EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 20

Overview

- Steepest descent
- Conjugate gradient

Reading

- Chapter 38 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 10 of Matrix Computations by Gene Golub and Charles Van Loan
- "An Introduction to Conjugate Gradient Method Without the Agonizing Pain" by Jonathan Shewchuk

Quadratic form

- For real symmetric A, a quadratic form is simply a scalar

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} A \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}+c
$$

- Setting the gradient to zero

$$
\nabla f(\mathbf{x})=A \mathbf{x}-\mathbf{b}=0 \Longrightarrow A \mathbf{x}=\mathbf{b}
$$

- The solution to $A \mathbf{x}=\mathbf{b}, \mathbf{x}_{*}$, is a critical point of $f(\mathbf{x})$
- If A is positive definite as well, then at arbitrary point \mathbf{p}

$$
f(\mathbf{p})=f\left(\mathbf{x}_{*}\right)+\frac{1}{2}\left(\mathbf{p}-\mathbf{x}_{*}\right)^{\top} A\left(\mathbf{p}-\mathbf{x}_{*}\right) \geq 0
$$

and the latter term is positive for all $\mathbf{p} \neq \mathbf{x}_{*}$ (and \mathbf{x}_{*} is a global minimum of f)

Quadratic form (cont'd)

- $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} A \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}+c$
- At $\mathbf{x}_{*}, A \mathbf{x}_{*}=\mathbf{b}$
- Let $\mathbf{e}=\mathbf{p}-\mathbf{x}_{*}$

$$
\begin{aligned}
f(\mathbf{p})=f\left(\mathbf{x}_{*}+\mathbf{e}\right) & =\frac{1}{2}\left(\mathbf{x}_{*}+\mathbf{e}\right)^{\top} A\left(\mathbf{x}_{*}+\mathbf{e}\right)-\mathbf{b}^{\top}\left(\mathbf{x}_{*}+\mathbf{e}\right)+c \\
& =\frac{1}{2} \mathbf{x}_{*}^{\top} A \mathbf{x}_{*}+\mathbf{e}^{\top} A \mathbf{x}_{*}+\frac{1}{2} \mathbf{e}^{\top} A \mathbf{e}-\mathbf{b}^{\top} \mathbf{e}+c \\
& =\frac{1}{2} \mathbf{x}_{*}^{\top} A \mathbf{x}_{*}-\mathbf{b}^{\top} \mathbf{x}_{*}+c+\mathbf{e}^{\top} \mathbf{b}+\frac{1}{2} \mathbf{e}^{\top} A \mathbf{e}-\mathbf{b}^{\top} \mathbf{e} \\
& =f\left(\mathbf{x}_{*}\right)+\frac{1}{2} \mathbf{e}^{\top} A \mathbf{e}
\end{aligned}
$$

Steepest descent

- Start at an arbitrary point \mathbf{x}_{0} and slide down to the bottom of the paraboloid by taking a series of steps $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ until we are satisfied that we are close enough to the solution \mathbf{x}_{*}
- Choose the direction which f decreases most quickly, i.e., the opposite of $\nabla f\left(\mathbf{x}_{i}\right)$

$$
-\nabla f\left(\mathbf{x}_{i}\right)=\mathbf{b}-A \mathbf{x}_{i}
$$

- The error $\mathbf{e}_{i}=\mathbf{x}_{i}-\mathbf{x}_{*}$ is a vector that indicates how far we are from the solution
- The residual $\mathbf{r}_{i}=\mathbf{b}-A \mathbf{x}_{i}$ indicates how far we are from the correct value of \mathbf{b}
- It is easy to see that $\mathbf{r}_{i}=-A \mathbf{e}_{i}$, and residual is being the error transformed by A into the same space as \mathbf{b}
- More importantly,

$$
\mathbf{r}_{i}=-\nabla f\left(\mathbf{x}_{i}\right)
$$

- Can think of residual as the direction of steepest descent

Steepest descent (cont'd)

- After finding the direction, move to the next point

$$
\mathbf{x}_{i}=\mathbf{x}_{i-1}+\alpha \mathbf{r}_{i-1}
$$

- How big is the step?
- A line search is a procedure that chooses α to minimize f along a line
- From basic calculus, α minimizes f when the directional derivative $\frac{d}{d \alpha} f\left(\mathbf{x}_{i}\right)$ is equal to zero

$$
\frac{d}{d \alpha} f\left(\mathbf{x}_{i}\right)=\nabla f\left(\mathbf{x}_{i}\right)^{\top} \frac{d}{d \alpha} \mathbf{x}_{i}=\nabla f\left(\mathbf{x}_{i}\right)^{\top} \mathbf{r}_{i-1}=-\mathbf{r}_{i}^{\top} \mathbf{r}_{i-1}
$$

