EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 2

Overview

- Basic definition: vector space, norm, subspace, linear independence, convexity, normed linear spaces, range, rank, null space, matrix inverse
- Elementary analytical and topological properties

Reading

- Chapter 1-3 of Numerical Linear Algebra by Trefethen and Bau
- Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl Meyer
- Chapter 2 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 3 and Chapter 4 of Matrix Algebra From a Statistician's Perspective by David Harville
- Chapter 2 of Optimization by Vector Space Methods by David Luenberger

Vector space

- A vector space X is a set of elements called vectors together with two operations.
- Vector addition: let $\mathbf{x}, \mathbf{y} \in X$, then $\mathbf{x}+\mathbf{y} \in X$
- Scalar multiplication: let $\mathbf{x} \in X$ and α be any scalar, then $\alpha \mathbf{x} \in X$
- Axioms:
- $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ (commutative law)
- $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ (associative law)
- $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$ (associative law)
- There is a null (zero) vector $\mathbf{0} \in \mathbf{X}$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}, \forall \mathbf{x} \in X$.
- $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$ (distributive law)
- $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$ (distributive law)
- $0 x=0,1 x=x$

Cartesian product

- Let X and Y be vector spaces over the same field of scalars. Then the Cartesian product of X, and Y, denoted $X \times Y$, consists of the collection of ordered pairs (\mathbf{x}, \mathbf{y}) with $\mathbf{x} \in X, \mathbf{y} \in Y$. Addition and scalar multiplication are defined on $X \times Y$ by $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)=\left(\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{y}_{1}+\mathbf{y}_{2}\right)$ and $\alpha(\mathbf{x}, \mathbf{y})=(\alpha \mathbf{x}, \alpha \mathbf{y})$.
- Generalized to product of n vector spaces, $X_{1}, X_{2}, \ldots, X_{n}$. Denote it as X^{n} for the product of a vector space of with itself n times.

Subspace

- A nonempty subset M of a vector space X is a subspace of X if every vector of the form $\alpha \mathbf{x}+\beta \mathbf{y}$ is in M whenever \mathbf{x} and \mathbf{y} are both in M.
- M is a subspace if and only if
- The null vector $\mathbf{0} \in M$.
- If $\mathbf{x}, \mathbf{y} \in M$, then $\mathbf{x}+\mathbf{y} \in M$.
- If α is a scalar and $\mathbf{x} \in M$, then $\alpha \mathbf{x} \in M$.
- The simplest subspace is the set consisting of $\mathbf{0}$ alone.
- In three-dimensional space, a plane passing through the origin is a subspace.
- Let M and N be subspaces of a vector space X. Then the intersection $M \cap N$, of M and N is a subspace of X.
- The sum of two subsets S and T in a vector space, denoted $S+T$, consists of all vectors of the forms $\mathbf{s}+\mathbf{t}$ where $\mathbf{s} \in S$ and $\mathbf{t} \in T$.
- Let M and N be subspaces of a vector space X, then their sum $M+N$ is a subspace of X.

Linear subspace

- A linear combination of the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ in a vector space is a sum of the form $\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{n} \mathbf{x}_{n}$.
- Suppose S is a subset of a vector space X. The set [S], called the subspace generated by S, consists of all vectors in X which are linear combinations of vectors in S.
- The translation of a subspace is a linear variety (affine subspace).
- An affine subspace of \mathbb{R}^{3} is a point $P(x, y)$ or a line whose points are solution of a linear system

$$
\begin{aligned}
& a_{1} x+a_{2} y+a_{3} z=a_{4} \\
& b_{1} x+b_{2} y+b_{3} z=b_{4}
\end{aligned}
$$

or a plane, formed by the solutions of a linear equation

$$
a x+b y+c z=d
$$

These are not necessarily subspaces of vector space \mathbb{R}^{3}, unless \mathbf{x} is the origin or the equations are homogeneous.

- Affine subspace is obtained from a vector space by translation, and in this sense a generalization of linear.

