EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang

Lecture 20

1/20

Overview

- Steepest descent
- Conjugate gradient

Reading

- Chapter 38 of *Numerical Linear Algebra* by Llyod Trefethen and David Bau
- Chapter 10 of *Matrix Computations* by Gene Golub and Charles Van Loan
- "An Introduction to Conjugate Gradient Method Without the Agonizing Pain" by Jonathan Shewchuk

Quadratic form

• For real symmetric A, a quadratic form is simply a scalar

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x} + c$$

Setting the gradient to zero

$$abla f(\mathbf{x}) = A\mathbf{x} - \mathbf{b} = 0 \Longrightarrow A\mathbf{x} = \mathbf{b}$$

- The solution to $A\mathbf{x} = \mathbf{b}$, \mathbf{x}_* , is a critical point of $f(\mathbf{x})$
- If A is positive definite as well, then at arbitrary point p

$$f(\mathbf{p}) = f(\mathbf{x}_*) + \frac{1}{2}(\mathbf{p} - \mathbf{x}_*)^\top A(\mathbf{p} - \mathbf{x}_*) \ge 0$$

and the latter term is positive for all $\mathbf{p} \neq \mathbf{x}_*$ (and \mathbf{x}_* is a global minimum of f)

Quadratic form (cont'd)

•
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x} + c$$

- At \mathbf{x}_* , $A\mathbf{x}_* = \mathbf{b}$
- Let $\mathbf{e} = \mathbf{p} \mathbf{x}_*$

$$f(\mathbf{p}) = f(\mathbf{x}_* + \mathbf{e}) = \frac{1}{2}(\mathbf{x}_* + \mathbf{e})^\top A(\mathbf{x}_* + \mathbf{e}) - \mathbf{b}^\top (\mathbf{x}_* + \mathbf{e}) + c$$

$$= \frac{1}{2}\mathbf{x}_*^\top A\mathbf{x}_* + \mathbf{e}^\top A\mathbf{x}_* + \frac{1}{2}\mathbf{e}^\top A\mathbf{e} - \mathbf{b}^\top \mathbf{e} + c$$

$$= \frac{1}{2}\mathbf{x}_*^\top A\mathbf{x}_* - \mathbf{b}^\top \mathbf{x}_* + c + \mathbf{e}^\top \mathbf{b} + \frac{1}{2}\mathbf{e}^\top A\mathbf{e} - \mathbf{b}^\top \mathbf{e}$$

$$= f(\mathbf{x}_*) + \frac{1}{2}\mathbf{e}^\top A\mathbf{e}$$

5/20

Steepest descent

- Start at an arbitrary point \mathbf{x}_0 and slide down to the bottom of the paraboloid by taking a series of steps $\mathbf{x}_1, \mathbf{x}_2, \ldots$ until we are satisfied that we are close enough to the solution \mathbf{x}_*
- Choose the direction which *f* decreases most quickly, i.e., the opposite of ∇*f*(**x**_i)

$$-\nabla f(\mathbf{x}_i) = \mathbf{b} - A\mathbf{x}_i$$

- The error e_i = x_i x_{*} is a vector that indicates how far we are from the solution
- The residual $\mathbf{r}_i = \mathbf{b} A\mathbf{x}_i$ indicates how far we are from the correct value of \mathbf{b}
- It is easy to see that r_i = -Ae_i, and residual is being the error transformed by A into the same space as b
- More importantly,

$$\mathbf{r}_i = -\nabla f(\mathbf{x}_i)$$

• Can think of residual as the direction of steepest descent

Steepest descent (cont'd)

After finding the direction, move to the next point

$$\mathbf{x}_i = \mathbf{x}_{i-1} + \alpha \mathbf{r}_{i-1}$$

- How big is the step?
- A line search is a procedure that chooses α to minimize f along a line
- From basic calculus, α minimizes f when the directional derivative $\frac{d}{d\alpha}f(\mathbf{x}_i)$ is equal to zero $\frac{d}{d\alpha}f(\mathbf{x}_i) = \nabla f(\mathbf{x}_i)^{\top} \frac{d}{d\alpha} \mathbf{x}_i = \nabla f(\mathbf{x}_i)^{\top} \mathbf{r}_{i-1} = -\mathbf{r}_i^{\top} \mathbf{r}_{i-1}$

