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Overview

Basic definition: vector space, norm, subspace, linear independence,
convexity, normed linear spaces, range, rank, null space, matrix inverse

Elementary analytical and topological properties
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Reading

Chapter 1-3 of Numerical Linear Algebra by Trefethen and Bau

Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer

Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan

Chapter 3 and Chapter 4 of Matrix Algebra From a Statistician’s
Perspective by David Harville

Chapter 2 of Optimization by Vector Space Methods by David
Luenberger
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Vector space

A vector space X is a set of elements called vectors together with two
operations.

I Vector addition: let x, y ∈ X , then x + y ∈ X
I Scalar multiplication: let x ∈ X and α be any scalar, then αx ∈ X

Axioms:
I x + y = y + x (commutative law)
I (x + y) + z = x + (y + z) (associative law)
I (αβ)x = α(βx) (associative law)
I There is a null (zero) vector 0 ∈ X such that x + 0 = x, ∀x ∈ X .
I α(x + y) = αx + αy (distributive law)
I (α + β)x = αx + βx (distributive law)
I 0x = 0, 1x = x
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Cartesian product

Let X and Y be vector spaces over the same field of scalars. Then
the Cartesian product of X , and Y , denoted X × Y , consists of the
collection of ordered pairs (x, y) with x ∈ X , y ∈ Y . Addition and
scalar multiplication are defined on X × Y by
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and α(x, y) = (αx, αy).

Generalized to product of n vector spaces, X1,X2, . . . ,Xn. Denote it
as X n for the product of a vector space of with itself n times.
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Subspace

A nonempty subset M of a vector space X is a subspace of X if every
vector of the form αx + βy is in M whenever x and y are both in M.

M is a subspace if and only if
I The null vector 0 ∈ M.
I If x, y ∈ M, then x + y ∈ M.
I If α is a scalar and x ∈ M, then αx ∈ M.

The simplest subspace is the set consisting of 0 alone.

In three-dimensional space, a plane passing through the origin is a
subspace.

Let M and N be subspaces of a vector space X . Then the
intersection M ∩ N, of M and N is a subspace of X .

The sum of two subsets S and T in a vector space, denoted S + T ,
consists of all vectors of the forms s + t where s ∈ S and t ∈ T .

Let M and N be subspaces of a vector space X , then their sum
M + N is a subspace of X .
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Linear subspace
A linear combination of the vectors x1, x2, . . . , xn in a vector space is
a sum of the form α1x1 + α2x2 + · · ·+ αnxn.
Suppose S is a subset of a vector space X . The set [S ], called the
subspace generated by S , consists of all vectors in X which are linear
combinations of vectors in S .
The translation of a subspace is a linear variety (affine subspace).
An affine subspace of IR3 is a point P(x , y) or a line whose points are
solution of a linear system

a1x + a2y + a3z = a4
b1x + b2y + b3z = b4

or a plane, formed by the solutions of a linear equation

ax + by + cz = d

These are not necessarily subspaces of vector space IR3, unless x is
the origin or the equations are homogeneous.
Affine subspace is obtained from a vector space by translation, and in
this sense a generalization of linear.
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Convexity and cones

A set K in a linear vector space is convex if, given x1, x2 ∈ K , all
points of the form αx1 + (1− α)x2 with 0 ≤ α ≤ 1 are in K .

Let K and G be convex sets in a vector space. Then
I αK = {x : x = αk, k ∈ K}
I K + G is convex

Let S be an arbitrary set in a linear vector space. The convex hull,
denoted co(S) is the smallest convex set containing S . In other
words, co(S) is the intersection of all convex sets containing S .

A set C in a linear vector space is a cone with vertex at the origin if
x ∈ C implies αx ∈ C ∀α ≥ 0.

In IRn, the set

P = {x : x = {ξ1, ξ2, . . . , ξn}, ξi ≥ 0 ∀i}

defining the positive orthant, is a convex cone.
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Linear independence and dimension

A set of {x1, x2, . . . , xn} is linearly independent if
∑n

j=1 αjxj = 0
implies αj = 0 for all j = 1, . . . , n.

Span: span {x1, . . . , xn} = {
∑n

j=1 βixi : βj ∈ IR}.
If {x1, . . . , xn} is independent and y ∈ span {x1, . . . , xn}, then y is a
unique linear combination of xi .

A finite set S of linearly independent vectors is a basis for the space
X if S generates X . A vector space having a finite basis is said to be
finite dimensional.

Usually we characterize a finite-dimensional space by the number of
elements in a basis. Thus, a space with a basis consisting of n
elements is referred to as n-dimensional space.

Any two bases for a finite-dimensional vector space contain the same
number of elements.

9 / 18



Normed linear spaces

A normed linear vector space is a vector space X on which there is
defined a real-valued function which maps each element x in X into a
real number ‖x‖ called the norm of x. The norm satisfies the
following axioms:

I ‖x‖ ≥ 0 for all x ∈ X , ‖x‖ = 0 iff x = 0.
I ‖x + y‖ ≤ ‖x‖+ ‖y‖ for each x, y ∈ X .
I ‖αx‖ = |α| · ‖x‖ for all scalar α and each x ∈ X .

An abstraction of our usual concept of length.

In a normed linear space,

‖x‖ − ‖y‖ ≤ ‖x− y‖

for any two vectors x, y.

A normed linear space is a vector space having a measure of distance
defined on it.

