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Overview

Conjugate gradient

Convergence rate of conjugate gradient

Preconditioning
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Reading

Chapter 39-40 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 10 of Matrix Computations by Gene Golub and Charles Van
Loan

“An Introduction to Conjugate Gradient Method Without the
Agonizing Pain” by Jonathan Shewchuk
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Optimality of conjugate gradients

Theorem

Let the conjugate gradient iteration be applied to a symmetric positive
definitive matrix problem Ax = b. If the iteration has not already
converged (i.e., rn−1 6= 0), then xn is the unique point in Kn that
minimizes ‖en‖A. The convergence is monotonic

‖en‖A ≤ ‖en−1‖A (1)

and en = 0 is achieved for some n ≤ m

From previous theorem, we know that xn belongs to Kn

Consider an arbitrary point x = xn −∆x ∈ Kn with error
e = x∗ − x = en + ∆x, and compute

‖e‖2
A = (en + ∆x)>A(en + ∆x)

= e>n Aen + (∆x)>A(∆x) + 2e>n A(∆x)

The last term 2e>n A∆x = 2r>n (∆x), an inner product of rn with a
vector in Kn, is zero (using previous theorem)
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Optimality of conjugate gradients (cont’d)

An inner product of rn and a vector in Kn is zero

A crucial property that makes CG powerful

It implies that
‖e‖2

A = e>n Aen + (∆x)>A(∆x)

Only the second term depends on ∆x and since A is positive definite,
the first term is larger or equal to 0

The second term is 0 if and only if ∆x = 0, i.e., xn = x

Thus ‖e‖A is minimal if and only if xn = x as claimed

The monotonicity property is a consequence of the inclusion
Kn ⊆ Kn+1, and since Kn is a subset of IRm of dimension n as long
as convergence has not yet been achieved, convergence must be
achieved in at most m steps

That is, each step of conjugate direction cuts down the error term
component by component
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Optimality of conjugate gradients (cont’d)

The guarantee that the CG iteration converges in at most m steps is
void in floating point arithmetic

For arbitrary matrices A on a real computer, no decisive reduction in
‖en‖A will necessarily be observed at all when n = m

In practice, however, CG is used not for arbitrary matrices but for
matrices whose spectra are well behaved (partially due to
preconditioning) that convergence to a desired accuracy is achieved
for n� m

The theoretical exact convergence at n = m has no relevance to this
use of the CG iteration in scientific computing
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Conjugate gradients as an optimization algorithm

The CG iteration has a certain optimality property: it minimizes
‖en‖A at step n over all vectors x ∈ Kn

A standard form for minimizing a nonlinear function of x ∈ IRm

At the heart of the iteration is the formula

xn = xn−1 + αnpn−1

A familiar equation in optimization, in which a current approximation
xn−1 is updated to a new approximation xn by moving a distance αn

(the step length) in the direction pn−1 (the search direction)

By a succession of such steps, the CG iteration attempts to find a
minimum of a nonlinear equation

Which function to minimize?
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Conjugate gradients as an optimization algorithm (cont’d)

Cannot use ‖e‖A or ‖e‖2
A as neither can be evaluated without

knowing x∗

On the other hand, given A and b and x ∈ IRm, the quantity

φ(x) =
1

2
x>Ax− x>b

can certainly be evaluated as

‖en‖2
A = e>n Aen = (x∗ − xn)>A(x∗ − xn)

= x>n Axn − 2x>n Ax∗ + x>∗ Ax∗
= x>n Axn − 2x>n b + x>∗ b
= 2φ(xn) + constant

Like ‖e‖2
A, it must achieve its minimum uniquely at x = x∗
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Conjugate gradients as an optimization algorithm (cont’d)

The CG iteration can be interpreted as an iterative process for
minimizing the quadratic function φ(x) of x ∈ IRm

At each step, an iterate xn = xn−1 + αnpn−1 is computed that
minimizes φ(x) over all x in the one dimensional space xn−1 + 〈pn−1〉
It can be readily confirmed that the formula

αn =
r>n−1rn−1

p>n−1Apn−1

ensures αn is optimal in the sense among all step lengths α

What makes the CG iteration remarkable is the choice of the search
direction pn−1, which has the special property that minimizing φ(x)
over xn−1 + 〈pn−1〉 actually minimizes it over all of Kn
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Analogy between CG iteration and Lanczos iteration

A close analogy between CG iteration for solving Ax = b and the
Lanczos iteration for finding eigenvalues

The eigenvalues of A are the stationary values for x ∈ IRm of the
Rayleigh quotient r(x) = x>Ax

x>x

The eigenvalue estimates (Ritz values) associated with step n of the
Lanczos iteration are the stationary values of the same function r(x)
if x is restricted to the Krylov subspace Kn