• To determine α

$$\mathbf{r}_{i}^{\top}\mathbf{r}_{i-1} = 0$$

$$(\mathbf{b} - A\mathbf{x}_{i})^{\top}\mathbf{r}_{i-1} = 0$$

$$(\mathbf{b} - A(\mathbf{x}_{i-1} + \alpha\mathbf{r}_{i-1}))^{\top}\mathbf{r}_{i-1} = 0$$

$$(\mathbf{b} - A\mathbf{x}_{i-1})^{\top}\mathbf{r}_{i-1} - \alpha(A\mathbf{r}_{i-1})^{\top}\mathbf{r}_{i-1} = 0$$

$$(\mathbf{b} - A\mathbf{x}_{i-1})^{\top}\mathbf{r}_{i-1} = \alpha(A\mathbf{r}_{i-1})^{\top}\mathbf{r}_{i-1}$$

$$\mathbf{r}_{i-1}^{\top}\mathbf{r}_{i-1} = \alpha\mathbf{r}_{i-1}^{\top}(A\mathbf{r}_{i-1})$$

$$\alpha = \frac{\mathbf{r}_{i-1}^{\top}\mathbf{r}_{i-1}}{\mathbf{r}_{i-1}^{\top}A\mathbf{r}_{i-1}}$$

Steepest descent (cont'd)

• Put it all together,

$$\mathbf{r}_{i-1} = \mathbf{b} - A\mathbf{x}_{i-1}$$

$$\alpha_i = \frac{\mathbf{r}_{i-1}^{\top}\mathbf{r}_{i-1}}{\mathbf{r}_{i-1}^{\top}A\mathbf{r}_{i-1}}$$

$$\mathbf{x}_i = \mathbf{x}_{i-1} + \alpha_i\mathbf{r}_{i-1}$$

• Can save computation by multiply -A to the above equation and adding **b** on both sides

$$\mathbf{r}_i = \mathbf{r}_{i-1} - \alpha_i A \mathbf{r}_{i-1}$$

- Steepest descent often finds itself taking steps in the same directions as earlier steps
- Convergence rate depends on the conditional number, κ
- Steepest descent can converge quickly if a fortunate starting point is chosen, but is usually at worst when κ is large

Conjugate gradient as a direct method

- We want to solve a system of linear systems: $A\mathbf{x} = \mathbf{b}$ where $A \in \mathbb{R}^{m \times m}$ is symmetric and positive
- Two non-zero vectors **u** and **v** are conjugate with respect to A if

$$\mathbf{u}^{\top}A\mathbf{v}=\mathbf{0}$$

• Since A is symmetric and positive definite

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathcal{A}} = \langle \mathcal{A}^{\top} \mathbf{u}, \mathbf{v} \rangle = \langle \mathcal{A} \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathcal{A} \mathbf{v} \rangle = \mathbf{u}^{\top} \mathcal{A} \mathbf{v}$$

 Suppose {p_n} is a sequence of m mutually conjugate directions, then the p_n form a basis of IR^m and we can expand the solution x_{*} (unique solution of Ax = b) in this basis

$$\mathbf{x}_* = \sum_{i=1}^m \alpha_i \mathbf{p}_i$$

• The coefficients are given by

$$\mathbf{b} = A\mathbf{x}_{*} = \sum_{i=1}^{m} \alpha_{i} A\mathbf{p}_{i}$$

$$\mathbf{p}_{n}^{\top} \mathbf{b} = \mathbf{p}_{n}^{\top} A\mathbf{x}_{*} = \sum_{i=1}^{m} \alpha_{i} \mathbf{p}_{n}^{\top} A\mathbf{p}_{i} = \alpha_{n} \mathbf{p}_{n}^{\top} A\mathbf{p}_{n}$$

$$\alpha_{n} = \frac{\mathbf{p}_{n}^{\top} \mathbf{b}}{\mathbf{p}_{n}^{\top} A\mathbf{p}_{n}} = \frac{\langle \mathbf{p}_{n}, \mathbf{b} \rangle}{\langle \mathbf{p}_{n}, \mathbf{p}_{n} \rangle_{A}} = \frac{\langle \mathbf{p}_{n}, \mathbf{b} \rangle}{\|\mathbf{p}_{n}\|_{A}^{2}}$$

