned}
\|\mathbf{e}\|_{A}^{2} & =\left(\mathbf{e}_{n}+\Delta \mathbf{x}\right)^{\top} A\left(\mathbf{e}_{n}+\Delta \mathbf{x}\right) \\
& =\mathbf{e}_{n}^{\top} A \mathbf{e}_{n}+(\Delta \mathbf{x})^{\top} A(\Delta \mathbf{x})+2 \mathbf{e}_{n}^{\top} A(\Delta \mathbf{x})
\end{aligned}
$$

- The last term $2 \mathbf{e}_{n}^{\top} A \Delta \mathbf{x}=2 \mathbf{r}_{n}^{\top}(\Delta \mathbf{x})$, an inner product of \mathbf{r}_{n} with a vector in \mathcal{K}_{n}, is zero (using previous theorem)

Optimality of conjugate gradients (cont'd)

- An inner product of \mathbf{r}_{n} and a vector in \mathcal{K}_{n} is zero
- A crucial property that makes CG powerful
- It implies that

$$
\|\mathbf{e}\|_{A}^{2}=\mathbf{e}_{n}^{\top} A \mathbf{e}_{n}+(\Delta \mathbf{x})^{\top} A(\Delta \mathbf{x})
$$

- Only the second term depends on $\Delta \mathbf{x}$ and since A is positive definite, the first term is larger or equal to 0
- The second term is 0 if and only if $\Delta \mathbf{x}=\mathbf{0}$, i.e., $\mathbf{x}_{n}=\mathbf{x}$
- Thus $\|\mathbf{e}\|_{A}$ is minimal if and only if $\mathbf{x}_{n}=\mathbf{x}$ as claimed
- The monotonicity property is a consequence of the inclusion $\mathcal{K}_{n} \subseteq \mathcal{K}_{n+1}$, and since \mathcal{K}_{n} is a subset of \mathbb{R}^{m} of dimension n as long as convergence has not yet been achieved, convergence must be achieved in at most m steps
- That is, each step of conjugate direction cuts down the error term component by component

Optimality of conjugate gradients (cont'd)

- The guarantee that the CG iteration converges in at most m steps is void in floating point arithmetic
- For arbitrary matrices A on a real computer, no decisive reduction in $\left\|\mathbf{e}_{n}\right\|_{A}$ will necessarily be observed at all when $n=m$
- In practice, however, CG is used not for arbitrary matrices but for matrices whose spectra are well behaved (partially due to preconditioning) that convergence to a desired accuracy is achieved for $n \ll m$
- The theoretical exact convergence at $n=m$ has no relevance to this use of the CG iteration in scientific computing

Conjugate gradients as an optimization algorithm

- The CG iteration has a certain optimality property: it minimizes $\left\|\mathbf{e}_{n}\right\|_{A}$ at step n over all vectors $\mathbf{x} \in \mathcal{K}_{n}$
- A standard form for minimizing a nonlinear function of $\mathbf{x} \in \mathbb{R}^{m}$
- At the heart of the iteration is the formula

$$
\mathbf{x}_{n}=\mathbf{x}_{n-1}+\alpha_{n} \mathbf{p}_{n-1}
$$

- A familiar equation in optimization, in which a current approximation \mathbf{x}_{n-1} is updated to a new approximation \mathbf{x}_{n} by moving a distance α_{n} (the step length) in the direction \mathbf{p}_{n-1} (the search direction)
- By a succession of such steps, the CG iteration attempts to find a minimum of a nonlinear equation
- Which function to minimize?

Conjugate gradients as an optimization algorithm (cont'd)

- Cannot use $\|\mathbf{e}\|_{A}$ or $\|\mathbf{e}\|_{A}^{2}$ as neither can be evaluated without knowing \mathbf{x}_{*}
- On the other hand, given A and \mathbf{b} and $\mathbf{x} \in \mathbb{R}^{m}$, the quantity

$$
\phi(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} A \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

can certainly be evaluated as

$$
\begin{aligned}
\left\|\mathbf{e}_{n}\right\|_{A}^{2} & =\mathbf{e}_{n}^{\top} A \mathbf{e}_{n}=\left(\mathbf{x}_{*}-\mathbf{x}_{n}\right)^{\top} A\left(\mathbf{x}_{*}-\mathbf{x}_{n}\right) \\
& =\mathbf{x}_{n}^{\top} A \mathbf{x}_{n}-2 \mathbf{x}_{n}^{\top} A \mathbf{x}_{*}+\mathbf{x}_{*}^{\top} A \mathbf{x}_{*} \\
& =\mathbf{x}_{n}^{\top} A \mathbf{x}_{n}-2 \mathbf{x}_{n}^{\top} \mathbf{b}+\mathbf{x}_{*}^{\top} \mathbf{b} \\
& =2 \phi\left(\mathbf{x}_{n}\right)+\text { constant }
\end{aligned}
$$

