
EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 20

1 / 20



Overview

Steepest descent

Conjugate gradient

2 / 20



Reading

Chapter 38 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 10 of Matrix Computations by Gene Golub and Charles Van
Loan

“An Introduction to Conjugate Gradient Method Without the
Agonizing Pain” by Jonathan Shewchuk

3 / 20



Quadratic form

For real symmetric A, a quadratic form is simply a scalar

f (x) =
1

2
x>Ax− b>x + c

Setting the gradient to zero

∇f (x) = Ax− b = 0 =⇒ Ax = b

The solution to Ax = b, x∗, is a critical point of f (x)

If A is positive definite as well, then at arbitrary point p

f (p) = f (x∗) +
1

2
(p− x∗)

>A(p− x∗) ≥ 0

and the latter term is positive for all p 6= x∗ (and x∗ is a global
minimum of f )

4 / 20



Quadratic form (cont’d)

f (x) = 1
2x
>Ax− b>x + c

At x∗, Ax∗ = b

Let e = p− x∗

f (p) = f (x∗ + e) = 1
2(x∗ + e)>A(x∗ + e)− b>(x∗ + e) + c

= 1
2x
>
∗ Ax∗ + e>Ax∗ + 1

2e
>Ae− b>e + c

= 1
2x
>
∗ Ax∗ − b>x∗ + c + e>b + 1

2e
>Ae− b>e

= f (x∗) + 1
2e
>Ae

5 / 20



Steepest descent

Start at an arbitrary point x0 and slide down to the bottom of the
paraboloid by taking a series of steps x1, x2, . . . until we are satisfied
that we are close enough to the solution x∗

Choose the direction which f decreases most quickly, i.e., the
opposite of ∇f (xi )

−∇f (xi ) = b− Axi

The error ei = xi − x∗ is a vector that indicates how far we are from
the solution

The residual ri = b− Axi indicates how far we are from the correct
value of b

It is easy to see that ri = −Aei , and residual is being the error
transformed by A into the same space as b

More importantly,
ri = −∇f (xi )

Can think of residual as the direction of steepest descent

6 / 20



Steepest descent (cont’d)

After finding the direction, move to the next point
xi = xi−1 + αri−1

How big is the step?

A line search is a procedure that chooses α to minimize f along a line

From basic calculus, α minimizes f when the directional derivative
d
dα f (xi ) is equal to zero

d

dα
f (xi ) = ∇f (xi )

> d

dα
xi = ∇f (xi )

>ri−1 = −r>i ri−1
To determine α

r>i ri−1 = 0
(b− Axi )

>ri−1 = 0
(b− A(xi−1 + αri−1))>ri−1 = 0

(b− Axi−1)>ri−1 − α(Ari−1)>ri−1 = 0
(b− Axi−1)>ri−1 = α(Ari−1)>ri−1

r>i−1ri−1 = αr>i−1(Ari−1)

α =
r>i−1ri−1

r>i−1Ari−1

7 / 20



Steepest descent (cont’d)

Put it all together,

ri−1 = b− Axi−1

αi =
r>i−1ri−1

r>i−1Ari−1

xi = xi−1 + αi ri−1

Can save computation by multiply −A to the above equation and
adding b on both sides

ri = ri−1 − αiAri−1

Steepest descent often finds itself taking steps in the same directions
as earlier steps

Convergence rate depends on the conditional number, κ

Steepest descent can converge quickly if a fortunate starting point is
chosen, but is usually at worst when κ is large

8 / 20



Conjugate gradient as a direct method

We want to solve a system of linear systems: Ax = b where
A ∈ IRm×m is symmetric and positive