Conjugate gradient as a direct method (cont'd)

- First find a sequence of *n* conjugate directions and then compute the coefficients (require only inner products)
- How to find conjugate directions?
- Gram-Schmidt conjugations: Start with *n* linearly independent vectors **u**₁,..., **u**_n
- For each vector, subtract those parts that are not A-orthogonal to the other processed vectors

$$\mathbf{p}_n = \mathbf{u}_n + \sum_{k=1}^n \beta_{nk} \mathbf{p}_k$$

$$\beta_{nj} = -\frac{\mathbf{u}_n^\top A \mathbf{p}_j}{\mathbf{p}_j^\top A \mathbf{p}_j}$$

• Problem: Gram-Schmidt conjugation is slow and we have to store all the vectors that we have created

Conjugate gradient as an iterative method

- If we choose the conjugate vectors p_n carefully, we may not need all of them to obtain a good approximation
- Also, the direct method does not scale well when *m* is large
- Without loss of generality, assume the initial guess $\mathbf{x}_0 = \mathbf{0}$
- $\bullet\,$ Need a metric to tell us whether we are getting closer to x_*

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x} \quad , \mathbf{x} \in \mathbb{R}^{m}$$

where $\nabla f(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$

- This suggests taking the first basis vector p₁ to be the gradient of f at x₀, i.e., Ax₀ b
- Since $\mathbf{x}_0 = \mathbf{0}$, $\mathbf{p}_1 = -\mathbf{b}$
- The other direction vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method

Conjugate gradient as an iterative method (cont'd)

- Let \mathbf{r}_n be the residual at *n*-th step: $\mathbf{r}_n = \mathbf{b} A\mathbf{x}_n$
- Note that \mathbf{r}_n is the negative gradient of f at $\mathbf{x} = \mathbf{x}_n$, so the gradient descent method would be to move in the direction of \mathbf{r}_n
- Here we insist the directions p_n are conjugate to each other, so we take the direction closest to the gradient r_n under the conjugacy constraint

$$\mathbf{p}_{n+1} = \mathbf{r}_n - \frac{\mathbf{p}_n^{\top} A \mathbf{r}_n}{\mathbf{p}_n^{\top} A \mathbf{p}_n} \mathbf{p}_n$$

(green: steepest descent, red: conjugate gradient descent)

Conjugate gradients

- The conjugate gradient (CG) iteration is the "original" Krylov subspace iteration
- The most famous of these methods and one the mainstays of scientific computing
- Discovered by Hestenes and Stiefel in 1952, it solves symmetric positive definite systems of equations amazingly quickly if the eigenvalues are well distributed
- Consider the case of 2-norm in solving a nonsingular system of equations $A\mathbf{x} = \mathbf{b}$ with exact solution $\mathbf{x}_* = A^{-1}\mathbf{b}$
- Let \mathcal{K}_n denote the *n*-th Krylov subspace generated by **b**

$$\mathcal{K}_n = \langle \mathbf{b}, A\mathbf{b}, \dots, A^{n-1}\mathbf{b} \rangle$$

• One approach to minimize 2-norm of the residual is based on the Krylov subspace is GMRES

Minimizing the 2-norm of the residual

- In GMRES, at step *n*, \mathbf{x}_* is approximated by the vector $\mathbf{x}_n \in \mathcal{K}_n$ that minimizes $\|\mathbf{r}_n\|_2$ where $\mathbf{r}_n = \mathbf{b} A\mathbf{x}_n$
- The usual GMRES algorithm does more work than is necessary for minimizing ||r_n||₂
- When A is symmetric, faster algorithms are available based on three-term instead of (n + 1)-term recurrences at step n
- One of these goes by the names of conjugate residuals or MINRES (minimal residuals)