Convexity and cones

- A set K in a linear vector space is convex if, given $\mathbf{x}_{1}, \mathbf{x}_{2} \in K$, all points of the form $\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}$ with $0 \leq \alpha \leq 1$ are in K.
- Let K and G be convex sets in a vector space. Then
- $\alpha K=\{\mathbf{x}: \mathbf{x}=\alpha \mathbf{k}, \mathbf{k} \in K\}$
- $K+G$ is convex
- Let S be an arbitrary set in a linear vector space. The convex hull, denoted $c o(S)$ is the smallest convex set containing S. In other words, $c o(S)$ is the intersection of all convex sets containing S.
- A set C in a linear vector space is a cone with vertex at the origin if $\mathbf{x} \in C$ implies $\alpha \mathbf{x} \in C \forall \alpha \geq 0$.
- $\ln \mathbb{R}^{n}$, the set

$$
P=\left\{\mathbf{x}: \mathbf{x}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}, \xi_{i} \geq 0 \quad \forall i\right\}
$$

defining the positive orthant, is a convex cone.

Linear independence and dimension

- A set of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ is linearly independent if $\sum_{j=1}^{n} \alpha_{j} \mathbf{x}_{j}=\mathbf{0}$ implies $\alpha_{j}=0$ for all $j=1, \ldots, n$.
- Span: span $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}=\left\{\sum_{j=1}^{n} \beta_{i} \mathbf{x}_{i}: \beta_{j} \in \mathbb{R}\right\}$.
- If $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is independent and $\mathbf{y} \in \operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, then \mathbf{y} is a unique linear combination of \mathbf{x}_{i}.
- A finite set S of linearly independent vectors is a basis for the space X if S generates X. A vector space having a finite basis is said to be finite dimensional.
- Usually we characterize a finite-dimensional space by the number of elements in a basis. Thus, a space with a basis consisting of n elements is referred to as n-dimensional space.
- Any two bases for a finite-dimensional vector space contain the same number of elements.

Normed linear spaces

- A normed linear vector space is a vector space X on which there is defined a real-valued function which maps each element \mathbf{x} in X into a real number $\|\mathbf{x}\|$ called the norm of \mathbf{x}. The norm satisfies the following axioms:
- $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in X,\|\mathbf{x}\|=0$ iff $\mathbf{x}=\mathbf{0}$.
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for each $\mathbf{x}, \mathbf{y} \in X$.
- $\|\alpha \mathbf{x}\|=|\alpha| \cdot\|\mathbf{x}\|$ for all scalar α and each $\mathbf{x} \in X$.
- An abstraction of our usual concept of length.
- In a normed linear space,

$$
\|\mathbf{x}\|-\|\mathbf{y}\| \leq\|\mathbf{x}-\mathbf{y}\|
$$

for any two vectors \mathbf{x}, \mathbf{y}.

- A normed linear space is a vector space having a measure of distance defined on it.
- Recall a metric on a set X is a function, $d: X \times X \rightarrow \mathbb{R}$ that satisfies non-negativity, identity, symmetry and triangle inequality conditions.

Normed linear spaces: examples

- Normed linear space $C[a, b]$ consists of continuous functions on the real interval $[a, b]$ together with the norm $\|\mathbf{x}\|=\max _{a \leq t \leq b}|\mathbf{x}(t)|$.

$$
\begin{gathered}
\max |\mathbf{x}(t)+\mathbf{y}(t)| \leq \max (|\mathbf{x}(t)|+|\mathbf{y}(t)|) \leq \max |\mathbf{x}(t)|+\max |\mathbf{y}(t)| \\
\max |\alpha \mathbf{x}(t)|=\max |\alpha||\mathbf{x}(t)|=|\alpha| \max |\mathbf{x}(t)|
\end{gathered}
$$