- Like $\|\mathbf{e}\|_{A}^{2}$, it must achieve its minimum uniquely at $\mathbf{x}=\mathbf{x}_{*}$

Conjugate gradients as an optimization algorithm (cont'd)

- The CG iteration can be interpreted as an iterative process for minimizing the quadratic function $\phi(\mathbf{x})$ of $\mathbf{x} \in \mathbb{R}^{m}$
- At each step, an iterate $\mathbf{x}_{n}=\mathbf{x}_{n-1}+\alpha_{n} \mathbf{p}_{n-1}$ is computed that minimizes $\phi(\mathbf{x})$ over all \mathbf{x} in the one dimensional space $\mathbf{x}_{n-1}+\left\langle\mathbf{p}_{n-1}\right\rangle$
- It can be readily confirmed that the formula

$$
\alpha_{n}=\frac{\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}}{\mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-1}}
$$

ensures α_{n} is optimal in the sense among all step lengths α

- What makes the CG iteration remarkable is the choice of the search direction \mathbf{p}_{n-1}, which has the special property that minimizing $\phi(\mathbf{x})$ over $\mathbf{x}_{n-1}+\left\langle\mathbf{p}_{n-1}\right\rangle$ actually minimizes it over all of \mathcal{K}_{n}

Analogy between CG iteration and Lanczos iteration

- A close analogy between CG iteration for solving $A \mathbf{x}=\mathbf{b}$ and the Lanczos iteration for finding eigenvalues
- The eigenvalues of A are the stationary values for $\mathbf{x} \in \mathbb{R}^{m}$ of the Rayleigh quotient $r(\mathbf{x})=\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$
- The eigenvalue estimates (Ritz values) associated with step n of the Lanczos iteration are the stationary values of the same function $r(\mathbf{x})$ if \mathbf{x} is restricted to the Krylov subspace \mathcal{K}_{n}
- Perfect parallel of what we have shown that the solution \mathbf{x}_{*} of $A \mathbf{x}=\mathbf{b}$ is the minimal point in \mathbb{R}^{m} of the scalar function $\phi(\mathbf{x})$, and the CG iterate \mathbf{x}_{n} is the minimal point of the same function $\phi(\mathbf{x})$ if \mathbf{x} is restricted to \mathcal{K}_{n}

Conjugate gradients and polynomial approximation

- Connection between Krylov subspace iteration and polynomials of matrices
- The Arnoldi and Lanczos iterations solve the Arnoldi/Lanczos approximation problem
Find $p^{n} \in P^{n}$ such that

$$
\left\|p^{n}(A) \mathbf{b}\right\|=\text { minimum }
$$

- The GMRES iteration solves the GMRES approximation problem Find $p_{n} \in P_{n}$ such that

$$
\left\|p_{n}(A) \mathbf{b}\right\|=\text { minimum }
$$

- For CG, the appropriate approximation problem involves the A-norm of the error
Find $p_{n} \in P_{n}$ such that

$$
\left\|p_{n}(A) \mathbf{e}_{0}\right\|_{A}=\text { minimum }
$$

where \mathbf{e}_{0} denotes the initial error $\mathbf{e}_{0}=\mathbf{x}_{*}-\mathbf{x}_{0}=\mathbf{x}_{*}$, and P_{n} is again defined as GMRES (i.e., the set of polynomials p of degree $\leq n$ with $p(0)=1$)

CG and polynomial approximation

Theorem

If the CG iteration has not already converged before step n (i.e., $\mathbf{r}_{n-1} \neq \mathbf{0}$), then $\left\|p_{n}(A) \mathbf{e}_{0}\right\|_{A}$ has a unique solution $p_{n} \in P_{n}$, and the iterate \mathbf{x}_{n} has error $\mathbf{e}_{n}=p_{n}(A) \mathbf{e}_{0}$ for this same polynomial p_{n}. Consequently, we have

$$
\begin{equation*}
\frac{\left\|\mathbf{e}_{n}\right\|_{A}}{\left\|\mathbf{e}_{0}\right\|_{A}}=\inf _{p \in P_{n}} \frac{\left\|p(A) \mathbf{e}_{0}\right\|_{A}}{\left\|\mathbf{e}_{0}\right\|_{A}} \leq \inf _{p \in P_{n}} \max _{\lambda \in \Lambda(A)}|p(\lambda)| \tag{2}
\end{equation*}
$$

where $\Lambda(A)$ denotes the spectrum of A

- From theorem in the last lecture, it follows that $\mathbf{e}_{n}=p(A) \mathbf{e}_{0}$ for some $p \in P_{n}$
- The equality is a consequence of (2) and monotonic convergence (1)

CG and polynomial approximation (cont'd)