Minimize the A-norm of the error

- Assume that A is real, symmetric, and positive definite
- That means the eigenvalues of A are all positive or equivalently, that $\mathbf{x}^{\top} A \mathbf{x} > 0$ for every nonzero $\mathbf{x} \in {\rm I\!R}^m$
- Under this assumption, the function $\|\cdot\|_A$ defined by

$$\|\mathbf{x}\|_{\mathcal{A}} = \sqrt{\mathbf{x}^{\top} \mathcal{A} \mathbf{x}}$$

is the A-norm on ${\rm I\!R}^m$

- The vector whose A-norm will concern us is e_n = x_{*} x_n, the error at step n
- The conjugate gradient iteration is a system of recurrence formulas that
 - generated the unique sequence of iterates $\{\mathbf{x} \in \mathcal{K}_n\}$
 - with the property that at step n, $\|\mathbf{e}_n\|_A$ is minimized
- \bullet Will reveal the use of orthogonality in minimizing $\|\mathbf{e}_n\|_A$

The conjugate gradient iteration

- To solve $A\mathbf{x} = \mathbf{b}$
- Algorithm:

$$\begin{aligned} \mathbf{x}_{0} &= \mathbf{0}, \ \mathbf{r}_{0} = \mathbf{b}, \ \mathbf{p}_{0} = \mathbf{r}_{0} \\ \text{for } n &= 1, 2, 3, \dots \text{ do} \\ \alpha_{n} &= (\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}) / (\mathbf{p}_{n-1}^{\top} A \mathbf{p}_{n-1}) \quad // \text{ step length} \\ \mathbf{x}_{n} &= \mathbf{x}_{n-1} + \alpha_{n} \mathbf{p}_{n-1} \quad // \text{ approximate solution} \\ \mathbf{r}_{n} &= \mathbf{r}_{n-1} - \alpha_{n} A \mathbf{p}_{n-1} \quad // \text{ residual} \\ \beta_{n} &= (\mathbf{r}_{n}^{\top} \mathbf{r}_{n}) / (\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}) \quad // \text{ improvement this step} \\ \mathbf{p}_{n} &= \mathbf{r}_{n} + \beta_{n} \mathbf{p}_{n-1} \quad // \text{ search direction} \\ \text{end for} \end{aligned}$$

- Very simple programmable in a few lines of MATLAB
- Deals only with *m*-vectors, not with individual entries of vectors or matrices
- The only complication is the choice of a convergence criterion

- At each step, the conjugate gradient iteration involves several vector manipulation and one matrix-vector product, the computation of $A\mathbf{p}_{n-1}$
- If A is dense and unstructured, the matrix-vector product dominates the operation count, $O(m^2)$ flops for each step
- If A is sparse or has other structure that can be exploited, the operation count may be as low as O(m) flops per step

Theorem

Let the conjugate gradient iteration be applied to a symmetric positive definite matrix problem $A\mathbf{x} = \mathbf{b}$. As long as the iteration has not yet converged (i.e., $\mathbf{r}_{n-1} \neq 0$), the algorithm proceeds without divisions by zero, and we have the following identities of subspaces:

$$\begin{aligned} \mathcal{K}_n &= \langle \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \rangle &= \langle \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{n-1} \rangle \\ &= \langle \mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{n-1} \rangle &= \langle \mathbf{b}, A \mathbf{b}, \dots, A^{n-1} \mathbf{b} \rangle \end{aligned}$$
 (1)