- To determine α

$$
\begin{aligned}
\mathbf{r}_{i}^{\top} \mathbf{r}_{i-1} & =0 \\
\left(\mathbf{b}-A \mathbf{x}_{i}\right)^{\top} \mathbf{r}_{i-1} & =0 \\
\left(\mathbf{b}-A\left(\mathbf{x}_{i-1}+\alpha \mathbf{r}_{i-1}\right)\right)^{\top} \mathbf{r}_{i-1} & =0 \\
\left(\mathbf{b}-A \mathbf{x}_{i-1}\right)^{\top} \mathbf{r}_{i-1}-\alpha\left(A \mathbf{r}_{i-1}\right)^{\top} \mathbf{r}_{i-1} & =0 \\
\left(\mathbf{b}-A \mathbf{x}_{i-1}\right)^{\top} \mathbf{r}_{i-1} & =\alpha\left(A \mathbf{r}_{i-1}\right)^{\top} \mathbf{r}_{i-1} \\
\mathbf{r}_{i-1}^{\top} \mathbf{r}_{i-1} & =\alpha \mathbf{r}_{i-1}^{\top}\left(A \mathbf{r}_{i-1}\right) \\
\alpha & =\frac{\mathbf{r}_{i-1}^{\top} \mathbf{r}_{i-1}}{\mathbf{r}_{i-1}^{\top} A \mathbf{r}_{i-1}}
\end{aligned}
$$

Steepest descent (cont'd)

- Put it all together,

$$
\begin{aligned}
\mathbf{r}_{i-1} & =\mathbf{b}-A \mathbf{x}_{i-1} \\
\alpha_{i} & =\frac{\mathbf{r}_{i-1}^{\top} \mathbf{r}_{i-1}}{\mathbf{r}_{i-1}^{\top} A \mathbf{r}_{i-1}} \\
\mathbf{x}_{i} & =\mathbf{x}_{i-1}+\alpha_{i} \mathbf{r}_{i-1}
\end{aligned}
$$

- Can save computation by multiply $-A$ to the above equation and adding \mathbf{b} on both sides

$$
\mathbf{r}_{i}=\mathbf{r}_{i-1}-\alpha_{i} A \mathbf{r}_{i-1}
$$

- Steepest descent often finds itself taking steps in the same directions as earlier steps
- Convergence rate depends on the conditional number, κ
- Steepest descent can converge quickly if a fortunate starting point is chosen, but is usually at worst when κ is large

Conjugate gradient as a direct method

- We want to solve a system of linear systems: $A \mathbf{x}=\mathbf{b}$ where $A \in \mathbb{R}^{m \times m}$ is symmetric and positive
- Two non-zero vectors \mathbf{u} and \mathbf{v} are conjugate with respect to A if

$$
\mathbf{u}^{\top} A \mathbf{v}=0
$$

- Since A is symmetric and positive definite

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{A}=\left\langle A^{\top} \mathbf{u}, \mathbf{v}\right\rangle=\langle A \mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{u}, A \mathbf{v}\rangle=\mathbf{u}^{\top} A \mathbf{v}
$$

- Suppose $\left\{\mathbf{p}_{n}\right\}$ is a sequence of m mutually conjugate directions, then the \mathbf{p}_{n} form a basis of \mathbb{R}^{m} and we can expand the solution \mathbf{x}_{*} (unique solution of $A \mathbf{x}=\mathbf{b}$) in this basis

$$
\mathbf{x}_{*}=\sum_{i=1}^{m} \alpha_{i} \mathbf{p}_{i}
$$

- The coefficients are given by

$$
\begin{aligned}
\mathbf{b} & =A \mathbf{x}_{*}=\sum_{i=1}^{m} \alpha_{i} A \mathbf{p}_{i} \\
\mathbf{p}_{n}^{\top} \mathbf{b} & =\mathbf{p}_{n}^{\top} A \mathbf{x}_{*}=\sum_{i=1}^{m} \alpha_{i} \mathbf{p}_{n}^{\top} A \mathbf{p}_{i}=\alpha_{n} \mathbf{p}_{n}^{\top} A \mathbf{p}_{n} \\
\alpha_{n} & =\frac{\mathbf{p}_{n}^{\top} \mathbf{b}}{\mathbf{p}_{n}^{\top} A \mathbf{p}_{n}}=\frac{\left\langle\mathbf{p}_{n}, \mathbf{b}\right\rangle}{\left\langle\mathbf{p}_{n}, \mathbf{p}_{n}\right\rangle_{A}}=\frac{\left\langle\mathbf{p}_{n}, \mathbf{b}\right\rangle}{\left\|\mathbf{p}_{n}\right\|_{A}^{2}}
\end{aligned}
$$