Perfect parallel of what we have shown that the solution x∗ of Ax = b
is the minimal point in IRm of the scalar function φ(x), and the CG
iterate xn is the minimal point of the same function φ(x) if x is
restricted to Kn
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Conjugate gradients and polynomial approximation

Connection between Krylov subspace iteration and polynomials of
matrices

The Arnoldi and Lanczos iterations solve the Arnoldi/Lanczos
approximation problem
Find pn ∈ Pn such that

‖pn(A)b‖ = minimum

The GMRES iteration solves the GMRES approximation problem
Find pn ∈ Pn such that

‖pn(A)b‖ = minimum

For CG, the appropriate approximation problem involves the A-norm
of the error
Find pn ∈ Pn such that

‖pn(A)e0‖A = minimum

where e0 denotes the initial error e0 = x∗ − x0 = x∗, and Pn is again
defined as GMRES (i.e., the set of polynomials p of degree ≤ n with
p(0) = 1)
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CG and polynomial approximation

Theorem

If the CG iteration has not already converged before step n (i.e., rn−1 6= 0),
then ‖pn(A)e0‖A has a unique solution pn ∈ Pn, and the iterate xn has
error en = pn(A)e0 for this same polynomial pn. Consequently, we have

‖en‖A
‖e0‖A

= inf
p∈Pn

‖p(A)e0‖A
‖e0‖A

≤ inf
p∈Pn

max
λ∈Λ(A)

|p(λ)| (2)

where Λ(A) denotes the spectrum of A

From theorem in the last lecture, it follows that en = p(A)e0 for some
p ∈ Pn

The equality is a consequence of (2) and monotonic convergence (1)
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CG and polynomial approximation (cont’d)

As for the inequality, e0 =
∑m

j=1 ajvj is an expansion of e0 in
orthonormal eigenvectors of A, then we have
p(A)e0 =

∑m
j=1 ajp(λj)vj and thus

‖e0‖2
A =

m∑
j=1

a2
j λj , ‖p(A)e0‖2

A =
m∑
j=1

a2
j λj(p(λj))2

These identities imply ‖p(A)e0‖2
A/‖e0‖2

A ≤ maxλ∈Λ(A) |p(λ)|2, which
implies the inequality

The rate of convergence of the CG iteration is determined by the
location of the spectrum of A

A good spectrum is one on which polynomials pn ∈ Pn can be very
small, with size decreasing rapidly with n

Roughly speaking, this may happen for either or both of two reasons:
the eigenvalues may be grouped in small clusters, or they may lie well
separated in a relative sense from the origin

The two best known corollaries address these two ideas in their
extreme forms
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Rate of CG convergence

First, we suppose that the eigenvalues are perfectly clustered but
assume nothing about the locations of these clusters

Theorem

If A has only n distinct eigenvalues, then the CG iteration converges in at
most n steps

This is a corollary of (2), since a polynomial
p(x) =

∏n
j=1(1− x/λj) ∈ Pn exists that is zero at any specified set of

n points {λj}
At the other extreme, suppose we know nothing about any clustering
of the eigenvalues but only that their distances from the origin vary
by at most a factor κ ≥ 1

In other words, suppose we know only the 2-norm condition number
κ = λmax/λmin, where λmax and λmin are the extreme eigenvalues of
A
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Rate of CG convergence (cont’d)

Theorem

Let the CG iteration be applied to a symmetric positive definite matrix
problem Ax = b, where A has 2-norm condition number κ. Then the
A-norm of the errors satisfy

‖en‖A
‖e0‖A

≤ 2

/[(√
κ+ 1√
κ− 1

)n

+

(√
κ+ 1√
κ− 1

)−n]
≤ 2

(√
κ− 1√
κ+ 1

)n

See text for proof using Chebyshev polynomials

Since √
κ− 1√
κ+ 1

∼ 1− 2√
κ

as κ→∞, it implies that if κ is large but not too large, convergence
to a specified tolerance can be expected in O(

√
κ) iterations

An upper bound, and convergence may be faster for special right
hand sides or if the spectrum is clustered
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Example: CG convergence

Consider a 500× 500 sparse matrix A where we have 1’s on the
diagonal and a random number from the uniform distribution on
[−1, 1] at each off-diagonal position (maintaining the symmetry
A = A>)

Then we replace each off-diagonal entry with |Aij | > τ by zero, where
τ is a parameter

For τ close to zero, the result is a well-conditioned positive definite
matrix whose density of nonzero entries is approximately τ

As τ increases, both the condition number and the sparsity deteriorate
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For τ = 0.01, A has 3,092 nonzero entries and κ ≈ 1.06, the CG
convergence takes place in 9 steps