- As for the inequality, $\mathbf{e}_{0}=\sum_{j=1}^{m} a_{j} \mathbf{v}_{j}$ is an expansion of \mathbf{e}_{0} in orthonormal eigenvectors of A, then we have $p(A) \mathbf{e}_{0}=\sum_{j=1}^{m} a_{j} p\left(\lambda_{j}\right) \mathbf{v}_{j}$ and thus

$$
\left\|\mathbf{e}_{0}\right\|_{A}^{2}=\sum_{j=1}^{m} a_{j}^{2} \lambda_{j}, \quad\left\|p(A) \mathbf{e}_{0}\right\|_{A}^{2}=\sum_{j=1}^{m} a_{j}^{2} \lambda_{j}\left(p\left(\lambda_{j}\right)\right)^{2}
$$

These identities imply $\left\|p(A) \mathbf{e}_{0}\right\|_{A}^{2} /\left\|\mathbf{e}_{0}\right\|_{A}^{2} \leq \max _{\lambda \in \Lambda(A)}|p(\lambda)|^{2}$, which implies the inequality

- The rate of convergence of the CG iteration is determined by the location of the spectrum of A
- A good spectrum is one on which polynomials $p_{n} \in P_{n}$ can be very small, with size decreasing rapidly with n
- Roughly speaking, this may happen for either or both of two reasons: the eigenvalues may be grouped in small clusters, or they may lie well separated in a relative sense from the origin
- The two best known corollaries address these two ideas in their extreme forms

Rate of CG convergence

- First, we suppose that the eigenvalues are perfectly clustered but assume nothing about the locations of these clusters

Theorem

If A has only n distinct eigenvalues, then the CG iteration converges in at most n steps

- This is a corollary of (2), since a polynomial $p(\mathbf{x})=\prod_{j=1}^{n}\left(1-\mathbf{x} / \lambda_{j}\right) \in P_{n}$ exists that is zero at any specified set of n points $\left\{\lambda_{j}\right\}$
- At the other extreme, suppose we know nothing about any clustering of the eigenvalues but only that their distances from the origin vary by at most a factor $\kappa \geq 1$
- In other words, suppose we know only the 2-norm condition number $\kappa=\lambda_{\text {max }} / \lambda_{\text {min }}$, where $\lambda_{\text {max }}$ and $\lambda_{\text {min }}$ are the extreme eigenvalues of A

Rate of CG convergence (cont'd)

Theorem

Let the CG iteration be applied to a symmetric positive definite matrix problem $A \mathbf{x}=\mathbf{b}$, where A has 2 -norm condition number κ. Then the A-norm of the errors satisfy

$$
\frac{\left\|\mathbf{e}_{n}\right\|_{A}}{\left\|\mathbf{e}_{0}\right\|_{A}} \leq 2 /\left[\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{n}+\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{-n}\right] \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{n}
$$

- See text for proof using Chebyshev polynomials
- Since

$$
\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} \sim 1-\frac{2}{\sqrt{\kappa}}
$$

as $\kappa \rightarrow \infty$, it implies that if κ is large but not too large, convergence to a specified tolerance can be expected in $O(\sqrt{\kappa})$ iterations

- An upper bound, and convergence may be faster for special right hand sides or if the spectrum is clustered

Example: CG convergence

- Consider a 500×500 sparse matrix A where we have 1 's on the diagonal and a random number from the uniform distribution on $[-1,1]$ at each off-diagonal position (maintaining the symmetry $A=A^{\top}$)
- Then we replace each off-diagonal entry with $\left|A_{i j}\right|>\tau$ by zero, where τ is a parameter
- For τ close to zero, the result is a well-conditioned positive definite matrix whose density of nonzero entries is approximately τ
- As τ increases, both the condition number and the sparsity deteriorate

Example: CG convergence (cont'd)

- For $\tau=0.01, A$ has 3,092 nonzero entries and $\kappa \approx 1.06$, the CG convergence takes place in 9 steps
- For $\tau=0.05, A$ has 13,062 nonzero entries with $\kappa \approx 1.83$, and convergence takes place in 19 steps
- For $\tau=0.1, A$ has 25,526 nonzero entries with $\kappa \approx 10.3$ and the process converges in 20 steps
- For $\tau=0.2$ with 50,834 nonzero entries, there is no convergence at all
- For this example, the CG beats Cholesky factorization by a factor of about 700 in terms of operation counts

Preconditioning

- The convergence of a matrix iteration depends on the properties of the matrix - the eigenvalues, the singular values, or sometimes other information
- In many cases, the problem of interest can be transformed so that the properties of the matrix are improved drastically
- The process of preconditioning is essential to most successful applications of iterative methods