Two non-zero vectors u and v are conjugate with respect to A if

u>Av = 0

Since A is symmetric and positive definite

〈u, v〉A = 〈A>u, v〉 = 〈Au, v〉 = 〈u,Av〉 = u>Av

Suppose {pn} is a sequence of m mutually conjugate directions, then
the pn form a basis of IRm and we can expand the solution x∗ (unique
solution of Ax = b) in this basis

x∗ =
m∑
i=1

αipi

The coefficients are given by

b = Ax∗ =
∑m

i=1 αiApi
p>n b = p>n Ax∗ =

∑m
i=1 αip

>
n Api = αnp>n Apn

αn = p>n b
p>n Apn

= 〈pn,b〉
〈pn,pn〉A = 〈pn,b〉

‖pn‖2A
9 / 20



Conjugate gradient as a direct method (cont’d)

First find a sequence of n conjugate directions and then compute the
coefficients (require only inner products)

How to find conjugate directions?

Gram-Schmidt conjugations: Start with n linearly independent vectors
u1, . . . ,un

For each vector, subtract those parts that are not A-orthogonal to the
other processed vectors

pn = un +
∑n

k=1 βnkpk

βnj = −u>n Apj
p>j Apj

Problem: Gram-Schmidt conjugation is slow and we have to store all
the vectors that we have created

10 / 20



Conjugate gradient as an iterative method

If we choose the conjugate vectors pn carefully, we may not need all
of them to obtain a good approximation

Also, the direct method does not scale well when m is large

Without loss of generality, assume the initial guess x0 = 0

Need a metric to tell us whether we are getting closer to x∗

f (x) =
1

2
x>Ax− b>x , x ∈ IRm

where ∇f (x) = Ax− b

This suggests taking the first basis vector p1 to be the gradient of f
at x0, i.e., Ax0 − b

Since x0 = 0, p1 = −b
The other direction vectors in the basis will be conjugate to the
gradient, hence the name conjugate gradient method

11 / 20



Conjugate gradient as an iterative method (cont’d)

Let rn be the residual at n-th step: rn = b− Axn

Note that rn is the negative gradient of f at x = xn, so the gradient
descent method would be to move in the direction of rn

Here we insist the directions pn are conjugate to each other, so we
take the direction closest to the gradient rn under the conjugacy
constraint

pn+1 = rn −
p>n Arn
p>n Apn

pn

(green: steepest descent, red: conjugate gradient descent)

12 / 20



Conjugate gradients

The conjugate gradient (CG) iteration is the “original” Krylov
subspace iteration

The most famous of these methods and one the mainstays of
scientific computing

Discovered by Hestenes and Stiefel in 1952, it solves symmetric
positive definite systems of equations amazingly quickly if the
eigenvalues are well distributed

Consider the case of 2-norm in solving a nonsingular system of
equations Ax = b with exact solution x∗ = A−1b

Let Kn denote the n-th Krylov subspace generated by b

Kn = 〈b,Ab, . . . ,An−1b〉

One approach to minimize 2-norm of the residual is based on the
Krylov subspace is GMRES

13 / 20



Minimizing the 2-norm of the residual

In GMRES, at step n, x∗ is approximated by the vector xn ∈ Kn that
minimizes ‖rn‖2 where rn = b− Axn

The usual GMRES algorithm does more work than is necessary for
minimizing ‖rn‖2
When A is symmetric, faster algorithms are available based on
three-term instead of (n + 1)-term recurrences at step n

One of these goes by the names of conjugate residuals or MINRES
(minimal residuals)

14 / 20



Minimize the A-norm of the error

Assume that A is real, symmetric, and positive definite

That means the eigenvalues of A are all positive or equivalently, that
x>Ax > 0 for every nonzero x ∈ IRm

Under this assumption, the function ‖ · ‖A defined by

‖x‖A =
√
x>Ax

is the A-norm on IRm

The vector whose A-norm will concern us is en = x∗ − xn, the error at
step n

The conjugate gradient iteration is a system of recurrence formulas
that

I generated the unique sequence of iterates {x ∈ Kn}
I with the property that at step n, ‖en‖A is minimized