- Euclidean n-space, denoted E^{n}, consists of n-tuples with the norm of an element $\mathbf{x}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ defined as $\|\mathbf{x}\|=\left(\sum_{i=1}^{n}\left|\xi_{n}\right|^{2}\right)^{1 / 2}$.
- Consider the space $B V[a, b]$ consisting of functions of bounded variation on the interval $[a, b]$. By a partition of the interval $[a, b]$, we mean a finite set of points $t_{i} \in[a, b], i=0,1, \ldots, n$, such that $a=t_{0} \leq t_{1} \cdots \leq t_{n}=b$.
- A function \mathbf{x} defined on $[a, b]$ is of bounded variation if there is a constant K so that for any partition of $[a, b]$

$$
\sum_{i=1}^{n}\left|\mathbf{x}\left(t_{i}\right)-\mathbf{x}\left(t_{i-1}\right)\right| \leq K
$$

Normed linear spaces: examples

- The total variation of \mathbf{x}, denoted $T V(\mathbf{x})$ is defined as

$$
T V(\mathbf{x})=\sup \sum_{i=1}^{n}\left|\mathbf{x}\left(t_{i}\right)-\mathbf{x}\left(t_{i-1}\right)\right|
$$

where the supremum is taken w.r.t. all partitions of $[a, b]$.

- A convenient notation for the total variation

$$
T V(\mathbf{x})=\int_{a}^{b}|d \mathbf{x}(t)|
$$

- The TV of a monotonic function is the absolute value of the difference between function values at the end points a and b.
- The space $B V[a, b]$ is the space of all functions of bounded variation on $[a, b]$ together with the norm defined as

$$
\|\mathbf{x}\|=|\mathbf{x}(a)|+T V(\mathbf{x})
$$

Open and close sets

- An element $\mathbf{x} \in C \subseteq \mathbb{R}^{n}$ is called an interior point of C if there exists an $\varepsilon>0$ such that $\left\{\mathbf{y} \mid\|y-\mathbf{x}\|_{2}<\varepsilon\right\} \subseteq C$, i.e., there exists a ball centered at \mathbf{x} that lies entirely in C.
- The set of all points interior to C is called interior of C, denoted by $\operatorname{int}(C)$.
- A set C is open if $\operatorname{int}(C)=C$, i.e., every point in C is an interior point. For example, $(0,2)$ is open, and $(0,2]$ is not open.
- A set is closed if its complement $\mathbb{R}^{n} \backslash C=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \notin C\right\}$ is open. For example, $[0,2]$ is closed.
- The closure of a set C is $\mathrm{cl}(C)=\mathbb{R}^{n} \backslash \operatorname{int}\left(\mathbb{R}^{n} \backslash C\right)$, i.e., the complement of the interior of the complement of C.
- A point is in the closure of C if for all $\varepsilon>0$, there is a $\mathbf{y} \in C$ with $\|\mathbf{x}-\mathbf{y}\|<\varepsilon$.

Blue points: $x^{2}+y^{2}=r^{2}$, and red points: $x^{2}+y^{2}<r^{2}$. The blue points form a closure set. The red points form an open set. The union of the red and blue points is a boundary set.

Closed sets and convergent sequences

- Can describe closed sets in terms of convergent sequences and limit points.
- A set C is closed if and only if it contains the limit point of every convergent sequences in it.
- In other words, if $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ converges to \mathbf{x} and $\mathbf{x}_{i} \in C$, then $\mathbf{x} \in C$. The closure of C is the set of all limit points of convergent sequences in C.
- The boundary of C is defined as $\operatorname{bd}(C)=\mathrm{cl}(C) \backslash \operatorname{int}(C)$.
- A boundary point \mathbf{x} satisfies the following property: For all $\varepsilon>0$, there exist $\mathbf{y} \in C$ and $\mathbf{z} \notin C$ with

$$
\|\mathbf{y}-\mathbf{x}\|_{2} \leq \varepsilon, \quad\|\mathbf{z}-\mathbf{x}\|_{2} \leq \varepsilon
$$

i.e., there exist arbitrarily close points in C, and also arbitrarily close points not in C.