Preconditioning for $A \mathbf{x}=\mathbf{b}$

- Suppose we want to solve $m \times m$ nonsingular system

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{3}
\end{equation*}
$$

- For any nonsingular $m \times m$ matrix M, the system

$$
\begin{equation*}
M^{-1} A \mathbf{x}=M^{-1} \mathbf{b} \tag{4}
\end{equation*}
$$

has the same solution

- If we solve the (4) iteratively, however, the convergence will depend on the properties of $M^{-1} A$ instead of A
- If this preconditioner M is well chosen, (4) may be solved much more rapidly than (3)
- For this idea to be useful, it must be possible to compute $M^{-1} A$ efficiently
- As usual in numerical linear algebra, this does not mean an explicit construction of the inverse M^{-1}, but the solution of system of equations in this form

$$
\begin{equation*}
M \mathbf{y}=\mathbf{c} \tag{5}
\end{equation*}
$$

Preconditioning for $A \mathbf{x}=\mathbf{b}$ (cont'd)

- Two extreme cases:
- If $M=A$, then (5) is the same as (3), and nothing has been gained
- If $M=l$, then (4) is the same as (3), and then it is a trivial solution
- Between these two extremes lie the useful preconditioners,
- structured enough (5) can be solved quickly
- but close enough to A in some sense that an iteration for (4) converges more quickly than an iteration for (3)
- What does it mean for M to be "close enough" to A ?
- If the eigenvalues of $M^{-1} A$ are close to 1 and $\left\|M^{-1} A-I\right\|_{2}$ is small, then any of the iterations we have discussed can be expected to converge quickly
- However, preconditioners that do not satisfy such a strong condition may also perform well
- A simple rule of thumb: preconditioner M is good if $M^{-1} A$ is not too far from normal and its eigenvalues are clustered

Left, right and Hermitian preconditioners

- What we have described may be more precisely terms as left preconditioner
- Another idea is to transform $A \mathbf{x}=\mathbf{b}$ into $A M^{-1} \mathbf{y}=\mathbf{b}$ with $\mathbf{x}=M^{-1} \mathbf{y}$ in which case M is called a right preconditioner
- If A is Hermitian positive definite, then it is usual to preserve this property in preconditioning
- Suppose M is also Hermitian positive definite, with $M=C C^{*}$ for some C, then (3) is equivalent to

$$
\left[C^{-1} A C^{-*}\right] C^{*} \mathbf{x}=C^{-1} \mathbf{b}
$$

- The matrix in brackets is Hermitian positive definite, so this equation can be solved by conjugate gradient or related iterations
- At the same time, since $C^{-1} A C^{-*}$ is similar to $C^{-*} C^{-1} A=M^{-1} A$, it is enough to examine the eigenvalues of the non-Hermitian matrix $M^{-1} A$ to investigate convergence

Example: Preconditioning convergence

- Consider a 1000×1000 symmetric matrix A whose entries are all zero except for $A_{i j}=0.5+\sqrt{i}$ on the diagonal, $A_{i j}=1$ on the sub-and super-diagonals, and $A_{i j}=1$ on the 100 -th sub- and super-diagonals, i.e., for $|i-j|=100$, and the right hand side $\mathbf{b}=(1,1, \ldots, 1)^{\top}$

- Straight CG iteration converges slowly, achieving about 5-digit residual reduction after 40 iterations
- Straight CG is an improvement over a direct method
- Take $M=\operatorname{diag}(A)$, the diagonal matrix with entries $M_{i i}=0.5+\sqrt{i}$
- Set $C=\sqrt{M}$ for a new preconditioned CG iteration and with 30 steps it gives convergence to 15 -digit residual reduction

Preconditioners

- Reduce condition number
- Sometimes simple, but often they are more complicated
- In various forms with different assumptions
- Effective for eigenvalue problems as well as systems of equations
- See text for more examples

Jacobi preconditioner

- Perhaps the most important preconditioner: $M=\operatorname{diag}(A)$, provided that this matrix is nonsingular
- Also known as diagonal scaling
- More generally, one may take $M=\operatorname{diag}(\mathbf{c})$ for a suitably chosen vector $\mathbf{c} \in \mathbb{C}^{m}$
- It is a hard mathematical problem to determine a vector cosh that $\kappa\left(M^{-1} A\right)$ is exactly minimized
- Fortunately, nothing like the exact minimum is needed in practice

Polynomial preconditioner

Theorem

If A is an $n \times n$ matrix such that $\|A\|<1$, then I $-A$ is invertible, and

$$
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k}
$$

- It is essential A^{-1} rather than A itself is approximated by the preconditioner
- A polynomial preconditioner is a matrix polynomial $M^{-1}=p(A)$ with the property that $p(A) A$ has better properties for iteration than A itself
- For example, $p(A)$ might be obtained from the first few terms of the Neumann series $A^{-1}=I+(I-A)+(I-A)^{2}+\cdots$, or from some other expression, often motivated by approximation theory in the complex plane
- Implemented is based on the same "black box" used for Krylov subspace iteration