Conjugate gradient as a direct method (cont'd)

- First find a sequence of n conjugate directions and then compute the coefficients (require only inner products)
- How to find conjugate directions?
- Gram-Schmidt conjugations: Start with n linearly independent vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$
- For each vector, subtract those parts that are not A-orthogonal to the other processed vectors

$$
\begin{aligned}
\mathbf{p}_{n} & =\mathbf{u}_{n}+\sum_{k=1}^{n} \beta_{n k} \mathbf{p}_{k} \\
\beta_{n j} & =-\frac{\mathbf{u}_{n}^{\top} A \mathbf{p}_{j}}{\mathbf{p}_{j}^{\top} A \mathbf{p}_{j}}
\end{aligned}
$$

- Problem: Gram-Schmidt conjugation is slow and we have to store all the vectors that we have created

Conjugate gradient as an iterative method

- If we choose the conjugate vectors \mathbf{p}_{n} carefully, we may not need all of them to obtain a good approximation
- Also, the direct method does not scale well when m is large
- Without loss of generality, assume the initial guess $\mathbf{x}_{0}=0$
- Need a metric to tell us whether we are getting closer to \mathbf{x}_{*}

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} A \mathbf{x}-\mathbf{b}^{\top} \mathbf{x} \quad, \mathbf{x} \in \mathbb{R}^{m}
$$

where $\nabla f(\mathbf{x})=A \mathbf{x}-\mathbf{b}$

- This suggests taking the first basis vector \mathbf{p}_{1} to be the gradient of f at \mathbf{x}_{0}, i.e., $A \mathbf{x}_{0}-\mathbf{b}$
- Since $\mathbf{x}_{0}=0, \mathbf{p}_{1}=-\mathbf{b}$
- The other direction vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method

Conjugate gradient as an iterative method (cont'd)

- Let \mathbf{r}_{n} be the residual at n-th step: $\mathbf{r}_{n}=\mathbf{b}-A \mathbf{x}_{n}$
- Note that \mathbf{r}_{n} is the negative gradient of f at $\mathbf{x}=\mathbf{x}_{n}$, so the gradient descent method would be to move in the direction of \mathbf{r}_{n}
- Here we insist the directions \mathbf{p}_{n} are conjugate to each other, so we take the direction closest to the gradient \mathbf{r}_{n} under the conjugacy constraint

$$
\mathbf{p}_{n+1}=\mathbf{r}_{n}-\frac{\mathbf{p}_{n}^{\top} A \mathbf{r}_{n}}{\mathbf{p}_{n}^{\top} A \mathbf{p}_{n}} \mathbf{p}_{n}
$$

(green: steepest descent, red: conjugate gradient descent)

Conjugate gradients

- The conjugate gradient (CG) iteration is the "original" Krylov subspace iteration
- The most famous of these methods and one the mainstays of scientific computing
- Discovered by Hestenes and Stiefel in 1952, it solves symmetric positive definite systems of equations amazingly quickly if the eigenvalues are well distributed
- Consider the case of 2-norm in solving a nonsingular system of equations $A \mathbf{x}=\mathbf{b}$ with exact solution $\mathbf{x}_{*}=A^{-1} \mathbf{b}$
- Let \mathcal{K}_{n} denote the n-th Krylov subspace generated by \mathbf{b}

$$
\mathcal{K}_{n}=\left\langle\mathbf{b}, A \mathbf{b}, \ldots, A^{n-1} \mathbf{b}\right\rangle
$$

- One approach to minimize 2-norm of the residual is based on the Krylov subspace is GMRES

Minimizing the 2-norm of the residual

- In GMRES, at step n, \mathbf{x}_{*} is approximated by the vector $\mathbf{x}_{n} \in \mathcal{K}_{n}$ that minimizes $\left\|\mathbf{r}_{n}\right\|_{2}$ where $\mathbf{r}_{n}=\mathbf{b}-A \mathbf{x}_{n}$
- The usual GMRES algorithm does more work than is necessary for minimizing $\left\|\mathbf{r}_{n}\right\|_{2}$
- When A is symmetric, faster algorithms are available based on three-term instead of $(n+1)$-term recurrences at step n
- One of these goes by the names of conjugate residuals or MINRES (minimal residuals)