- C is closed if it contains its boundary, $\operatorname{bd}(C) \subseteq C$. It is open if it contains no boundary points, $C \cap b d(C)=\emptyset$.

Vector norm

- Vector norm: a function that assigns a strictly positive length or size to all vectors \mathbf{x} in a vector space X, other than the zero vector, $\mathbf{0}$, i.e., $f: X \rightarrow \mathbb{R} ; \mathbf{x} \mapsto f(\mathbf{x})$ that satisfies the following properties:

$$
\begin{array}{ll}
f(\mathbf{x}) \geq 0 & \mathbf{x} \in \mathbb{R}^{n},(f(\mathbf{x})=0 \text { iff } \mathbf{x}=\mathbf{0}) \\
f(\mathbf{x}+\mathbf{y}) \leq f(\mathbf{x})+f(\mathbf{y}) & \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} \\
f(\alpha \mathbf{x})=|\alpha| f(\mathbf{x}) & \alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{n}
\end{array}
$$

- A simple example is the 2-dimensional space \mathbb{R}^{2} with Euclidean norm, e.g., a point $(2,5)$ is drawn as an arrow from the origin. As such, Euclidean norm is often known as magnitude.
- Euclidean norm: $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ for $\mathbf{x} \in \mathbb{R}^{n}$.
- Manhattan norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.

Vector norm (cont'd)

- ℓ_{p}-norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ for $p \geq 1$. Note that for $p=1$, we get the ℓ_{1} norm or Manhattan norm, and for $p=2$, we get the Euclidean norm.
- ℓ_{∞}-norm (maximum norm): $\|\mathbf{x}\|_{\infty}=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$.
- When $0<p<1, \ell_{p}$-norm does not define a norm as it violates the triangle inequality. However, the function $d_{p}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}$ defines a metric.
- When $p=0$, the zero norm of \mathbf{x} is defined as $\lim _{p \rightarrow 0}\|\mathbf{x}\|_{p}^{p}$. Define $0^{0}=0$, then we can write the zero norm as $\sum_{i=1}^{n} x_{i}^{0}$, which is simply the number of non-zero elements.
- If $\mathbf{x} \in \mathbb{R}^{n}$, then $\|\mathbf{x}\|_{p} \leq\|\mathbf{x}\|_{q}$ if $p>q$, and $p>0, q>0$, e.g., $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}$.

Vector norm (cont'd)

- Norms play an important role in solving optimization problems.

$$
p \geq 1 \quad p<1 \quad \text { Lasso (left) and ridge (right) regression }
$$

- The residual sum of squares has elliptical contours, centered at the full least squares estimate.
- The constraint region for Lasso is $\left\|x_{1}\right\|+\left\|x_{2}\right\| \leq t$ while the constraint region for ridge regression is $x_{1}^{2}+x_{2}^{2} \leq t^{2}$.
- The diamond has corners and if the solution occurs at a corner, then it has one parameter x_{i} equal to zero.

Vector norm (cont'd)

- For $\mathbf{x} \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
\|\mathbf{x}\|_{2} & \leq\|\mathbf{x}\|_{1} \leq \sqrt{n}\|\mathbf{x}\|_{2} \\
\|\mathbf{x}\|_{\infty} & \leq\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty} \\
\|\mathbf{x}\|_{\infty} & \leq\|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}
\end{aligned}
$$

- Holder inequality: For the ℓ_{p}-norm, we have

$$
\left|\mathbf{x}^{\top} \mathbf{y}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}, \quad \frac{1}{p}+\frac{1}{q}=1
$$

- A special case is the Cauchy-Schwartz inequality,

$$
\left|\mathbf{x}^{\top} \mathbf{y}\right| \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

- The triangle inequality for inner product is often shown using Cauchy-Schwartz inequality

$$
\|\mathbf{x}+\mathbf{y}\|^{2} \leq(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
$$