For τ = 0.05, A has 13,062 nonzero entries with κ ≈ 1.83, and
convergence takes place in 19 steps

For τ = 0.1, A has 25,526 nonzero entries with κ ≈ 10.3 and the
process converges in 20 steps

For τ = 0.2 with 50,834 nonzero entries, there is no convergence at all

For this example, the CG beats Cholesky factorization by a factor of
about 700 in terms of operation counts
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Preconditioning

The convergence of a matrix iteration depends on the properties of
the matrix - the eigenvalues, the singular values, or sometimes other
information

In many cases, the problem of interest can be transformed so that the
properties of the matrix are improved drastically

The process of preconditioning is essential to most successful
applications of iterative methods
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Preconditioning for Ax = b
Suppose we want to solve m ×m nonsingular system

Ax = b (3)

For any nonsingular m ×m matrix M, the system

M−1Ax = M−1b (4)

has the same solution

If we solve the (4) iteratively, however, the convergence will depend
on the properties of M−1A instead of A

If this preconditioner M is well chosen, (4) may be solved much more
rapidly than (3)

For this idea to be useful, it must be possible to compute M−1A
efficiently

As usual in numerical linear algebra, this does not mean an explicit
construction of the inverse M−1, but the solution of system of
equations in this form

My = c (5)
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Preconditioning for Ax = b (cont’d)

Two extreme cases:
I If M = A, then (5) is the same as (3), and nothing has been gained
I If M = I , then (4) is the same as (3), and then it is a trivial solution

Between these two extremes lie the useful preconditioners,
I structured enough (5) can be solved quickly
I but close enough to A in some sense that an iteration for (4) converges

more quickly than an iteration for (3)

What does it mean for M to be “close enough” to A?

If the eigenvalues of M−1A are close to 1 and ‖M−1A− I‖2 is small,
then any of the iterations we have discussed can be expected to
converge quickly

However, preconditioners that do not satisfy such a strong condition
may also perform well

A simple rule of thumb: preconditioner M is good if M−1A is not too
far from normal and its eigenvalues are clustered
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Left, right and Hermitian preconditioners

What we have described may be more precisely terms as left
preconditioner

Another idea is to transform Ax = b into AM−1y = b with x = M−1y
in which case M is called a right preconditioner

If A is Hermitian positive definite, then it is usual to preserve this
property in preconditioning

Suppose M is also Hermitian positive definite, with M = CC ∗ for
some C , then (3) is equivalent to

[C−1AC−∗]C ∗x = C−1b

The matrix in brackets is Hermitian positive definite, so this equation
can be solved by conjugate gradient or related iterations

At the same time, since C−1AC−∗ is similar to C−∗C−1A = M−1A, it
is enough to examine the eigenvalues of the non-Hermitian matrix
M−1A to investigate convergence
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Example: Preconditioning convergence
Consider a 1000× 1000 symmetric matrix A whose entries are all zero
except for Aij = 0.5 +

√
i on the diagonal, Aij = 1 on the sub-and

super-diagonals, and Aij = 1 on the 100-th sub- and super-diagonals,
i.e., for |i − j | = 100, and the right hand side b = (1, 1, . . . , 1)>
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Take M = diag(A), the diagonal matrix with entries Mii = 0.5 +

√
i

Set C =
√

M for a new preconditioned CG iteration and with 30 steps
it gives convergence to 15-digit residual reduction
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Preconditioners

Reduce condition number

Sometimes simple, but often they are more complicated

In various forms with different assumptions

Effective for eigenvalue problems as well as systems of equations

See text for more examples

23 / 25



Jacobi preconditioner

Perhaps the most important preconditioner: M = diag(A), provided
that this matrix is nonsingular

Also known as diagonal scaling

More generally, one may take M = diag(c) for a suitably chosen
vector c ∈ Cm

It is a hard mathematical problem to determine a vector c such that
κ(M−1A) is exactly minimized

Fortunately, nothing like the exact minimum is needed in practice
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Polynomial preconditioner

Theorem

If A is an n × n matrix such that ‖A‖ < 1, then I − A is invertible, and

(I − A)−1 =
∞∑
k=0

Ak

It is essential A−1 rather than A itself is approximated by the
preconditioner
A polynomial preconditioner is a matrix polynomial M−1 = p(A) with
the property that p(A)A has better properties for iteration than A
itself
For example, p(A) might be obtained from the first few terms of the
Neumann series A−1 = I + (I − A) + (I − A)2 + · · · , or from some
other expression, often motivated by approximation theory in the
complex plane
Implemented is based on the same “black box” used for Krylov
subspace iteration
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