Minimize the A-norm of the error

- Assume that A is real, symmetric, and positive definite
- That means the eigenvalues of A are all positive or equivalently, that $\mathbf{x}^{\top} A \mathbf{x}>0$ for every nonzero $\mathbf{x} \in \mathbb{R}^{m}$
- Under this assumption, the function $\|\cdot\|_{A}$ defined by

$$
\|\mathbf{x}\|_{A}=\sqrt{\mathbf{x}^{\top} A \mathbf{x}}
$$

is the A -norm on \mathbb{R}^{m}

- The vector whose A-norm will concern us is $\mathbf{e}_{n}=\mathbf{x}_{*}-\mathbf{x}_{n}$, the error at step n
- The conjugate gradient iteration is a system of recurrence formulas that
- generated the unique sequence of iterates $\left\{\mathbf{x} \in \mathcal{K}_{n}\right\}$
- with the property that at step $n,\left\|\mathbf{e}_{n}\right\|_{A}$ is minimized
- Will reveal the use of orthogonality in minimizing $\left\|\mathbf{e}_{n}\right\|_{A}$

The conjugate gradient iteration

- To solve $A \mathbf{x}=\mathbf{b}$
- Algorithm:

$$
\begin{aligned}
& \mathbf{x}_{0}=\mathbf{0}, \mathbf{r}_{0}=\mathbf{b}, \mathbf{p}_{0}=\mathbf{r}_{0} \\
& \text { for } n=1,2,3, \ldots \mathbf{d o} \\
& \alpha_{n}=\left(\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}\right) /\left(\mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-1}\right) \quad / / \text { step length } \\
& \mathbf{x}_{n}=\mathbf{x}_{n-1}+\alpha_{n} \mathbf{p}_{n-1} \quad / / \text { approximate solution } \\
& \mathbf{r}_{n}=\mathbf{r}_{n-1}-\alpha_{n} A \mathbf{p}_{n-1} \quad / / \text { residual } \\
& \beta_{n}=\left(\mathbf{r}_{n}^{\top} \mathbf{r}_{n}\right) /\left(\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}\right) / / \text { improvement this step } \\
& \mathbf{p}_{n}=\mathbf{r}_{n}+\beta_{n} \mathbf{p}_{n-1} \quad / / \text { search direction }
\end{aligned}
$$

end for

- Very simple - programmable in a few lines of MATLAB
- Deals only with m-vectors, not with individual entries of vectors or matrices
- The only complication is the choice of a convergence criterion

The conjugate gradient iteration (cont'd)

- At each step, the conjugate gradient iteration involves several vector manipulation and one matrix-vector product, the computation of $A \mathbf{p}_{n-1}$
- If A is dense and unstructured, the matrix-vector product dominates the operation count, $O\left(m^{2}\right)$ flops for each step
- If A is sparse or has other structure that can be exploited, the operation count may be as low as $O(m)$ flops per step

The conjugate gradient iteration (cont'd)

Theorem

Let the conjugate gradient iteration be applied to a symmetric positive definite matrix problem $A \mathbf{x}=\mathbf{b}$. As long as the iteration has not yet converged (i.e., $\mathbf{r}_{n-1} \neq 0$), the algorithm proceeds without divisions by zero, and we have the following identities of subspaces:

$$
\begin{align*}
\mathcal{K}_{n} & =\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\rangle \\
& =\left\langle\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right\rangle \tag{1}\\
& =\left\langle\mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{n-1}\right\rangle
\end{align*}=\left\langle\mathbf{b}, A \mathbf{b}, \ldots, A^{n-1} \mathbf{b}\right\rangle,
$$

Moreover, the residuals are orthogonal

$$
\begin{equation*}
\mathbf{r}_{n}^{\top} \mathbf{r}_{j}=0 \quad(j<n) \tag{2}
\end{equation*}
$$

and the search directions are A-conjugate

$$
\begin{equation*}
\mathbf{p}_{n}^{\top} A \mathbf{p}_{j}=0 \quad(j<n) \tag{3}
\end{equation*}
$$

The conjugate gradient iteration (cont'd)