Moreover, the residuals are orthogonal

$$\mathbf{r}_n^\top \mathbf{r}_j = 0 \quad (j < n) \tag{2}$$

and the search directions are A-conjugate

$$\mathbf{p}_n^\top A \mathbf{p}_j = 0 \quad (j < n) \tag{3}$$

イロト イポト イヨト イヨト

18/20

- (Proof by induction) From the initial guess $\mathbf{x}_0 = 0$ and the formula $\mathbf{x}_n = \mathbf{x}_{n-1} + \alpha_n \mathbf{p}_{n-1}$, it follows by induction that \mathbf{x}_n belongs to $\langle \mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{n-1} \rangle$
- From $\mathbf{p}_n = \mathbf{r}_n + \beta_n \mathbf{p}_{n-1}$, it follows that this is the same as $\langle \mathbf{r}_o, \mathbf{r}_1, \dots, \mathbf{r}_{n-1} \rangle$
- From $\mathbf{r}_n = \mathbf{r}_{n-1} \alpha_n A \mathbf{p}_{n-1}$, it follows that this is the same as $\langle \mathbf{b}, A \mathbf{b}, \dots, A^{n-1} \mathbf{b} \rangle$
- To prove (2), apply the formula $\mathbf{r}_n = \mathbf{r}_{n-1} \alpha_n A \mathbf{p}_{n-1}$ and the identity $(A\mathbf{p}_{n-1})^\top = \mathbf{p}_{n-1}^\top A$ to compute $\mathbf{r}_n^\top \mathbf{r}_i = \mathbf{r}_{n-1}^\top \mathbf{r}_i \alpha_n \mathbf{p}_{n-1}^\top A \mathbf{r}_i$
- If j < n 1, both terms on the right are zero by induction
- If j = n 1, the difference on the right is zero provided $\alpha_n = (\mathbf{r}_{n-1}^\top \mathbf{r}_{n-1})/(\mathbf{p}_{n-1}^\top A \mathbf{r}_{n-1})$
- Note it is almost the same as the line $\alpha_n = (\mathbf{r}_{n-1}^\top \mathbf{r}_{n-1})/(\mathbf{p}_{n-1}^\top A \mathbf{p}_{n-1})$
- Since \mathbf{p}_{n-1} and \mathbf{r}_{n-1} differ by $\beta_{n-1}\mathbf{p}_{n-2}$, the effect of this replacement is to change the denominator by $\beta_{n-1}\mathbf{p}_{n-1}^{\top}A\mathbf{p}_{n-2}$, which is zero by induction

- To prove (3), we apply the formula $\mathbf{p}_n = \mathbf{r}_n + \beta_n \mathbf{p}_{n-1}$ to compute $\mathbf{p}_n^\top A \mathbf{p}_j = \mathbf{r}_n^\top A \mathbf{p}_j + \beta_n \mathbf{p}_{n-1}^\top A \mathbf{p}_j$
- If j < n 1, both terms on the right are again zero by induction
- If j = n 1, the sum on the right is zero provided $\beta_n = -(\mathbf{r}_n^\top A \mathbf{p}_{n-1})/(\mathbf{p}_{n-1}^\top A \mathbf{p}_{n-1})$, which we can write equivalently in the from $\beta_n = (-\alpha_n \mathbf{r}_n^\top A \mathbf{p}_{n-1})/(\alpha_n \mathbf{p}_{n-1}^\top A \mathbf{p}_{n-1})$
- Recall $\mathbf{r}_n = \mathbf{r}_{n-1} + \alpha_n \mathbf{p}_{n-1}$ and $\mathbf{r}_n^\top \mathbf{r}_n = \mathbf{r}_n^\top (\mathbf{r}_{n-1} + \alpha_n \mathbf{p}_{n-1}) = \alpha_n \mathbf{r}_n^\top \mathbf{p}_{n-1}$
- Likewise, use $\mathbf{r}_n = \mathbf{r}_{n-1} \alpha_n A \mathbf{p}_{n-1}$ and $\mathbf{p}_n = \mathbf{r}_n + \beta_n \mathbf{p}_{n-1}$ to show $\mathbf{r}_{n-1}^\top \mathbf{r}_{n-1} = \mathbf{r}_{n-1}^\top (\mathbf{r}_n + \alpha_n A \mathbf{p}_{n-1}) = (\mathbf{p}_{n-1} - \beta_{n-1} \mathbf{p}_{n-2})^\top \alpha_n A \mathbf{p}_{n-1} = \mathbf{p}_{n-1}^\top (\alpha_n A \mathbf{p}_{n-1})$
- This is the same as the line $\beta_n = (\mathbf{r}_n^{\top} \mathbf{r}_n)/(\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1})$ except that $\mathbf{r}_n^{\top} \mathbf{r}_n$ has been replaced by $\mathbf{r}_n^{\top}(-\alpha_n A \mathbf{p}_{n-1})$ and $\mathbf{r}_{n-1}^{\top} \mathbf{r}_{n-1}$ has been replaced by $\mathbf{p}_{n-1}^{\top}(\alpha_n A \mathbf{p}_{n-1})$