Recall a metric on a set X is a function, d : X ×X → IR that satisfies
non-negativity, identity, symmetry and triangle inequality conditions.
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Normed linear spaces: examples

Normed linear space C [a, b] consists of continuous functions on the
real interval [a, b] together with the norm ‖x‖ = maxa≤t≤b |x(t)|.

max |x(t) + y(t)| ≤ max(|x(t)|+ |y(t)|) ≤ max |x(t)|+ max |y(t)|

max |αx(t)| = max |α||x(t)| = |α|max |x(t)|.
Euclidean n-space, denoted En, consists of n-tuples with the norm of
an element x = {ξ1, ξ2, . . . , ξn} defined as ‖x‖ = (

∑n
i=1 |ξn|2)1/2.

Consider the space BV [a, b] consisting of functions of bounded
variation on the interval [a, b]. By a partition of the interval [a, b], we
mean a finite set of points ti ∈ [a, b], i = 0, 1, . . . , n, such that
a = t0 ≤ t1 · · · ≤ tn = b.

A function x defined on [a, b] is of bounded variation if there is a
constant K so that for any partition of [a, b]

n∑
i=1

|x(ti )− x(ti−1)| ≤ K .
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Normed linear spaces: examples

The total variation of x, denoted TV (x) is defined as

TV (x) = sup
n∑

i=1

|x(ti )− x(ti−1)|

where the supremum is taken w.r.t. all partitions of [a, b].

A convenient notation for the total variation

TV (x) =

∫ b

a
|dx(t)|.

The TV of a monotonic function is the absolute value of the
difference between function values at the end points a and b.

The space BV [a, b] is the space of all functions of bounded variation
on [a, b] together with the norm defined as

‖x‖ = |x(a)|+ TV (x).
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Open and close sets

An element x ∈ C ⊆ IRn is called an interior point of C if there exists
an ε > 0 such that {y| ‖y − x‖2 < ε} ⊆ C , i.e., there exists a ball
centered at x that lies entirely in C .

The set of all points interior to C is called interior of C , denoted by
int(C ).

A set C is open if int(C ) = C , i.e., every point in C is an interior
point. For example, (0, 2) is open, and (0, 2] is not open.

A set is closed if its complement IRn\C = {x ∈ IRn|x /∈ C} is open.
For example, [0, 2] is closed.

The closure of a set C is cl(C ) = IRn\int(IRn\C ), i.e., the
complement of the interior of the complement of C .

A point is in the closure of C if for all ε > 0, there is a y ∈ C with
‖x− y‖ < ε.

Blue points: x2 + y2 = r2, and red points: x2 + y2 < r2. The blue points form a closure set. The red points form an

open set. The union of the red and blue points is a boundary set.
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Closed sets and convergent sequences

Can describe closed sets in terms of convergent sequences and limit
points.

A set C is closed if and only if it contains the limit point of every
convergent sequences in it.

In other words, if x1, x2, . . . converges to x and xi ∈ C , then x ∈ C .
The closure of C is the set of all limit points of convergent sequences
in C .

The boundary of C is defined as bd(C ) = cl(C )\int(C ).

A boundary point x satisfies the following property: For all ε > 0,
there exist y ∈ C and z /∈ C with

‖y − x‖2 ≤ ε, ‖z− x‖2 ≤ ε,

i.e., there exist arbitrarily close points in C , and also arbitrarily close
points not in C .

C is closed if it contains its boundary, bd(C ) ⊆ C . It is open if it
contains no boundary points, C ∩ bd(C ) = ∅.
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Vector norm

Vector norm: a function that assigns a strictly positive length or size
to all vectors x in a vector space X , other than the zero vector, 0,
i.e., f : X → IR; x 7→ f (x) that satisfies the following properties:

f (x) ≥ 0 x ∈ IRn, (f (x) = 0 iff x = 0)
f (x + y) ≤ f (x) + f (y) x, y ∈ IRn

f (αx) = |α|f (x) α ∈ IR, x ∈ IRn

A simple example is the 2-dimensional space IR2 with Euclidean
norm, e.g., a point (2,5) is drawn as an arrow from the origin. As
such, Euclidean norm is often known as magnitude.

Euclidean norm: ‖x‖ =
√
x21 + · · ·+ x2n for x ∈ IRn.

Manhattan norm: ‖x‖1 =
∑n

i=1 |xi |.
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Vector norm (cont’d)

`p-norm: ‖x‖p = (
∑n

i=1 |xi |p)
1
p for p ≥ 1. Note that for p = 1, we

get the `1 norm or Manhattan norm, and for p = 2, we get the
Euclidean norm.

`∞-norm (maximum norm): ‖x‖∞ = max(|x1|, . . . , |xn|).

When 0 < p < 1, `p-norm does not define a norm as it violates the
triangle inequality. However, the function dp(x, y) =

∑n
i=1 |xi − yi |p

defines a metric.

When p = 0, the zero norm of x is defined as limp→0 ‖x‖pp. Define
00 = 0, then we can write the zero norm as

∑n
i=1 x

0
i , which is simply

the number of non-zero elements.

If x ∈ IRn, then ‖x‖p ≤ ‖x‖q if p > q, and p > 0, q > 0, e.g.,
‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.
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Vector norm (cont’d)

Norms play an important role in solving optimization problems.

p ≥ 1 p < 1 Lasso (left) and ridge (right) regression

The residual sum of squares has elliptical contours, centered at the
full least squares estimate.

The constraint region for Lasso is ‖x1‖+ ‖x2‖ ≤ t while the
constraint region for ridge regression is x21 + x22 ≤ t2.

The diamond has corners and if the solution occurs at a corner, then
it has one parameter xi equal to zero.
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Vector norm (cont’d)

For x ∈ IRn, then

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞

Holder inequality: For the `p-norm, we have

|x>y| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1

A special case is the Cauchy-Schwartz inequality,

|x>y| ≤ ‖x‖2‖y‖2

The triangle inequality for inner product is often shown using
Cauchy-Schwartz inequality

‖x + y‖2 ≤ (‖x‖+ ‖y‖)2
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