- (Proof by induction) From the initial guess $x_{0}=0$ and the formula $\mathbf{x}_{n}=\mathbf{x}_{n-1}+\alpha_{n} \mathbf{p}_{n-1}$, it follows by induction that \mathbf{x}_{n} belongs to $\left\langle\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right\rangle$
- From $\mathbf{p}_{n}=\mathbf{r}_{n}+\beta_{n} \mathbf{p}_{n-1}$, it follows that this is the same as $\left\langle\mathbf{r}_{o}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{n-1}\right\rangle$
- From $\mathbf{r}_{n}=\mathbf{r}_{n-1}-\alpha_{n} A \mathbf{p}_{n-1}$, it follows that this is the same as $\left\langle\mathbf{b}, A \mathbf{b}, \ldots, A^{n-1} \mathbf{b}\right\rangle$
- To prove (2), apply the formula $\mathbf{r}_{n}=\mathbf{r}_{n-1}-\alpha_{n} A \mathbf{p}_{n-1}$ and the identity $\left(A \mathbf{p}_{n-1}\right)^{\top}=\mathbf{p}_{n-1}^{\top} A$ to compute

$$
\mathbf{r}_{n}^{\top} \mathbf{r}_{j}=\mathbf{r}_{n-1}^{\top} \mathbf{r}_{j}-\alpha_{n} \mathbf{p}_{n-1}^{\top} A \mathbf{r}_{j}
$$

- If $j<n-1$, both terms on the right are zero by induction
- If $j=n-1$, the difference on the right is zero provided $\alpha_{n}=\left(\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}\right) /\left(\mathbf{p}_{n-1}^{\top} A \mathbf{r}_{n-1}\right)$
- Note it is almost the same as the line $\alpha_{n}=\left(\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}\right) /\left(\mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-1}\right)$
- Since \mathbf{p}_{n-1} and \mathbf{r}_{n-1} differ by $\beta_{n-1} \mathbf{p}_{n-2}$, the effect of this replacement is to change the denominator by $\beta_{n-1} \mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-2}$, which is zero by induction

The conjugate gradient iteration (cont'd)

- To prove (3), we apply the formula $\mathbf{p}_{n}=\mathbf{r}_{n}+\beta_{n} \mathbf{p}_{n-1}$ to compute

$$
\mathbf{p}_{n}^{\top} A \mathbf{p}_{j}=\mathbf{r}_{n}^{\top} A \mathbf{p}_{j}+\beta_{n} \mathbf{p}_{n-1}^{\top} A \mathbf{p}_{j}
$$

- If $j<n-1$, both terms on the right are again zero by induction
- If $j=n-1$, the sum on the right is zero provided $\beta_{n}=-\left(\mathbf{r}_{n}^{\top} A \mathbf{p}_{n-1}\right) /\left(\mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-1}\right)$, which we can write equivalently in the from $\beta_{n}=\left(-\alpha_{n} \mathbf{r}_{n}^{\top} A \mathbf{p}_{n-1}\right) /\left(\alpha_{n} \mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-1}\right)$
- Recall $\mathbf{r}_{n}=\mathbf{r}_{n-1}+\alpha_{n} \mathbf{p}_{n-1}$ and $\mathbf{r}_{n}^{\top} \mathbf{r}_{n}=\mathbf{r}_{n}^{\top}\left(\mathbf{r}_{n-1}+\alpha_{n} \mathbf{p}_{n-1}\right)=$ $\alpha_{n} \mathbf{r}_{n}^{\top} \mathbf{p}_{n-1}$
- Likewise, use $\mathbf{r}_{n}=\mathbf{r}_{n-1}-\alpha_{n} A \mathbf{p}_{n-1}$ and $\mathbf{p}_{n}=\mathbf{r}_{n}+\beta_{n} \mathbf{p}_{n-1}$ to show $\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}=\mathbf{r}_{n-1}^{\top}\left(\mathbf{r}_{n}+\alpha_{n} A \mathbf{p}_{n-1}\right)=\left(\mathbf{p}_{n-1}-\beta_{n-1} \mathbf{p}_{n-2}\right)^{\top} \alpha_{n} A \mathbf{p}_{n-1}=$ $\mathbf{p}_{n-1}^{\top}\left(\alpha_{n} A \mathbf{p}_{n-1}\right)$
- This is the same as the line $\beta_{n}=\left(\mathbf{r}_{n}^{\top} \mathbf{r}_{n}\right) /\left(\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}\right)$ except that $\mathbf{r}_{n}^{\top} \mathbf{r}_{n}$ has been replaced by $\mathbf{r}_{n}^{\top}\left(-\alpha_{n} A \mathbf{p}_{n-1}\right)$ and $\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}$ has been replaced by $\mathbf{p}_{n-1}^{\top}\left(\alpha_{n} A \mathbf{p}_{n-1}\right)$