Will reveal the use of orthogonality in minimizing ‖en‖A

15 / 20



The conjugate gradient iteration

To solve Ax = b

Algorithm:

x0 = 0, r0 = b, p0 = r0
for n = 1, 2, 3, . . . do
αn = (r>n−1rn−1)/(p>n−1Apn−1) // step length
xn = xn−1 + αnpn−1 // approximate solution
rn = rn−1 − αnApn−1 // residual
βn = (r>n rn)/(r>n−1rn−1) // improvement this step
pn = rn + βnpn−1 // search direction

end for

Very simple - programmable in a few lines of MATLAB

Deals only with m-vectors, not with individual entries of vectors or
matrices

The only complication is the choice of a convergence criterion

16 / 20



The conjugate gradient iteration (cont’d)

At each step, the conjugate gradient iteration involves several vector
manipulation and one matrix-vector product, the computation of
Apn−1

If A is dense and unstructured, the matrix-vector product dominates
the operation count, O(m2) flops for each step

If A is sparse or has other structure that can be exploited, the
operation count may be as low as O(m) flops per step

17 / 20



The conjugate gradient iteration (cont’d)

Theorem

Let the conjugate gradient iteration be applied to a symmetric positive
definite matrix problem Ax = b. As long as the iteration has not yet
converged (i.e., rn−1 6= 0), the algorithm proceeds without divisions by
zero, and we have the following identities of subspaces:

Kn = 〈x1, x2, . . . , xn〉 = 〈p0,p1, . . . ,pn−1〉
= 〈r0, r1, . . . , rn−1〉 = 〈b,Ab, . . . ,An−1b〉 (1)

Moreover, the residuals are orthogonal

r>n rj = 0 (j < n) (2)

and the search directions are A-conjugate

p>n Apj = 0 (j < n) (3)

18 / 20



The conjugate gradient iteration (cont’d)
(Proof by induction) From the initial guess x0 = 0 and the formula
xn = xn−1 + αnpn−1, it follows by induction that xn belongs to
〈p0,p1, . . . ,pn−1〉
From pn = rn + βnpn−1, it follows that this is the same as
〈ro , r1, . . . , rn−1〉
From rn = rn−1 − αnApn−1, it follows that this is the same as
〈b,Ab, . . . ,An−1b〉
To prove (2), apply the formula rn = rn−1 − αnApn−1 and the
identity (Apn−1)> = p>n−1A to compute

r>n rj = r>n−1rj − αnp
>
n−1Arj

If j < n − 1, both terms on the right are zero by induction
If j = n − 1, the difference on the right is zero provided
αn = (r>n−1rn−1)/(p>n−1Arn−1)
Note it is almost the same as the line αn = (r>n−1rn−1)/(p>n−1Apn−1)
Since pn−1 and rn−1 differ by βn−1pn−2, the effect of this
replacement is to change the denominator by βn−1p>n−1Apn−2, which
is zero by induction

19 / 20



The conjugate gradient iteration (cont’d)

To prove (3), we apply the formula pn = rn + βnpn−1 to compute

p>n Apj = r>n Apj + βnp
>
n−1Apj

If j < n − 1, both terms on the right are again zero by induction

If j = n − 1, the sum on the right is zero provided
βn = −(r>n Apn−1)/(p>n−1Apn−1), which we can write equivalently in
the from βn = (−αnr>n Apn−1)/(αnp>n−1Apn−1)

Recall rn = rn−1 + αnpn−1 and r>n rn = r>n (rn−1 + αnpn−1) =
αnr>n pn−1

Likewise, use rn = rn−1 − αnApn−1 and pn = rn + βnpn−1 to show
r>n−1rn−1 = r>n−1(rn + αnApn−1) = (pn−1 − βn−1pn−2)>αnApn−1 =
p>n−1(αnApn−1)

This is the same as the line βn = (r>n rn)/(r>n−1rn−1) except that r>n rn
has been replaced by r>n (−αnApn−1) and r>n−1rn−1 has been replaced
by p>n−1(αnApn−1)

20 / 20


